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Anisotropy of the Coulomb Interaction between Folded Proteins:
Consequences for Mesoscopic Aggregation of Lysozyme
Ho Yin Chan,† Vladimir Lankevich,{ Peter G. Vekilov,‡§ and Vassiliy Lubchenko§†*
Departments of †Physics, ‡Chemical and Biochemical Engineering, and §Chemistry, University of Houston, Houston, Texas;
and {Department of Physics and Astronomy, University of Rochester, Rochester, New York
ABSTRACT Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate
the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation.
Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules,
the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues
induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions
exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form
complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the
prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configura-
tion is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation
or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent
with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting
lysozyme undergoes conformational changes during cluster formation.
MOTIVATION
Protein aggregation is a central problem of biophysics,
medicine, and bioengineering (1–6). Thus, better under-
standing of the thermodynamics of protein phase behavior
and the kinetic pathways leading to the formation of protein
condensed phases will lead to progress in several fields.
Although a protein solution is essentially a two-compo-
nent—protein plus buffer—mixture, its phase behavior is
significantly more complex than the standard textbook
picture of binary mixtures (7). For instance, the phase
diagram of the protein lysozyme, in addition to two solu-
bility lines corresponding to the rhombohedral and tetrag-
onal crystal phases, contains an additional liquid-liquid
coexistence region, which is often accessible before crystal-
lization takes place (8–11).

Even more surprising is that well outside the stability
region of the protein-rich phase, protein solutions often
host compact inclusions of a protein-rich liquid that are
mesoscopic in size, i.e., ~100 times larger than individual
proteins (12,13). We have called these inclusions ‘‘meso-
scopic clusters’’. Recent analysis by Pan et al. (14) shows
indirectly that the clusters result from the formation of
transient protein-containing complexes; the complexes are
strongly stabilized at protein concentrations typical of the
dense protein liquid. This analysis combines the experimen-
tally determined free energy cost of increasing protein
concentration–in the homogeneous region of the phase
diagram– and classical nucleation theory to show that clus-
ters consisting of a uniform concentrated solution of protein
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monomers could contain only a few molecules. On the other
hand, a diffusion-reaction scheme that includes the possi-
bility of the formation of transient complexes yields that
clusters of protein-rich solution should exist with a radius
Rcl determined by the lifetime t and diffusivity D of the
complexes in the bulk solution:

RclzðDtÞ1=2: (1)

This microscopic scenario is supported by a number
of observations ((14) and Y. Li, V. Lubchenko, and P. G.
Vekilov, unpublished). Yet the identity of the complexes
and the mechanism of their formation remain unknown.
A particularly important aspect of this mechanism is
whether the protein molecules undergo partial unfolding
or conformational changes during the complex formation.
Partial unfolding could result in attraction between
solvent-exposed hydrophobic residues or even domain
swapping (16). Resulting complexes would have relatively
long lifetimes, which, by Eq. 1, could lead to the observed
mesoscopic cluster sizes. On the other hand, recent study
of gS-crystallin (17) suggests a higher propensity to aggre-
gate when the native structure is more conformationally
rigid.

The goal of this work is to establish whether folded
protein molecules can form a complex stable enough to
give rise to the mesoscopic clusters. This is a necessary first
step before addressing the significantly more difficult
case of protein binding accompanied by conformational
changes. A common, computationally simple model for
describing protein-protein interaction is the Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory (18,19). In this
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model, the total interaction is modeled semiphenomenolog-
ically as a sum of screened Coulomb repulsion between two
uniformly charged spheres, short-range dispersive attrac-
tion, and hard-core repulsion (20,21). This simplified
picture is expected to overestimate the electrostatic repul-
sion, for the charges on the protein surface are of both signs
and are distributed nonuniformly. Protein molecules thus
can adjust their mutual orientation and substantially miti-
gate the Coulomb repulsion even if they carry a net charge,
a possibility neglected in the DLVO model. Elcock and
colleagues (22,23) have developed a microscopically
inspired, continuum approach to protein-protein interactions
that accounts for the anisotropy of the Coulomb interactions
and protein shape, and desolvation penalty for the protein
surface.

Even in the unfavorable case of two like charges facing
each other during a binding event, deprotonation or proton-
ation of one of the residues in question may occur, thus
neutralizing that residue and removing the source of repul-
sion. Similar acid-base chemistry might result in creating
additional pairs of opposite charges that would stabilize
the protein complex. Consistent with these notions, various
studies have shown water can mediate attractive interactions
even between like-charged residues in protein complexes
(24–26).

Here, we develop a computationally efficient model that
accounts for the anisotropy of the Coulomb component of
protein-protein interaction and the possibility of charge
regulation with respect to protons. We then apply this
methodology to a pair of lysozyme molecules; lysozyme
exhibits many of the protein aggregation phenomena,
including the mesoscopic clusters and liquid-liquid separa-
tion. Our approach allows one to map out the full set of
mutual configurations of the proteins and use those to esti-
mate the lower limit on the rate of dissociation of a typical
dimer of folded lysozyme molecules. We establish that
although two folded molecules can form a relatively stable
dimer when they are oriented in a special way, a typical
dimer is too short-lived to yield mesoscopic clusters. We
then use this result to argue that the majority of protein
molecules must undergo conformational changes during
cluster formation. In addition, we establish that the DLVO
model overestimates the repulsion between the proteins,
implying that accounting for the interaction anisotropy is
essential for quantitative description of protein aggregation,
consistent with conclusions derived from ‘‘patch models’’ of
protein-protein interaction (27).
THE MODEL

We consider two folded protein molecules. We wish to test
for the effects of the mutual orientation of the protein mole-
cules, stemming from the nonuniform charge distribution,
while including the possibility of changes in the charge state
of the surface residues. To separate these effects from the
anisotropy induced by the complicated shape of the protein
and with computational efficiency in mind, we assume that
the protein molecules are exactly spherical with radius Rp;
the ensuing error is quantified below. The radius Rp is
chosen so that the volume of the sphere is equal to that of
the protein molecule; for lysozyme we adopt Rp ¼ 1.7 nm
(28). In the model, the total interaction consists of the
Coulomb interaction (subject to the Debye screening by
the mobile ions in the solution), short-range attraction
(due to dispersion and other interactions), and steric
repulsion.
Coulomb interactions

Charged residues are represented with point charges located
at a depth b beneath the surface of the sphere; this depth b is
assumed to be the same for all residues. The charges are
located at the same latitude and longitude as in the actual
protein molecule; the coordinate center is at the molecule’s
center of mass. This model harks back to the venerable
Tanford-Kirkwood model (29), with the difference that the
charge locations are not random but mimic those of the
actual protein. If the charge of a residue is distributed over
two or three atomic sites, we employ the following proce-
dure: for a protonated arginine, we place charges of þ1/3
at each of the three nitrogens of the guanidinium group;
for a deprotonated aspartate or glutamate, we place �1/2
charges at the two oxygens; and for protonated histidine,
we place two þ1/2 charges at the nitrogens of the imidazole
group. The resulting charge distribution is displayed in
Fig. S1 in the SupportingMaterial. A finite value of b reflects
spatial distribution of charge on a residue and ruggedness of
the protein surface. We use two specific values of the depth
b, 1.5 and 2 Å, because salt bridges form at separations
between the centroids of charged groups ranging between
3 and 4 Å (30).

The charge states of the ionizable residues depend on the
pH of the solvent and on the proximity of the other protein,
as nearby sources of electrostatic field effectively modify
the pKa value of such residues. To test for the possibility
of protonation or deprotonation of ionizable residues, we
assume each of them can have exactly two alternative
charge states even though more states are possible, in
principle; this assumption will turn out to be internally
consistent. The charge states of the ionizable residues are
determined as follows: First, they are divided into three
groups. Group I consists of Asp and Glu, group II of Arg,
His, and Lys, and group III of Tyr and Cys, whose reference
states, by construction, have charge –1, þ1, and 0, respec-
tively. For each ionizable residue i, introduce a variable si
equal to –1, if the residue belongs to Group I, or þ1, if it
belongs to Group II or III. In the absence of the other
protein, the free energy cost to switch from the protonated
(deprotonated) to deprotonated (protonated) state for
a Group II and III (Group I) residue, is given by
Biophysical Journal 102(8) 1934–1943
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DG
ðpÞ
i ¼ si lnð10ÞðpKa;i � pHÞkBT; (2)

where pKa,i is the pKa value of residue i for an isolated
protein molecule. These pKa values are determined using
the package PROPKA3 (31–34). When a source of external
field is present—such as resulting from another protein and/
or mobile ions from the buffer—the distribution of the vari-
able si in Eq. 2 is subject to the energy of the corresponding
charge in that field, in addition to the cost DG

ðpÞ
i itself. We

note that free ions by themselves could affect the pKa value:
According to Wang et al. (35), the resulting pKa change of
a fully solvent accessible ionizable group could change by
up to one unit, at the ionic strengths in question. Here, in
contrast, we consider a fully folded molecule, implying
a relatively low solvent accessibility. In addition, we will
see later that the effects of (de)protonation self-consistently
turn out to be small. Now, in the presence of another protein
molecule, the free energy of a specific protonation configu-
ration is computed according to

GðpÞ ¼
X
i

DG
ðpÞ
i �

X
i

DG
ðpÞ
i;N; (3)

where DG
ðpÞ
i;N is the thermally averaged value of DG

ðpÞ
i at in-

finite separation between the proteins and is calculated by
Boltzmann averaging Eq. 2 with respect to the two alterna-
tive values of si with the ‘‘energy’’ parameter equal to DG

ðpÞ
i

itself.
The Coulomb component of the interaction between the

proteins is determined by the instantaneous values of the
charges and fluctuates in time. In an ‘‘adiabatic’’ limit of
solvent motions being infinitely faster than those of the
proteins, the Coulomb interaction is stationary and is equal
to its instantaneous value averaged over 2n configurations,
where n is the total number of ionizable residues. Averaging
over all 2n configurations is computationally costly yet
usually unnecessary: Only those residues sufficiently close
to the interfacial region might appreciably affect each other,
owing to the decay of the Coulomb interaction with
distance, also enhanced by the Debye screening. Specifi-
cally, here we explicitly sample the distinct charge states
only on four residues, two residues per each protein mole-
cule. The latter are chosen to be the closest to the midpoint
between the proteins, for each orientation. This ‘‘interface’’
subset of residues has 24 ¼ 16 possible protonation states.
Any quantity of interest is averaged over these 16 configu-
rations, with corresponding Boltzmann weights. If needed,
the subset of the interface residues can be increased (at
a higher computational cost).

The pKa values of those residues not in the interface region
are only weakly affected by the other protein. The charge on
such residues is assumed to be equal to that on an isolated
protein; we will see below this assumption is internally
consistent. The average value of this charge is thus equal to
Biophysical Journal 102(8) 1934–1943
zi ¼

8>><
>>:

si
1þ 10siðpH�pKa;iÞ for Group I and II

�si
1þ 10�siðpH�pKa;iÞ for Group III;

(4)

where pKa,i is the pKa of residue i on an isolated protein.
The energy of the Coulomb interaction between the two

protein molecules in specific orientations is Boltzmann-
averaged over the protonation states, also subject to the
free energy cost G(p) from Eq. 3,

ECoulomb ¼
*
1

2

X
i

zi4i þ GðpÞ
+

prot

; (5)

where the summation is over all charges. The angular
brackets denote averaging over the 16 distinct protonation
states of the interfacial residues with the Boltzmann weight
ð1=ZÞe�E=kBT , where E is the expression inside the angular
brackets and Z is the corresponding partition function. The
electrostatic potential 4i on charge i, due to the other
protein, is estimated in the Debye-Hückel approximation
modified to account for the effects of the dielectric
discontinuity,

4i ¼
X
j

zj
4pε0εS

�
e�kdij

dij

�
pij; (6)

where the indices i and j pertain to different protein mole-
cules. In Eqs. 5 and 6, if a residue belongs to the interfacial
subset, its charge is set equal to its instantaneous value;
otherwise it is computed according to Eq. 4. The distance
between residues i and j is denoted with dij, the dielectric
susceptibilities of the vacuum and solvent with ε0 and εs,
respectively. The inverse Debye length is computed as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NAe

2I

ε0εSkBT

s
;

where I stands for the ionic strength of the solution and NA is
Avogadro’s number. Here, we take I¼ 30 mM, T¼ 298 K to
match the experimental conditions in Pan et al. (14),
yielding a Debye length k�1 z 0.57 nm.

The Yukawa-like interaction in the round brackets in
Eq. 6 corresponds to the interaction between two pointlike
charges in the Debye-Hückel theory. This is an approxima-
tion, because the charges are buried inside a sphere with
a dielectric constant significantly below that of the solvent.
In the Supporting Material, we illustrate the effect of the
dielectric discontinuity at the protein-solvent interface and
the interface curvature on this interaction. We show that
the repulsion between interfacial like-charges can be
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significantly enhanced by the dielectric discontinuity, if they
face each other, while the corresponding effect on the attrac-
tion between opposite charges is modest. The correction
factor pij in Eq. 6 approximately accounts for those effects;
it is estimated in the Supporting Material. The correction
factor is equated to unity whenever at least one of the resi-
dues i or j is at an angular distance from the midpoint
between the proteins that exceeds a specific cut-off value
qc. This value is chosen to be 90�, based on the comparison
of the values of the electrostatic potential resulting from
Eq. 6 with those produced by numerical solution of the
Poisson-Boltzmann equation, which is described at the end
of this section. We note that solvation/desolvation of the
surface residues is accounted for in the present, continuum
approximation, by including the dielectric discontinuity
effects. Finally note that there is no explicit contribution of
the mobile ions to the interaction energy between the protein
molecules at the Debye-Hückel level (36), and so they enter
the PMF only through the Debye screening and, possibly,
charge regulation (see below).
Dispersion, steric, and other interactions

We model the effective potential stemming from the non-
Coulomb interactions by a functional form that smoothly
interpolates between two distinct behaviors, as pertinent at
long and short separation rs between the protein surfaces,

Emol ¼
�

E>; rs>r2
E<; rs<r1;

(7)

where r1 < r2 and a fifth-degree polynomial is used to patch
the short- and long-distance behaviors so that the derivatives
of order two and below are continuous. At relatively long
distances, r1 > r2, the interaction is designed to match
that between two polarizable spheres (37),

E> ¼ �AH

12

 
1

ðx þ 1Þ2 þ
1

ðx2 þ 2xÞ þ 2 ln

 
x2 þ 2x

ðx þ 1Þ2
!!

;

(8)

where x h rs/2Rp is the distance between their surfaces
divided by the sphere diameter. The Hamaker constant AH

is set equal to 3 kBT, which is close to its theoretically esti-
mated value for lysozyme (38,39).

At short distances, rs < r1, the non-Coulomb interactions
are dominated by dispersion interaction between surface
residues and attraction between hydrophobic patches, if
any. Additional sources of attraction may also be present,
including: depletion interaction caused by HEPES and
charge regulation via transient binding of mobile ions
from the buffer (20). The latter appears to be significant
and system-dependent (40). This study focuses on cluster
formation in HEPES, which is a ‘‘mild buffer’’ (41) and is
not expected to bind to or modify the protein surface
much. We account for those attractive forces and the steric
repulsion phenomenologically, via a Lennard-Jones like
functional form (42),

E< ¼ 4ε

"�
s

rs þ d

�2a
�
�

s

rs þ d

�a #
; (9)

where ε is the depth of the minimum and rs is the separation
between the protein surfaces. The parameters a, d, s, and
r1,2 are chosen to satisfy the following constraints: 1), The
surface of the protein is at its van der Waals location, i.e.,
rs ¼ 0, which yields d ¼ ffiffiffiffiffiffi

2sa
p

. 2), The curvature at the
minimum of E< equals 300 nm�2, the latter figure compa-
rable to those observed for ammonium and methane
(43,44). Once Constraints 1 and 2 are satisfied, the region
in which E< and E> intersect is rather insensitive to the
precise parameter values; the latter values adopted in the
article are given in the Supporting Material.
Potential of mean force

The potential of mean force (PMF) for each orientation of
the two proteins is computed by adding together the full
Coulomb interaction ECoulomb from Eq. 5 and Emol from
Eq. 7,

EPMF ¼ ECoulomb þ Emol; (10)

c.f. the decomposition of the protein-protein PMF by Elcock
and McCammon (22).

Given the value of the PMF, the second viral coefficient,
B22, is computed in the standard fashion (45,46),

B22 ¼ �2pNA

M2

*ZN
0

�
e�EPMF=kBT � 1

�
r2c drc

+
; (11)

where M is the protein mass and

rchrs þ 2Rp (12)

is the distance between the proteins’ centers of mass. The
angular brackets in Eq. 11 denote averaging with respect
to the orientation of the proteins, which is performed here
by discrete summation, see details in the Supporting
Material.
Tests of the electrostatic potential

In Fig. 1, we compare the potentials determined from Eq. 6
for all charged surface residues, to the corresponding poten-
tials obtained by solving the nonlinear Poisson-Boltzmann
(PB) equation with the Adaptive Poisson Boltzmann Solver
(APBS) software package (47) for a pair of lysozyme
Biophysical Journal 102(8) 1934–1943
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given as Fig. S4, a and b.

0 30 60 90
θc, deg

0.1

0.15

0.2

0.25

R
M

S(
ϕ 

vs
.ϕ

) ,
 k

BT

b = 0.2nm, spherical
b = 0.2nm, actual
b = 0.15nm, spherical
b = 0.15nm, actual

FIGURE 2 Root mean-square deviation from the perfect agreement in
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molecules. In the APBS calculation, the size of the grid box
is 160.5 � 80.5 � 80.5 Å3, the grid spacing 0.5 Å, T ¼
298.15 K; I ¼ 30 mM as provided by Naþ and Cl� ions;
the dielectric susceptibilities of protein and water are 2
(Patargias et al. (48)) and 78.54, respectively. The protein
structure, as determined in Wang et al. (49), is obtained
from the Protein Data Bank as PDB:2VB1. The residues’
protonation states were determined using PROPKA3
(31–34) and imported using PDB2PQR (50) packages (see
Fig. S2). Because we are interested in the potential values
near charges, where the effect of the finite grid size is
most significant, we obtain this potential by averaging its
value in nine points: the closest grid point to the charge
(‘‘point 1’’) and the eight grid points closest to point one
in directions (51, 51, 51). The position of the charges
were determined using the BioMagResBank database (51).
Note APBS places charges at the coordinates of actual
atoms, not at a fixed depth below the surface, which is
a potential source of discrepancy with the predictions of
our model.

APBS yields the full value of the electrostatic potential,
which also includes the field from the residues in the same
protein molecule and the polarization charge at the two
protein-solvent interfaces. To infer the portion 4 of the
potential that depends exclusively on the interprotein sepa-
ration, we compute the full potential as a function of the
separation and then subtract from it its value at the infinite
separation, which is obtained by solving the PB equation
for an isolated protein molecule, as illustrated in Fig. S3.

In the configuration corresponding to Fig. 1, Arg87 faces
Asp45; hereby, actual proteins would face each other with
convex regions (see Fig. S2). The distance between the
protein surfaces is chosen at 3 Å: On the one hand, this
way APBS can place at least one water layer above
each protein and so its predictions are representative of
the actual values of the potential and are less affected
Biophysical Journal 102(8) 1934–1943
by the continuum nature of the treatment. On the other
hand, the 3 Å separation is small enough that the resulting
range of the potential values is sufficiently broad to allow
for a meaningful comparison. In Fig. 1 a, we compare the
potentials computed with our model, using the cut-off angle
qc¼ 90�, and with APBS. In Fig. 1 b, we compare the poten-
tials computed using our model without the sphericity
assumption and the APBS produced potentials. In Fig. 2,
we show the dependence of the root mean square on the
scatter graphs in Fig. 1 on the cut-off angle qc. According
to Figs. 1 and 2, the sphericity assumption introduces a
quantitative, not qualitative error. Fig. 2 justifies using
qc ¼ 90� as yielding the smallest overall error in the spher-
ical case and a relatively small error in the actual-shape
case. Overall, Fig. 1 indicates that our model is a viable
method for evaluating electrostatic interactions between
large convex molecules.
RESULTS AND DISCUSSION

The potentials of mean force (PMF) computed using our
approximation are presented in Fig. 3, a and b, for b equal
to 1.5 and 2 Å, respectively. The thick solid line shows the
total PMF from Eq. 10 as a function of the distance between
the centers of the protein molecules rc, averaged over the
orientations of the molecules with corresponding Boltzmann
weights. The thin solid line shows the minimum energy at
each separation, i.e., at the orientation at which the Coulomb
term from Eq. 5 has is lowest value, for each value of rc. The
Coulomb and molecular terms, from Eqs. 5 and 7, are shown
by the dashed and dash-dotted lines, respectively. The elec-
trostatic components are shown in the insets of Fig. 3,
a and b, where they are compared with the corresponding
DLVO values, which were computed using Eq. 15 of
Muschol and Rosenberger (52); see also Petsev et al. (21).

The specific values of the depth ε of the molecular term
from Eq. 7 were chosen based on the following reasoning:
We first compute the model’s upper bound on the second
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TABLE 1 Several quantities computed for the two sets of

parameters pertaining to Fig. 3, a and b

b, Å B22, 10
�4 ml mol/g2 dmin, Å e, kBT t, ms Rc, nm

1.5 6.57 2.86 6.31 0.7–3 5–10

2.0 6.50 3.86 6.40 0.5–2 4–8

In computing the cluster radius, we assume the diffusivity D¼ 4.28� 10�7

cm2/s, based on viscosity 3cPs (54).
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virial coefficient B22, defined in Eq. 11, by including only
the electrostatic component ECoulomb, while assuming hard-
core repulsion at rc ¼ 2Rp. The resulting value is B22 z
1.31 � 10�3 and 1.30 � 10�3 ml mol g�2 for b ¼1.5 and
2 Å (the hard sphere portion is 0.24 � 10�3). This is equal,
within the experimental error, to the measured value of
1.4� 10�3 ml mol g�2, determined from the low-concentra-
tion part of the Debye plot in Fig. 2 a of Pan et al. (14).
According to Neal and Lenhoff (53), the spherical assump-
tion results in underestimating the steric portion of B22 by
a factor of ~1.7, which would raise our estimate of the repul-
sive portion of B22 to 1.5 � 10�3 or so. This general agree-
ment with the experimental value is reassuring. Still, after
including the attractive interactions, B22 will likely be below
the experimental value, implying our model may somewhat
underestimate the repulsive part of the interaction. Note the
experimental figure was obtained with HEPES as the buffer.
The HEPES anion is significantly larger than, for instance,
Cl�, suggesting a relatively low accessibility to the protein
surface and the protein-protein interface, and hence aweaker
Debye screening than due to pointlike ions.

Despite these complications, one may argue that the
attractive portion of B22 is comparable to or smaller than
the Coulomb portion, so that the virial coefficient remains
repulsive. This notion yields an approximate lower bound
on the depth ε. For the sake of concreteness, we have chosen
such values of ε that lower the second virial coefficient,
from its Coulomb plus hard-sphere value, by a factor of
two. This way, the overall interaction is repulsive, while
its numerical value is still comparable to the experimental
value. At the same time, the Coulomb and molecular contri-
butions are comparable. Note that simulations of interaction
between charged and neutral amino acids indicate the depth
of the attractive minimum does not exceed 10 kBT for oppo-
sitely charged residues and is smaller otherwise (54). The
values of ε chosen hereby are consistent with this figure.
Another consistency check on the numerical values of the
parameters of the molecular term from Eq. 7 and the depth
b is that at the attractive minimum of the total PMF, the
distance between the centroids of the constituents of salt
bridges remains close to 3 and 4 Å (see Table 1). This is
by no means a given, because the steepness of the Coulomb
portion varies rather strongly with interprotein separation,
as can be seen in Fig. 3, and could shift appreciably the posi-
tion of the attractive minimum, which is relatively soft.

Let us now analyze in detail the Coulomb portion of the
interprotein interaction. The value of the minimum energy
term in Fig. 3 is noteworthy: it shows that despite the rather
high net charge on each protein, i.e., ~þ7.4, there is always
a mutual orientation that barely exhibits repulsion at any
separation. This notion is brought home by the histogram
in Fig. 4, where we show the distribution of the Coulomb
term ECoulomb at two values of the interprotein separation,
i.e., those corresponding to the minimum and maximum
of the angular-averaged PMF. As expected, the distribution
shifts to lower energies with the separation, although the
smallest value slightly increases for the b ¼ 1.5 Å case, at
small separations. Note the repulsion, though present, is
significantly lower than that prescribed by the DLVO theory.
This result is of significance for simplified treatments of
phase and aggregation behaviors of proteins. Note also the
overall change of the Coulomb contribution is small and
gradual, resulting in a low, broad barrier.

The actual ensemble of orientations relevant at the
ambient temperature is given by the distribution from
Fig. 4 multiplied by the corresponding Boltzmann weight.
The resulting distributions, corresponding to Fig. 4, a and b,
are shown in Fig. 5, parts a and b, respectively. We point
out that the lowest energy configuration at the minimum
of the PMF actually has an attractive Coulomb portion,
for b ¼ 1.5 Å. Not surprisingly, the contacting residues in
this configuration, i.e., Lys116-Asp52 are oppositely charged.
Note that the Asp52 residue is partially obstructed, and so
it is not clear that the hereby predicted most probable
contact is actually possible. Although partial accessibility
Biophysical Journal 102(8) 1934–1943
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can be modeled by employing a greater depth b for the
residue in question, we choose to use a uniform b here to
assess strengths and weaknesses of the model in its simplest
realization.

In Fig. 6 we display the typical number of residues whose
protonation state differs from that of isolated molecules.
This number is small, implying that even at close separa-
tions, the molecules find configurations that satisfy the
Coulomb interactions with almost the same protonation
pattern as those on isolated molecules and thus avoid the
free energy penalty for protonation/deprotonation from
Eq. 2. This observation is of significance for analyses of
phase ordering in large assemblies of proteins, because it
indicates that, to a good approximation, one can assume
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the protein charge depends exclusively on the pH of the
solution, and not the protein concentration.

Fig. 5 shows that during dissociation, the vast majority of
the angular orientations are close in energy to the average
energy at the respective protein-protein separation. Thus,
a much simplified picture for binding/dissociation is
adequate, in which the orientations of the protein molecules
are averaged out and so the only reaction coordinate left is
the interprotein separation. Furthermore, the protein
motions in water are strongly overdamped, implying we
are in the Kramer’s limit of the transition state theory.
Neglecting hydrodynamic effects, the typical decay time
of the complex can be then expressed as (55)

t ¼ 2pz

MuzuB

eG
z=kBT; (13)

where the friction coefficient, z, is related to the viscosity of
solvent (56), h, by the Stokes Law zz 6phRp.G

z is the alti-
tude of the maximum of the PMF relative to its minimum,
while uB and uz are the vibrational frequencies at the
minimum and the inverted maximum at the transition state.
By Eq. 1, the cluster radius can be presented as

Rcl ¼
�
2pkBTD2=D1

Mu�uB

eG
z=kBT

�1=2

; (14)

where D2/D1 z 0.76 is the diffusivity of a dumbbell
composed of two identical spheres relative to the diffusivity
of one of those spheres (57). Note Rcl does not explicitly
depend on the solution’s viscosity.

The expressions in Eqs. 13 and 14 are underestimates
because: a), the Coulomb component in the initial state of
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dissociation is distributed (see Figs. 4 and 5); b), the average
lifetime is determined by averaging Eq. 13 with respect to
the initial state, with the corresponding Boltzmann weight;
and c), for a distributed quantity x, hexi R ehxi. Thus the
lifetime in Eq. 13 is underestimated, approximately, by
a factor he�ECoulomb=kBTi=e�hECoulomb=kBTi, where the averaging
is with respect to the distribution from Fig. 5. In Table 1,
we list the lifetime following from Eq. 13 as the lower
bound and the latter figure multiplied by the factor
he�ECoulomb=kBTi=e�hECoulomb=kBTi, as the upper bound. These
lifetimes yield cluster sizes that are at least one order-of-
magnitude lower than the observed value (see Table 1).

Finally, we discuss the potential error stemming from the
assumption that the attractive term from Eq. 7 is isotropic
and our neglecting additional modulations to the PMF,
due to the discreteness of water, which are likely present
and appear to be ~2 kBT in magnitude (54). These errors,
if any, would not lead to a longer-lived complex, because
such a longer-lived complex necessarily implies a lower
yet B22. Indeed, the integral in the attractive portion of the
second virial coefficient, in Eq. 11, is dominated by values
of the argument that minimize the exponent (which is the
basis of what is called the steepest-descent approximation).
Thus, this attractive portion is proportional to eV=kBT , aver-
aged of the orientation, where V is the depth of the PMF
at a given mutual orientation. On the other hand, the average
lifetime of complex, which enters Eq. 1, is proportional to
the orientational average of eG

z=kBT ¼ eðVþdVÞ=kBT , where
dV is the altitude of the typical dissociation barrier of the
PMF. Hence, the second virial coefficient is approximately
a linear function of the lifetime, with a negative slope. As
a result, the presence of deep attractive minima, requisite
for longer times, would imply a second virial coefficient
lower than its observed value. Note conformational changes
that enable density-stabilized complexes would not lead to
a decrease in the second virial coefficient because the latter
is pertinent to low densities.
CONSEQUENCES FOR MESOSCOPIC
AGGREGATION

The goal of this work was to test whether a pair of folded
and conformationally rigid lysozyme molecules could
form transient complexes that live long enough to give
rise to mesoscopic clusters observed in lysozyme solutions.
Toward this goal, we have developed a computationally effi-
cient model for protein-protein interaction in solutions with
moderate ionic strength, in which the Debye screening
length is comparable or larger than the protein size. This
model originates in the classic Tanford-Kirkwood model,
but applies it to interaction between the residues on distinct
protein molecules. The model partially accounts for
hydration interactions, in a continuum approximation, by
including effects of the dielectric discontinuity at the
protein-solvent interfaces. We explicitly consider the possi-
bility of changes in the charge state of the ionizable residues
stemming from the changes in their pKa values caused
by the proximity of another protein. The dispersive and
excluded-volume parts of the interaction, as well as attrac-
tion between hydrophobic patches and other ion-induced
effects, are included phenomenologically. The resulting
uncertainty is mitigated by testing the resulting PMF against
the measured second virial coefficient.

Our model accounts rather fully for the anisotropic nature
of the Coulomb interactions between biomolecules that
stems from inhomogeneous charge distribution on their
surfaces. We have shown that by neglecting this anisotropy,
the DLVO approximation overestimates the repulsion
between the proteins. This observation is consistent with
the known general trend that to recover experimental second
virial coefficients using the DLVO theory, one must use
significantly greater values of the Hamaker constant than
those calculated from first principles (38). Also, we have
seen that changes of the protonation state of the surface resi-
dues are relatively unimportant, which greatly simplifies
the task of modeling large assemblies of proteins.

The model is sufficiently simple to allow for complete
sampling of the protein orientations with modest computa-
tional effort. The resulting PMF is smooth enough to allow
for accurate estimates of its second derivatives at the initial
and transition states for the dissociation of a transient
protein dimer. We have thus established that typical dimers
of folded lysozyme molecules are too short-lived to explain
the mesoscopic size of the clusters found in solutions of
lysozyme and other proteins. Still, according to Pan et al.
(14), the radius of the cluster is determined by the longest
living complex, which a priori could consist of more than
two proteins. Such complexes would have to be relatively
compact, because the lifetime of a chainlike structure is
determined by the lifetime of the weakest link, i.e., a dimer,
which we have already shown to be too short to explain the
clusters. Now, the large N limit of such compact complexes
has been already analyzed by Hutchens and Wang (58), who
have shown that for isotropically interacting protein mole-
cules, a purely electrostatic scenario in combination with
short-range attraction is inconsistent with the presence of
the mesoscopic clusters. The isotropic assumption is appro-
priate in this context even though the interaction within
a pair of molecules is rather anisotropic: it is unlikely that
in large collections of such molecules, the ‘‘favorable’’
contacts will be typically satisfied. To demonstrate this
notion explicitly, we analyze the energetics of a lysozyme
trimer in the Supporting Material and confirm that those
conform to the large N trend established by Hutchens and
Wang (58). We thus conclude that, at least in the case of
lysozyme, the protein molecules do not remain fully rigid
but undergo conformational changes during cluster forma-
tion. These conformational changes may be relatively small,
so as to increase the contact area, or could include partial
unfolding, in which case attraction between solvent-exposed
Biophysical Journal 102(8) 1934–1943
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hydrophobic residues or even domain swapping (16,59)
could take place.

Finally, according to calculations in Asherie et al. (9), ten
Wolde and Frenkel (60), and Brandon et al. (61), the width
of the attractive minimum and the height of the repulsive
hump are consistent with the observed liquid-liquid separa-
tion in lysozyme. Combined with the above result that
cluster formation should be accompanied by protein-confor-
mational changes, this notion suggests the intriguing possi-
bility that the formation mechanism of the macroscopic
dense-liquid phase and the mesoscopic clusters in lysozyme
are distinct.
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resolution. Acta Crystallogr. D Biol. Crystallogr. 63:1254–1268.

50. Dolinsky, T. J., P. Czodrowski, ., N. A. Baker. 2007. PDB2PQR:
expanding and upgrading automated preparation of biomolecular struc-
tures for molecular simulations. Nucleic Acids Res. 35 (Web Server
issue):W522–W525.

51. Ulrich, E. L., H. Akutsu, ., J. L. Markley. 2008. BioMagResBank.
Nucleic Acids Res. 36 (Database issue):D402–D408.

52. Muschol, M., and F. Rosenberger. 1995. Interactions in undersaturated
and supersaturated lysozyme solutions: static and dynamic light scat-
tering results. J. Chem. Phys. 103:10424–10432.
53. Neal, B. L., and A. M. Lenhoff. 1995. Excluded volume contribution to
the osmotic second virial coefficient for proteins. AIChE J. 41:1010–
1014.

54. Masunov, A., and T. Lazaridis. 2003. Potentials of mean force between
ionizable amino acid side chains in water. J. Am. Chem. Soc. 125:1722–
1730.

55. Frauenfelder, H., and P. G. Wolynes. 1985. Rate theories and puzzles of
hemeprotein kinetics. Science. 229:337–345.

56. Fredericks, W. J., M. C. Hammonds,., F. Rosenberger. 1994. Density,
thermal expansivity, viscosity and refractive index of lysozyme solu-
tions at crystal growth concentrations. J. Cryst. Growth. 141:183–192.

57. Petsev, D. N., B. R. Thomas, ., P. G. Vekilov. 2000. Interactions and
aggregation of apoferritin molecules in solution: effects of added elec-
trolytes. Biophys. J. 78:2060–2069.

58. Hutchens, S. B., and Z.-G. Wang. 2007. Metastable cluster intermedi-
ates in the condensation of charged macromolecule solutions. J. Chem.
Phys. 127:084912.

59. Bennett, M. J., S. Choe, and D. Eisenberg. 1994. Domain swapping:
entangling alliances between proteins. Proc. Natl. Acad. Sci. USA.
91:3127–3131.

60. ten Wolde, P. R., and D. Frenkel. 1997. Enhancement of protein crystal
nucleation by critical density fluctuations. Science. 277:1975–1978.

61. Brandon, S., P. Katsonis, and P. G. Vekilov. 2006. Multiple extrema in
the intermolecular potential and the phase diagram of protein solutions.
Phys. Rev. E. 73:061917.

62. Allen, R., and J.-P. Hansen. 2002. Density functional approach to the
effective interaction between charges within dielectric cavities.
J. Phys. Condens. Matter. 14:11981.

63. Nakajima, Y., and T. Sato. 1999. Calculation of electrostatic force
between two charged dielectric spheres by the re-expansion method.
J. Electrostatics. 45:213–226.

64. Stratton, J. A. 1941. Electromagnetic Theory. McGraw-Hill,
Englewood Cliffs, NJ.

65. Finkelshtein, A. V. 1977. Electrostatic interactions of charged groups in
an aqueous-medium and their effect on formation of polypeptide-chain
secondary structure. Mol. Biol. 11:627–634.

66. Lindell, I. V. 1992. Electrostatic image theory for the dielectric sphere.
Radio Sci. 27:1–8.

67. Rakhmanov, E. A., E. B. Saff, and Y. M. Zhou. 1994. Minimal discrete
energy on the sphere. Math. Res. Lett. 1:647–662.

68. Saff, E., and A. Kuijlaars. 1997. Distributing many points on a sphere.
The Mathematical Intelligencer. 19:5–11.
Biophysical Journal 102(8) 1934–1943


	Anisotropy of the Coulomb Interaction between Folded Proteins: Consequences for Mesoscopic Aggregation of Lysozyme
	Motivation
	The Model
	Coulomb interactions
	Dispersion, steric, and other interactions
	Potential of mean force
	Tests of the electrostatic potential

	Results and Discussion
	Consequences for Mesoscopic Aggregation
	Supporting Material
	References


