The Chow group of zero-cycles on certain Chatelet surfaces over TheChowgroupzero-cyclesoncertainChateletsurfacesoverlocalfieldslocal fields

by Supriya Pisolkar

Harish-Chandra Research Institute, Chhatnag Road, Jhunsl, Allahabad 211019, India

Communicated by Prof. M.S. Keane

1. INTRODUCTION

Let K be a finite extension of \mathbb{Q}_p (p prime). By a Châtelet surface X over K we mean a smooth projective surface K-birational to a surface given by the equation: I. INTRODUCTION
Let K be a finite extension
mean a smooth projective :
(1) $y^2 - dz^2 = f(x)$,

(1)
$$
y^2 - dz^2 = f(x),
$$

where $f(x)$ is a monic cubic separable polynomial in x with coefficients in K. Our main aim is to compute the Chow group $A_0(X)_0$ of 0-cycles of degree zero modulo rational equivalence on such surfaces. The case where $f(x)$ splits into three linear factors has been considered in [8] and [9]. In this paper we consider the remaining main aim is to compute the Chow group $A_0(X)_0$ of 0-cycles of degree zero modulo
rational equivalence on such surfaces. The case where $f(x)$ splits into three linear
factors has been considered in [8] and [9]. In this pap not a square.

If $d \in K^{*2}$, then the Châtelet surface defined by the equation $y^2 - dz^2 = x(x^2 - e)$ is K-birational to \mathbb{P}^2 . In fact, in this case the function field of this surface is $K(x, u)$, where $u = y + \sqrt{dz}$. By [2], Prop. 6.1, $A_0^{\bullet}(\mathbb{P}^2)_{0} = 0$. Since $A_0(X)_0$ is a birational invariant of a smooth projective geometrically integral surface [2], Prop. 6.3, we get that $A_0(X)_0$ is zero. Thus, we may assume that $d \notin K^{*2}$.
The main results of this paper are as follows.
E-mail: supnya@mri.ernet.in (S. Pisolkar).

The main results of this paper are as follows.

E-mail: supnya@mri.emet.in (S. Pisolkar).

Theorem 1.1. Let X be a Châtelet surface given by the equation $y^2 - dz^2 = x(x^2 - e)$. Let $L = K(\sqrt{d})$ and $E = K(\sqrt{e})$. If L and E are isomorphic extensions $x(x^2 - e)$. Let $L = K(\sqrt{d})$ and $E = K(\sqrt{e})$. If L and E are *isomorphic* extensions *of* **K**, *then* $A_0(X)_0 = \{0\}$.

Theorem 1.2. *Suppose that* $p \neq 2$ *. Assume that the quadratic extensions* $L =$ **Theorem 1.2.** Suppose that $p \neq 2$. Assume that the quadratic extensions L
K(\sqrt{d}) and E = K(\sqrt{e}) are not isomorphic. Then $A_0(X)_0$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$

Theorem 1.3. Suppose that $K = \mathbb{Q}_2$. Assume that $L = K(\sqrt{d})$ and $E = K(\sqrt{e})$ are *non-isomorphic quadratic extensions ofK. ofK.*

- (1) *Suppose that* L/K *is unramified. Then the group* $A_0(X)_0$ *is isomorphic to* Suppose that L/K is unramified
(i) $\{0\}$ if $v_K(e) \equiv 0 \pmod{4}$; *(1) Suppose that* L/K *is unramified. Then the group* $A_0(X)_0$ *is isomorphic to*
 (i) {0} if $v_K(e) \equiv 0 \pmod{4}$.
 (2) Suppose that L/K *is a ramified extension. Then* $A_0(X)_0$ *is isomorphic to* $\mathbb{Z}/2\mathbb{Z}$
	- (i) $\{0\}$ *if* $v_K(e) \equiv 0 \pmod{4}$;
(ii) $\mathbb{Z}/2\mathbb{Z}$ *if* $v_K(e) \not\equiv 0 \pmod{4}$.
-

Theorem 1.4. *Let* X *be a Châtelet surface* K -*birational to* $y^2 - dz^2 = f(x)$ *where* $f(x)$ *is an irreducible monic cubic polynomial in x with coefficients in* K. *Then* $A_0(X)_0 = \{0\}$ $A_0(X)_0 = \{0\}$

2. THE METHOD OF COMPUTATION

Let $X = X_{d,e}$ denote the Châtelet surface corresponding to the equation

$$
y^2 - dz^2 = x(x^2 - e).
$$

Let π be a uniformiser of K. The change of variables $x = \pi^2 x'$, $y = \pi^3 y'$, $z = \pi^3 z'$ gives us

$$
X_{d,e'}: y'^2 - dz'^2 = x'(x'^2 - e'),
$$

where $e' = \pi^{-4}e$. Thus it is enough to consider the cases $v_K(e) = 0, 1, 2, 3$. Moreover, using yet another transformation $z \mapsto \lambda z$ for a suitable $\lambda \in K^*$, it is clear that we need only to consider the cases $v_K(d) = 0, 1$.

Let $CH_0(X)$ = Chow group of zero cycles on X modulo rational equivalence. Let CH₀(X) = Chow group of
A₀(X)₀ = Ker(H₀(X) $\stackrel{\text{deg}}{\longrightarrow} \mathbb{Z}$).

We now describe a method due to Colliot-Thélène and Sansuc [4] which reduces the calculation of $A_0(X)_0$ to a purely number-theoretic question.

The surface X comes equipped with a morphism $f: X \to \mathbb{P}_1$ whose fibres are conics. We denote by O the singular point of the fibre above ∞ . By [2], Théorème C,
the map
 $\gamma: X(K) \to A_0(X)_0,$ $\gamma(Q) = Q - Q$, the map

$$
\gamma: X(K) \to A_0(X)_0, \qquad \gamma(Q) = Q - O,
$$

is surjective. We also have a natural injection (see [4])
 $\phi: A_0(X)_0 \to H^1(K, S(\overline{K})),$

$$
\phi: A_0(X)_0 \to H^1(K, S(\overline{K})),
$$

where K is an algebraic closure of K and S is the K-torus whose character group is the Gal(\bar{K}/K)-module Pic(\bar{X}) where $\bar{X} = X \times_K \bar{K}$. Thus with the following identifications (see [4]) where K is an algebraic closure of K and S is the K-torus whose character group is the Gal(\overline{K}/K)-module Pic(\overline{X}) where $\overline{X} = X \times_K \overline{K}$. Thus with the following identifications (see [4])

$$
H^1(K, S(\overline{K})) \to K^* / N_{L/K} L^* \times E^* / N_{LE/E} L E^* \to (\mathbb{Z}/2\mathbb{Z})^2
$$

the calculation of $A_0(X)_0$ reduces to computing the image of the composite map

$$
X(K) \to A_0(X)_0 \to H^1(K, S(\overline{K})) \stackrel{\cong}{\to} (\mathbb{Z}/2\mathbb{Z})^2.
$$

As all the points in the same fibre of the map $f: X(K) \to \mathbb{P}^1(K)$ are mutually As all the points in the same fibre of the map $f: X(K) \to \mathbb{P}^1(K)$ are mutually equivalent 0-cycles, what we have to compute is the image of the induced map $\chi: f(X(K)) \to (\mathbb{Z}/2\mathbb{Z})^2$. The subset $f(X(K)) \subset \mathbb{P}^1(K)$ is clearly equal to
 $M = \{x \in K^* \mid x(x^2 - e) \in N_{L/K}L^* \} \cup \{0\}.$

$$
M = \{x \in K^* \mid x(x^2 - e) \in N_{L/K}L^* \} \cup \{0\}.
$$

The exact description of the map $\chi : M \to (\mathbb{Z}/2\mathbb{Z})^2$ is given by (see [2,14])

$$
\chi(x) = \begin{cases} (\bar{x}, (x - \sqrt{e})^{-}) & \text{if } x \neq 0, \\ (-\bar{e}, (-\sqrt{e})^{-}) & \text{if } x = 0, \end{cases}
$$

where the bar denotes the image in $K^*/N_{L/K}L^*$ and $E^*/N_{LE/E}LE^*$ respectively, both these quotients being identified with $\mathbb{Z}/2\mathbb{Z}$. By using this map χ we will now prove Theorem 1.1. where the bar denotes the image in $K^*/N_{L/K}L^*$ and $E^*/N_{LE/E}LE^*$ respectively, both these quotients being identified with $\mathbb{Z}/2\mathbb{Z}$. By using this map χ we will now prove Theorem 1.1.

Proof of Theorem 1.1. By the above method, to show that $A_0(X)_0 = \{0\}$, it is enough to show that $\chi(M) = \{0\}$. As L and E are isomorphic, the extension LE/E is trivial. Thus the group $E^* / N_{LE/E}LE^*$ is trivial. Therefore for any $x \in M$ we get enough to show that $\chi(M) = \{0\}$. As L and E are isomorphic, the extension LE/E
is trivial. Thus the group $E^*/N_{LE/E}E^*$ is trivial. Therefore for any $x \in M$ we get
 $\chi(x) = (\bar{x}, 0)$. Since $N_{L/K}E^* = N_{E/K}E^*, -e \in N_{L/K}E^*$. T $x \in M \setminus \{0\}$. Note that $x^2 - e \in N_{E/K}E^* = N_{L/K}L^*$. This, together with the fact that $x(x^2 - e) \in N_{L/K}L^*$, implies that $x \in N_{L/K}L^*$ and $\chi(x) = (0,0)$. \Box $x(x^2 - e) \in N_{L/K}L^*$, implies that $x \in N_{L/K}L^*$ and $\chi(x) = (0, 0)$. \Box
Before proving Theorem 1.2 we observe that $\chi(M)$ is contained in the diagonal

subgroup of $(\mathbb{Z}/2\mathbb{Z})^2$ when L and E are non-isomorphic.

Lemma 2.1. *Let* $L/K = K(\sqrt{d})$ *and* $E/K = K(\sqrt{e})$ *be non-isomorphic quadratic extensions. Then* χ (M) *is contained in the diagonal subgroup of* $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. In *particular,* $A_0(X)_0$ *is either* $\{0\}$ *or* $\mathbb{Z}/2\mathbb{Z}$ *.*

Proof. By class field theory (see [16], p. 212) we have the commutative diagram

$$
E^* / N_{LE/E}LE^* \xrightarrow{N_{E/K}} K^* / N_{L/K} L^*
$$

rec
$$
\downarrow_{rec}
$$

Gal(LE/E)
$$
\xrightarrow{\cong} Gal(L/K),
$$

where the vertical maps are isomorphisms. The map Gal(LE/E) \rightarrow Gal(L/K) is an isomorphism since L and E are linearly disjoint. Thus $E^* / N_{LE/E} L E^* \rightarrow$ $K^*/N_{L/K}L^*$ is an isomorphism, i.e. an element $t \in E^*$ belongs to $N_{LE/E}LE^*$ if and only if $N_{E/K}(t)$ belongs to $N_{L/K}L^*$. Therefore, for any $x \in M \setminus \{0\}$, $x \in N_{L/K}L^*$ if and only if $x - \sqrt{e} \in N_{LE/E}LE^*$. Thus $\chi(x) = (0, 0)$ or (1, 1). Similarly, $\chi(0) =$ $(-\bar{e}, (-\sqrt{e})^{-}) = (0,0)$ or $(1,1)$ depending upon whether $-e \in N_{L/K}L^{*}$ or $-e \notin$ $N_{L/K}L^*$. This shows that $\chi(M)$ is contained in the diagonal subgroup of $\mathbb{Z}/2\mathbb{Z}$ x $\mathbb{Z}/2\mathbb{Z}$. c

Corollary 2.2. The group $A_0(X)_0 \cong \mathbb{Z}/2\mathbb{Z}$ if and only if at least one of the *Jollowing condition holds. Jollowing condition holds.*

(i) $-e \notin N_{L/K}L^*$. (ii) *There exists* $x \in K^*$, *such that* $x \notin N_{L/K}L^*$ *and* $x^2 - e \notin N_{L/K}L^*$.

3. PROOF OF THEOREM 1.2

(ii) There exists $x \in K^*$, such that $x \notin N_{L/K}L^*$ and $x^2 - e \notin N_{L/K}L^*$.
3. PROOF OF THEOREM 1.2
In this section we prove Theorem 1.2. Throughout this section let *p* denote an odd prime and let K denote a finite extension *ofQp.* prime and let K denote a finite extension *ofQp.*

Lemma 3.1. Let F/K be a quadratic extension of K.

- (i) If F/K is unramified, then an element $x \in K^*$ belongs to $N_{F/K}F^*$ if and only if $v_{\mathbf{K}}(x)$ is even.
- (ii) If F/K is ramified, π_F is a uniformiser of F and $\pi_K = N_{F/K}(\pi_F)$, then $x \in K^*$ *belongs to* $N_{F/K}F^*$ *if and only if* $x/\pi_K^{v_K(x)}$ *is a square.*

Proof. (i) It is easy to see that $N_{F/K}F^*$ is contained in the subgroup of elements of even valuation. Since both these subgroups are of index two in K*, they are equal.

(ii) Let N' be the subgroup of all elements $x \in K^*$ such that $x/\pi_K^{v_K(x)}$ is a square. Using the fact that π_K belongs to N_{F/K}F^{*}, it is clear that we have N' $\subset N_{F/K}F^*$. Since N' and $N_{F/K}F^*$ are index-two subgroups of K^{*}, they must be equal. \Box even valuation. Since both these subgroups are of index two in K^{*}, they are equal.
(ii) Let N' be the subgroup of all elements $x \in K^*$ such that $x/\pi_K^{v_K(x)}$ is a square.
Using the fact that π_K belongs to N_{F/K}F^{*},

Lemma 3.2. Let K be a finite extension of \mathbb{Q}_p where p is an odd prime. Suppose that $e \in K^*$ is not a square. Then $E = K(\sqrt{e})$ is a ramified extension of K if and only *that* $e \in K^*$ *is not a square. Then* $E = K(\sqrt{e})$ *is a ramified extension of* K *if and only* $if v_K(e)$ *is odd.*

Proof. If $v_K(e)$ is odd, then we make the reduction to the case where $v_K(e) = 1$ by multiplying *e* by a square. It is clear that E is ramified when $v_K(e) = 1$. Now suppose $v_K(e)$ is even. We may assume that *e* is a unit by modifying *e* by a square. suppose $v_K(e)$ is even. We may assume that *e* is a unit by modifying *e* by a square. Since p is odd, the polynomial $T^2 - e$ is separable over the residue field, and hence irreducible in the residue field. Thus E/K is unramified in this case. \Box irreducible in the residue field. Thus E/K is unramified in this case. \Box
Proof of Theorem 1.2. We split the proof into following two cases. To show that

 $A_0(X)_0$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, it suffices to verify that one of the conditions of Corollary 2.2 holds. Corollary 2.2 holds.

Case (1): E is unramified over K. In this case L/K , being non-isomorphic to E/K, is a ramified extension. If $-e \notin N_{L/K}L^*$ then $\chi(0) = (1, 1)$ and we are done. Suppose that $-e \in N_{L/K}L^*$. Let us first show that $e \notin N_{L/K}L^*$. Indeed, as $E = K(\sqrt{e})$ is the unramified quadratic extension, $v_K(e)$ is even by Lemma 3.2 and the unit $e\pi^{-v}$ K^(e) is not a square for any uniformiser π of K. Lemma 3.1(ii) now implies $e\pi^{-\nu_{\mathbf{K}}(e)}$ is not a square for any uniformiser π of K. Lemma 3.1(ii) r that $e \notin N_{L/K}L^*$. Hence $-1 \notin N_{L/K}L^*$; in particular, -1 is not a square.

Write $-1 = x^2 - ey^2$ for some *x*, $y \in K$. This is possible because $-1 \in N_{E/K}E^*$ by Lemma 3.1(i). Clearly $x \neq 0$ and $y \neq 0$, because neither -1 nor *e* is a square.

Lemma 3.1(i). Clearly $x \neq 0$ and $y \neq 0$, because neither -1 nor *e* is a square.
Put $\alpha = x/y$. Replacing α by $-\alpha$ if necessary, we may assume that $\alpha \notin N_{L/K}L^*$. Moreover, $\alpha^2 - e \notin N_{L/K} L^*$ because $\alpha^2 - e = -1/y^2$ and $-1 \notin N_{L/K} L^*$. It follows that $\alpha(\alpha^2 - e) \in N_{L/K}L^*$. Thus $\alpha \in M$ and as $\chi(\alpha) = (1, 1)$ we are done.

Case (2): E is ramified over K. We will show that $\chi(0) = (1, 1)$. As E/K and L/K are quadratic extensions, by local class field theory, their norm subgroups that $\alpha(\alpha^2 - e) \in N_{L/K}L^*$. Thus $\alpha \in M$ and as $\chi(\alpha) = (1, 1)$ we are done.
Case (2): E is ramified over K. We will show that $\chi(0) = (1, 1)$. As E/K and L/K are quadratic extensions, by local class field theory, their nor are not equal as E and L are not isomorphic. Then, their intersection must be an index-four subgroup of K^{*}. Since $(K^*)^2 \subset N_{E/K}E^* \cap N_{L/K}L^*$ is also an index four subgroup of K^{*}, we get $(K^*)^2 = N_{E/K}E^* \cap N_{L/K}L^*$. We know that $-e =$ four subgroup of K^{*}, we get $(K^*)^2 = N_{E/K}E^* \cap N_{L/K}L^*$. We know that $-e = N_{E/K}(\sqrt{e}) \in N_{E/K}E^*$. If $-e \in N_{L/K}L^*$ then $-e$ would be a square. This contradicts the fact (by Lemma 3.2) that $v_K(e) = v_K(-e)$ is odd. Thus $-e \notin N_{L/K}L^*$ and $\chi(0) = (1, 1).$ 0

4. PRELIMINARIES ON HILBERT SYMBOLS

In this section we review the notion of Hilbert symbol as given in $[15]$.

Let K be a field. Let $a, b \in K^*$. We put $(a, b)_K = 1$ if $ax^2 + by^2 = 1$ has a solution $(x, y) \in K^2$ and $(a, b)_K = -1$ otherwise. The number $(a, b)_K$ is called the *Hilbert symbol* of *a* and *b* relative to the field K. It can be shown that the Hilbert symbol has the following properties. Let K be a field. Let $a, b \in K^*$. We put $(a, b)_K = 1$ if $ax^2 + by^2 = 1$ has a solution $(x, y) \in K^2$ and $(a, b)_K = -1$ otherwise. The number $(a, b)_K$ is called the *Hilbert* symbol of a and b relative to the field K. It can be show

- 1. $(a, b)_{K} = (b, a)_{K}$ (Symmetry).
- 2. $(ab, c)_K = (a, c)_K \cdot (b, c)_K$ (Bilinearity).
- 3. $(a^2, b)_K = 1$.
- 4. $(a, 1-a)_{K} = 1$ for $a \neq 1$.

3. $(a^2, b)_K = 1$.
4. $(a, 1 - a)_K = 1$ for $a \ne 1$.
Thus the Hilbert symbol can be thought of as a symmetric bilinear form on the \mathbb{F}_2 -vector space K^*/K^{*2} with values in the group $\{1, -1\}$.

The following proposition gives an equivalent definition of the Hilbert symbol.

Proposition 4.1 [15], p. 19. *Let* $a, b \in K^*$ *and let* $K_b = K(\sqrt{b})$ *. Then* $(a, b)_K = 1$ *if* and only if $a \in N_{K_b/K}(K_b^*)$.

When $K = \mathbb{Q}_p$ we denote the Hilbert symbol by $(a, b)_p$ instead of $(a, b)_{\mathbb{Q}_p}$.

We now describe a formula for calculating the Hilbert symbol when $K = \mathbb{Q}_2$. Let \mathbb{Z}_2^* be the group of units of \mathbb{Z}_2 and $U_3 = 1 + 8\mathbb{Z}_2$. Let $\varepsilon, \omega : \mathbb{Z}_2^* \to \mathbb{Z}/2\mathbb{Z}$ be the homomorphisms given by

$$
\varepsilon(z) = \frac{z-1}{2}
$$
 (mod 2), $\omega(z) = \frac{z^2-1}{8}$ (mod 2).

Put $a = 2^{\alpha} u$, $b = 2^{\beta} v$ where u and v are units. Then, according to [15], p. 20,

$$
(a, b)2 = (-1)\varepsilon(u)\varepsilon(v)+\omega(v)\alpha+\omega(u)\beta.
$$

Using the above formula for the 2-adic Hilbert symbol, we prove the following Using the above formula for the 2-adic Hilbert symbol, we prove the following lemma which will be used in the proof of Theorem 1.3.

Lemma 4.2. Let $K = \mathbb{Q}_2$. Let e, d, L, E be as in Theorem 1.3. Assume that $v_{\mathsf{K}}(d) = 1$. *Then,*

- (i) If $v_{\rm K}(e) = 1$, then at least one of the elements -1 , $1 e$, e does not belong to $N_{L/K}L^*$
- $N_{L/K}L^*$
(ii) If $v_K(e) = 3$, then at least one of the elements -1 , $(1 e/4)$, e does not belong to $\rm N_{L/K}L^{*}.$

Proof. (i) Assume that all three elements -1 , $1 - e$, e belong to $N_{L/K}L^*$. Then by Proposition 4.1, $(-1, d)_2 = (e, d)_2 = (1 - e, d)_2 = 1$. Let $e = 2u$ and $d = 2v$ where $u, v \in \mathbb{Z}_2^*$. We have,

$$
(-1, d)_2 = (-1, 2v)_2 = (-1, 2)_2(-1, v)_2 = (-1)^{\varepsilon(v)}.
$$

As $(-1, d)_2 = 1$ by assumption, we have

(2)
$$
\varepsilon(v) = 0
$$
 and thus $v \equiv 1 \pmod{4}$.

Also,

$$
(1-e,d)_{2} = (1-2u, 2v)_{2} = (-1)^{\varepsilon(1-2u)\varepsilon(v)+\omega(1-2u)}
$$

As $\varepsilon(v) = 0$ and by assumption $(1 - e, d)_2 = 1$, we get the following

(3)
$$
\omega(1 - 2u) = 0
$$
 and $u \equiv 1 \pmod{4}$.

Now, Now,

$$
(e, d)_2 = (2u, 2v)_2 = (-1)^{\varepsilon(u)\varepsilon(v) + \omega(v) + \omega(u)}.
$$

As $\varepsilon(v) = 0$ and $(e, d)_2 = 1$ by assumption, we get $\omega(u) = \omega(v)$. Since both u, v are congruent to 1 modulo 4 by (2) and (3), one can check that $u \equiv v \pmod{8}$. As any element of U_3 is a square, we get that *u* and *v* differ by a square unit. Thus the 432 extensions $L = \mathbb{Q}_2(\sqrt{2v})$ and $E = \mathbb{Q}_2(\sqrt{2u})$ are isomorphic. This contradicts the hypothesis that L and E are non-isomorphic extensions of K.

(ii) Since the proof ofthis case is similar to the one above, we only give a sketch. (ii) Since the proof ofthis case is similar to the one above, we only give a sketch. Assume that all three elements -1 , $(1 - e/4)$, *e* belong to $N_{L/K}L^*$. Let $e = 2^3u$ and $d = 2v$ where *u*, $v \in \mathbb{Z}_2^*$. As in (i), using $(-1, d)_2 = 1$ we get $\varepsilon(v) = 0$ and thus $v \equiv 1$ mod 4. Similarly $(1 - e/4, d)_2 = 1$ gives $\omega(1 - 2u) = 1$ and thus $u \equiv 1$ mod 4. By properties 2 and 3 of the Hilbert symbol mentioned earlier, we deduce that Assume that all three elements -1 , $(1 - e/4)$, *e* belong to $N_{L/K}L^*$. Let $e = 2^3u$ and $d = 2v$ where $u, v \in \mathbb{Z}_2^*$. As in (i), using $(-1, d)_2 = 1$ we get $\varepsilon(v) = 0$ and thus $v \equiv 1 \text{ mod } 4$. Similarly $(1 - e/4, d)_2 = 1$

$$
(e, d)_2 = (2^3u, 2v)_2 = (2u, 2v)_2
$$

Thus $(e, d)_2 = 1$ gives $\omega(u) = \omega(v) = 1$. As in (i), we arrive at a contradiction by showing that L and E are isomorphic extension of \mathbb{Q}_2 . \Box

5 SOME RESULTS ON RAMIFIED QUADRATIC EXTENSION 5

Throughout this section K will denote a finite extension of \mathbb{Q}_2 . Let L/K be a ramified quadratic extension. Let *k* be the residue field of K. Since L/K is totally ramified, *k* is also the residue field of L. For $i \ge 0$, let $U_{i,L} = \{x \in U_L \mid v_L(1-x) \ge 0\}$ *i*}. The subgroups $(U_{i,L})_{i\geq 0}$ define a decreasing filtration of U_L . Similarly we define $U_{i,K}$. Throughout this section K will denote a finite extension of \mathbb{Q}_2 . Let L/K be a ramified quadratic extension. Let *k* be the residue field of K. Since L/K is totally ramified, *k* is also the residue field of L. For

define U_{t,K}.
Theorem 5.1 [10], III.1.4. Let π _L be a uniformiser of L. Let σ be the generator of $Gal(L/K)$. Then $\frac{\sigma(\pi_L)}{\pi_L} \in U_{1,L}$. *Further, if s* is the largest integer such that $\frac{\sigma(\pi_L)}{\pi_L} \in$ $U_{s,L}$, *then* s is independent of the uniformiser π_L .

Thus the integer s defined above depends only on the extension L/K . Therefore we will denote it by $s(L/K)$.

Theorem 5.2 [10], III.2.3. *Let* e_K *be the ramification index of* K *over* \mathbb{Q}_2 . *Then* $s(L/K) \leq 2e_K$. $s(L/K) \leqslant 2e_K.$

Remark 5.3. When $K = \mathbb{Q}_2$, K has six ramified quadratic extensions, namely $K(\sqrt{-1}), K(\sqrt{-5}), K(\sqrt{\pm 2}), K(\sqrt{\pm 10})$. For the first two extensions $s = 1$ and for the remaining extensions $s = 2$. **Remark 5.3.** When K = Q₂, K has six ramified quadratic extensions, namely K($\sqrt{-1}$), K($\sqrt{-5}$), K($\sqrt{\pm 10}$). For the first two extensions *s* = 1 and for the remaining extensions *s* = 2.

Theorem 5.4 [10], III.1.5. Let L, K be as above. Assume that $k = \mathbb{F}_2$. Let $s =$ $s(L/K)$. Choose a uniformiser π_L of L. Let $\pi_K = N_{L/K}(\pi_L)$. Define

$$
\lambda_{i,L}: U_{i,L} \to \mathbb{F}_2, \quad \lambda_{i,L}(1+\theta \pi_L^i) = \bar{\theta}.
$$

Similarly define $\lambda_{i,K}$ *using the uniformiser* π_K . *Then*

I. The following diagrams commute: 1. The following diagrams commute:

2.
$$
N_{L/K}(U_{s+i,L}) = N_{L/K}(U_{s+i+1,L})
$$
 for $i > 0$, $p \nmid i$.
3. $N_{L/K}(U_{s+1,L}) = U_{s+1,K}$.

3. $N_{L/K}(U_{s+1,L}) = U_{s+1,K}$.
The following corollary is an easy consequence of the above theorem. However part (iii) of the corollary will play an important role in the proof of Theorem 1.3.

Corollary 5.5. *With the notation as above,* $N_{L/K}(U_{i,L}) \subset U_{i,K}$ *for* $1 \leq i \leq s + 1$. I hus for $i \leqslant s$, we have *induced maps*

$$
N_{L/K}^i: \frac{U_{i,L}}{U_{i+1,L}} \to \frac{U_{i,K}}{U_{i+1,K}}.
$$

Further,

(i) $N_{L/K}^i$ *is an isomorphism for* $1 \leq i < s$. (i) $N_{L/K}^i$ *is an isomorphism for* $1 \le i < s$.
(ii) $N_{L/K}^s$ *is the zero map.*

-
- (iii) $\gamma \in U_{s,K} \backslash U_{s+1,K} \Longrightarrow \gamma \notin N_{L/K}L^*$.

Proof. (1) and (2) are immediate consequences of the first two commutative diagrams in Theorem 5.4 and the fact that $U_{i+1,L}$ is the kernel of $\lambda_{i,L}$. Suppose diagrams in Theorem 5.4 and the fact that $U_{t+1,L}$ is the kernel of $\lambda_{i,L}$. Suppose that $\gamma \in U_{s,K} \setminus U_{s+1,K}$. This gives that $\lambda_{s,K}(\gamma) \neq 0$ and thus the second commutative diagram in Theorem 5.4 tells us that $\gamma \notin N_{L/K}(U_{s,L})$. Now we want to show that for $i \neq s$ and for any $x \in U_{i,L} \setminus U_{i+1,L}$, $N_{L/K}(x) \neq \gamma$. For $i < s$ this is easy to see by (i) above. For $i > s$, Theorem 5.4(3) implies that $N_{L/K}(x) \in U_{s+1,K}$. Thus $\gamma \neq N_{L/K}(x)$. \Box $\gamma \neq N_{L/K}(x)$. \Box
6 THE PROOF OF THEOREM 1.3
We first state the following lemma from [16].

6 THE PROOF OF THEOREM 1.3

Lemma 6.1 [16], p. 212. Let K/\mathbb{Q}_2 be a finite extension. Let e_K be the ramification *z* index of K/Q₂. For every $n > e_K$ the map $U_{n,K} \stackrel{x \mapsto x^2}{\longrightarrow} U_{n+e_K,K}$ is an isomorphism of \mathbb{Z}_2 -modules. *Z2-modules.*

Now the proof of Theorem 1.3 will occupy the rest of this section. Henceforth Now the proof of Theorem 1.3 will occupy the rest of this section. Henceforth $K = \mathbb{Q}_2$. For simplicity of notation we write \mathbb{Z}_2^* instead of $U_{\mathbb{Q}_2}$, U_n instead of U_{n,\mathbb{Q}_2} and *v* instead of $v_{\mathbb{Q}_2}$. For any field extension F/\mathbb{Q}_2 , we will write N(F^{*}) instead of $\mathrm{N}_{\mathrm{F}/\mathbb{Q}_2}(\mathrm{F}^*).$

Proof of Theorem 1.3. Recall from Section 2 that it is enough to consider the cases $v(d) = 0, 1$ and $v(e) = 0, 1, 2$ or 3.

(1) L *is unramified over* \mathbb{Q}_2 .

 $v(d) = 0, 1$ and $v(e) = 0, 1, 2$ or 3.

(1) L *is unramified over* \mathbb{Q}_2 .
 Case 1 $v(e) = 0$. To show that $A_0(X)_0$ is zero, we have to show that $\chi(x) = 0$ for **Case 1** $v(e) = 0$. To show that $A_0(X)_0$ is zero, we very $x \in M$. If $x \in M \setminus \{0\}$ such that $v(x) > 0$ then

$$
v(x^2 - e) = \min\{2v(x), v(e)\} = 0.
$$

If $x \in M \setminus \{0\}$ such that $v(x) < 0$ then

$$
v(x^{2} - e) = \min\{2v(x), v(e)\} = 2v(x).
$$

 $v(x^2 - e) = min{2v(x), v(e)} = 2v(x).$
Thus whenever $v(x) \neq 0$, $v(x^2 - e)$ is even and hence by Lemma 3.1, $x^2 - e \in$ N(L^{*}). Thus for any $x \in M \setminus \{0\}$ with $v(x) \neq 0$, $\chi(x) = (0,0)$. If $x \in M$ such that $v(x) = 0$ then $x \in N(L^*)$ and thus $\chi(x) = (0,0)$. We now claim that $\chi(0) = (0,0)$.
 $v(x) = 0$ then $x \in N(L^*)$ and thus $\chi(x) = (0,0)$. We now claim that $\chi(0) = (0,0)$. $v(x) = 0$ then $x \in N(L^*)$ and thus $\chi(x) = (0, 0)$. We now claim that $\chi(0) = (0, 0)$.
For this we need to show that $-e \in N(L^*)$. But this is clear since $v(-e) = 0$ and L is the unramified extension of \mathbb{Q}_2 . This proves Theorem 1.3(1)(i).

Now we prove Theorem 1.3(1)(ii).

Case $v(e) = 1$ or 3. Choose $x \in \mathbb{Q}_2^*$ such that $v(x)$ is odd and $2v(x) > v(e)$. Then **Case** $v(e) = 1$ or 3. Choose $x \in \mathbb{Q}_2^*$ such that $v(x)$ is odd and $2v(x) > v(e)$. Then by Lemma 3.1, $x \notin N(L^*)$ and $x^2 - e \notin N(L^*)$. Therefore $x \in M$ and $\chi(x) = (1, 1)$ i.e $A_0(X)_0$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

Case $v(e) = 2$. We claim that $\chi(2) = (1, 1)$. Let $\beta = e/4$. Since *e* is not a square in \mathbb{Q}_2 , β cannot be a square and thus $\beta \notin U_3$. We now show that $\beta \notin U_2$. Note that, an element $\alpha \in U_2 \backslash U_3$, can be written as $\alpha = 5\gamma^2$ for some $\gamma \in U_1$. Thus, $\mathbb{Q}_2(\sqrt{5}) = \mathbb{Q}_2(\sqrt{\alpha})$, where $\mathbb{Q}_2(\sqrt{5})$ is the unramified quadratic extension of \mathbb{Q}_2 . This implies that $\beta \notin U_2$, since $\mathbb{Q}_2(\sqrt{\beta}) = E$ is a ramified quadratic extension of This implies that $\beta \notin U_2$, since $\mathbb{Q}_2(\sqrt{\beta}) = E$ is a ramified quadratic extension of \mathbb{Q}_2 . Thus $\beta \in U_1 \setminus U_2$ and $v(2^2 - e) = v(2^2(1 - \beta)) = 3$. By Lemma 3.1(i), $2^2 - e \notin$ $N(L^*)$ and similarly $2 \notin N(L^*)$. Therefore $2 \in M$ and $\chi(2) = (1, 1)$ i.e. $A_0(X)_0$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

The proof of this case completes the proof of the Theorem 1.3(1).
(2) L *is ramified over* \mathbb{Q}_2 .

(2) L *is ramified over* \mathbb{Q}_2 .

We first prove the following lemma which will be crucially used in the proof.

Lemma 6.2. Suppose that L/\mathbb{Q}_2 is a ramified extension and either -1 or e does not belong to $N_{L/K}L^*$. Then $A_0(X)_0 \cong \mathbb{Z}/2\mathbb{Z}$. *not belong to* $N_{L/K}L^*$ *. Then* $A_0(X)_0 \cong \mathbb{Z}/2\mathbb{Z}$ *.*

Proof. Suppose that $-1 \notin N(L^*)$. Since L and E are non-isomorphic quadratic extensions, by class field theory we can choose $\alpha \in N(E^*)$ such that $\alpha \notin N(L^*)$. Thus $\alpha = x^2 - ey^2$ for some $x, y \in \mathbb{Q}_2$. Since $\alpha \notin N(L^*)$, $y \neq 0$. If $x = 0$ then $-e \notin N(L^*) \Rightarrow \chi(0) = (1,1) \Rightarrow A_0(X)_0 \cong \mathbb{Z}/2\mathbb{Z}$. Thus we assume that $x \neq 0$. Now *a* = $x^2 - ey^2$ for some $x, y \in \mathbb{Q}_2$. Since $\alpha \notin N(L^*), y \neq 0$. If $x = 0$ then $\notin N(L^*) \Rightarrow \chi(0) = (1, 1) \Rightarrow A_0(X)_0 \cong \mathbb{Z}/2\mathbb{Z}$. Thus we assume that $x \neq 0$. Now $\left(\frac{x}{y}\right)^2 - e = \frac{\alpha}{y^2} \notin N(L^*).$

$$
\left(\frac{x}{y}\right)^2 - e = \frac{\alpha}{y^2} \notin N(L^*).
$$

If $\frac{x}{v} \notin N(L^*)$ then $\frac{x}{v} \in M$ and $\chi(\frac{x}{v}) = (1, 1)$. Otherwise since $-1 \notin N(L^*)$, $-\frac{x}{v} \in M$ and $\chi(-\frac{x}{y}) = (1, 1)$.

Now suppose $e \notin N(L^*)$. We may assume $-1 \in N(L^*)$ since otherwise we are done by the above case. Thus $-e \notin N(L^*)$. Hence $\chi(0) = (1, 1)$. \Box

Now we prove the Theorem 1.3(2). The proof splits into two parts depending upon the invariant $s(L/\mathbb{Q}_2)$ of the field extension. Since L/\mathbb{Q}_2 is a ramified quadratic extension, $s(L/\mathbb{Q}_2) = 1$ or 2, by Theorem 5.2. We want to show that $A_0(X)_0 \cong \mathbb{Z}/2\mathbb{Z}$. If $s(L/\mathbb{Q}_2) = 1$, we will appeal to Lemma 6.2. If $s(L/\mathbb{Q}_2) = 2$, we will appeal to Corollary 2.2. the invariant $s(L/\mathbb{Q}_2)$ of the field extension. Since L/\mathbb{Q}_2 is a ramified tic extension, $s(L/\mathbb{Q}_2) = 1$ or 2, by Theorem 5.2. We want to show that $0 \cong \mathbb{Z}/2\mathbb{Z}$. If $s(L/\mathbb{Q}_2) = 1$, we will appeal to Lemma

Case $s(L/K) = 1$. It is clear that $-1 \in U_1 \setminus U_2$. Thus by Corollary 5.5(iii), $-1 \notin N(L^*)$. Thus $A_0(X)_0 \cong \mathbb{Z}/2\mathbb{Z}$ by Lemma 6.2.

Case $s(L/K) = 2$. We may assume that -1 and *e* belong to N(L^{*}), since otherwise we are done by Lemma 6.2. The proof of this case consists of following subcases.

Case $v(e) = 0$. Choose a uniformiser π of \mathbb{Q}_2 which does not belong to N(L^{*}). Put $x = \pi e$. Since we have assumed that $e \in N(L^*)$, we get $x \notin N(L^*)$. Write $x^2 - e = -e(1 - \pi^2 e)$. Then $1 - \pi^2 e \in U_2 \setminus U_3$ and by Corollary 5.5(iii) we get $1 - \pi^2 e \notin U_3$ $e = -e(1-\pi^2 e)$. Then $1-\pi^2 e \in U_2 \setminus U_3$ and by Corollary 5.5(iii) we get $1-\pi^2 e \notin$ N(L^{*}). Since $-e \in N(L^*)$, $x^2 - e \notin N(L^*)$. Therefore $x \in M$ and $\chi(x) = (1, 1)$.

Case $v(e) = 1$. Since $s(L/\mathbb{Q}_2) = 2$, by Remark 5.3 we know that $v(d) = 1$. In this case, by Lemma 4.2(i), at least one of the elements -1 , e , $1 - e$ does not belong to $N(L^*)$. By our assumption, $-1, e \in N(L^*)$. Thus $-e \in N(L^*)$ and by Lemma 4.2(i), $1-e \notin N(L^*).$

Put $x = eu$ where *u* is any unit which is not in N(L*). Thus $x \notin N(L^*)$. Then $x^{2} - e = -e(1 - eu^{2})$. Since $u^{2} \in U_{3}$, $1 - eu^{2} \equiv 1 - e \pmod{8}$. This implies that $1 - eu^2 \notin N(L^*)$ and thus $x^2 - e \notin N(L^*)$. Therefore $x \in M$ and $\chi(x) = (1, 1)$.

Case $v(e) = 2$. Suppose $x \in U_2 \setminus U_3$. Then $x \notin N(L^*)$ by Corollary 5.5(iii). Now, $x^2 \in U_3$ and $v(e) = 2$ implies that $x^2 - e \in U_2 \setminus U_3$. Therefore $x^2 - e \notin N(L^*)$ by Corollary 5.5(iii). Thus, $\chi(x) = (1, 1)$.

Case $v(e) = 3$. Choose an element $x = 2u$ such that $x \notin N(L^*)$. Then $x^2 - e =$ $4(u^2 - e/4)$. We have, $u^2 - e/4 \equiv (1 - e/4) \pmod{8}$. Since $s(L/\mathbb{Q}_2) = 2$, by Remark 5.3, we get that $v(d) = 1$. Thus by Lemma 4.2(ii), at least one of the elements $-1, e, (1 - e/4)$ does not belong to N(L^{*}). By our assumption, $-1, e \in$ elements -1 , *e*, $(1 - e/4)$ does not belong to N(L^{*}). By our assumption, -1 , $e \in$ $N(L^*)$. Thus $1 - e/4 \notin N(L^*)$ which implies that $x^2 - e \notin N(L^*)$. Therefore $x \in M$ and $\chi(x) = (1, 1)$.

This completes the proof of Theorem 1.3. \Box

7 THE IRREDUCIBLE CUBIC CASE

and $\chi(x) = (1, 1)$.
This completes the proof of Theorem 1.3. \Box
7 THE IRREDUCIBLE CUBIC CASE
Let K be any finite extension of \mathbb{Q}_p . In this section X will denote a smooth projective surface K-birational to the surface defined by the equation projective surface K-birational to the surface defined by the equation

$$
y^2 - dz^2 = f(x),
$$

where $f(x) = x^3 + ax^2 + bx + c$ is an irreducible monic cubic polynomial with coefficients in K. In this section we prove Theorem 1.4 which says that $A_0(X)_0 = \{0\}$. As mentioned in Section 1, $d \in K^{*2}$ implies that X is K-birational to \mathbb{P}^2 and hence $A_0(X)_0 = \{0\}$. Thus we may assume $d \notin K^{*2}$. Let $\alpha_1, \alpha_2, \alpha_3$ be the roots of $f(x)$ in an algebraic closure of K. Let $E_i = K(\alpha_i)$ and $L = K(\sqrt{d}).$ $A_0(X)_0 = \{0\}$. As mentioned in Section 1, $d \in K^{*2}$ implies that X is K-birational to \mathbb{P}^2 and hence $A_0(X)_0 = \{0\}$. Thus we may assume $d \notin K^{*2}$. Let $\alpha_1, \alpha_2, \alpha_3$ be the roots of $f(x)$ in an algebraic closur

7.1. The method of computation of $A_0(X)_0$

Let $M = \{x \in K \mid x^3 + ax^2 + bx + c \in N_{L/K}L^*\}$. As in Section 2, results of [4] reduce the problem of computing the Chow group to the determination of the image of M under the map, under the map,

$$
\chi: M \to E_1^* / N_{LE_1/E_1}(LE_1^*) \times E_2^* / N_{LE_2/E_2}(LE_2^*) \times E_3^* / N_{LE_3/E_3}(LE_3^*),
$$

$$
x \mapsto (x - \alpha_1, x - \alpha_2, x - \alpha_3).
$$

Lemma 7.1. $x - \alpha_i \in N_{LE_i/E_i}(LE_i^*)$ *if and only if* $x^3 + ax^2 + bx + c \in N_{L/K}L^*$.

Proof. As in the proof of Lemma 2.1, class field theory implies that $x - \alpha_i \in$ $N_{LE_i/E_i}(LE_i^*)$ if and only if $N_{E_i/K}(x - \alpha_i) \in N_{L/K}L^*$. Since $N_{E_i/K}(x - \alpha_i) =$ $x^3 + ax^2 + bx + c$ the lemma follows. \Box $x^3 + ax^2 + bx + c$ the lemma follows. \Box
Proof of Theorem 1.4. By definition of M, $x \in M$ implies $x^3 + ax^2 + bx + c \in M$

 $N_{L/K}L^*$. Therefore by Lemma 7.1 we get $x - \alpha_i \in N_{LE_1/E_i}(LE_i^*)$ for $i = 1, 2, 3$. Thus $\chi(x) = (0, 0, 0)$. Thus $A_0(X)_0 \cong \{0\}$.

8. THE GLOBAL CASE THE CASE

Let K be a number field. Let X be any smooth projective surface K-birational to the Let K be a number field. Let X be any smooth projective surface K-birational to the surface given by the equation surface given by the equation

$$
y^2 - dz^2 = x(x^2 - e),
$$

where $d \notin K^{*2}$. Let K_v be the completion of K at *v* and $X_v = X \times_K K_v$.

By the result of Bloch [1], Theorem (0.4), $A_0(X_v)_0 = 0$ for almost all places *v* of K. We can also observe this directly as follows. At almost all places of K, $K_v(\sqrt{d})$ and $K_v(\sqrt{e})$ are unramified extensions of K_v . If $d \in K_v^{*2}$, then we have already and $K_v(\sqrt{e})$ are unramified extensions of K_v . If $d \in K_v^{*2}$, then we have already seen in the section 1 that $A_0(X_v)_0 = 0$. If $e \in K_v^{*2}$ and v is not a place lying above the prime ideal (2) then, \sqrt{e} , $-\sqrt{e}$, $2\sqrt{e}$ are units. Thus by [2], Proposition 4.7, $A_0(X_v)_0 = 0$. If neither *e*, nor *d* is in K_v^* , then $K_v(\sqrt{d})$ and $K_v(\sqrt{e})$ are both unramified quadratic extensions and thus isomorphic extensions *ofKv.* In this case, unramified quadratic extensions thus isomorphic extensions *ofKv.* In this case, by Theorem 1.1 of this paper we get that $A_0(X_v)_0=0$. by Theorem 1.1 of this paper we get that $A_0(X_v)_0 = 0$.
Let us recall briefly how the results of Colliot-Thélène, Sansuc and Swinnerton-

Dyer [5], Colliot-Thélène and Sansuc [4] (see Salberger [13] for more general Dyer [5], Colliot-Thélène and Sansuc [4] (see Salberger [13] for more general statement valid for all conic bundles over \mathbb{P}^1_K), which allow one to compute $A_0(X)_0$ from the knowledge of $A_0(X_v)_0$. For each place *v* of K, we have a map $A_0(X)_0 \to A_0(X_v)_0$ and hence, a diagonal map

$$
\delta: A_0(X)_0 \to \prod_v A_0(X_v)_0.
$$

As we have seen above, $A_0(X_v)_0 = 0$ for almost all places v, the target of δ is the same as $\bigoplus_{v} A_0(X_v)_0$. The exactness of the following sequence is proved in [6], same as $\bigoplus_{\nu} A_0(X_{\nu})_0$. The exactness of the following sequence is proved in [6], Section 8 Section 8

$$
0 \to \mathrm{III}^1(K, S) \to A_0(X)_0 \stackrel{\delta}{\to} \bigoplus_{v} A_0(X_v)_0 \to \mathrm{Hom}\big(\mathrm{H}^1(K, \hat{S}), \mathbb{Q}/\mathbb{Z}\big)
$$

in which $\hat{S} = Pic(\overline{X})$, a free Z-module of finite rank with a Gal(\overline{K}/K)-action, and S
is the K-torus dual to \hat{S} . The exactness of this sequence reduces the computation of
 $A_0(X)_0$ to the local problem of compu is the K-torus dual to \hat{S} . The exactness of this sequence reduces the computation of $A_0(X)_0$ to the local problem of computing $A_0(X_v)_0$.

Let us indicate how the results of this paper contribute to the solution of this local problem, at least when $K = Q$. Let X be a Châtelet surface as above. When *v* is a finite place of Q, $A_0(X_v)_0$ can be calculated using results of this paper when $x^2 - e$ remains irreducible and [8,9] when $x^2 - e$ splits into linear factors over v. One now needs to do these calculations when *v* is the real place of Q, i.e. $K_v = \mathbb{R}$. If $x^2 - e$ remains irreducible over $\mathbb R$, then either $L/\mathbb R$ is the trivial extension or the extensions L and E become isomorphic. Thus in both these cases, $A_0(X_v)_0 = \{0\}$. When $x^2 - e$ is reducible, we use results of [3] to calculate $A_0(X_v)_0$.

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS

I am thankful to Prof. C.S. Dalawat for his help. This problem was suggested
to me by him. I am indebted to Joël Riou for painstakingly going through the
first draft of this paper and for important suggestions. I am gratef to me by him. I am indebted to Joel Riou for painstakingly going through the first draft of this paper and for important suggestions. I am grateful to Amit Hogadi for his interest and stimulating discussions. I thank Maneesh Thakur for Hogadi for his interest and stimulating discussions. I thank Maneesh Thakur for his encouragement. his encouragement.

REFERENCES REFERENCES

- [1] Bloch S. On the Chow groups of certain rational surfaces, Ann. Sci. Ecole Norm. Sup. (4) **14** (1) (1981) 41–59. (1981) 41-59.
- [2J Colliot-Thelene 1.L., Coray D F. L equivalence rationnelle sur les points fermes des surfaces [2] Colliot-Thelene 1.L., Coray D F. L equivalence rationnelle sur les points fermes des surfaces rationnelles fibrées en coniques, Compositio Math. 39 (3) (1979) 301-332.
- [3] Colliot-Thélène J.L., Ischebeck F. L'équivalence rationnelle sur les cycles de dimension zéro des variétés algébriques réelles, C. R. Acad. Sci. Paris Sér. I Math. 292 (15) (1981) 723-725. rationnelles fibrées en coniques, Compositio Math. 39 (3) (1979) 301–332.
[3] Colliot-Thélène J.L., Ischebeck F. – L'équivalence rationnelle sur les cycles de dimension zéro des
variétés algébriques réelles, C. R. Acad. Sc
- [4] Colliot-Thélène J.L., Sansuc J.J. On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J. 48 (1981) 421-447.
- [5] Colliot-Thélène J.L., Sansuc J.J., Swinnerton-Dyer P. Intersections of two quadrics and Châtelet surfaces. I, J. Reme Angew. Math. 373 (1987) 37-107. paper of S. Bloch, Duke Math. J. 48 (1981) 421–447.
[5] Colliot-Thélène J.L., Sansuc J.J., Swinnerton-Dyer P. – Intersections of two quadrics and Châtelet
surfaces. I, J. Reine Angew. Math. 373 (1987) 37–107.
[6] Colliot-T
- surfaces. II, J. Reme Angew. Math. 374 (1987) 72-168.
- (7] Coray D.F., Tsfasman M.A. Arithmetic on singular Del Pezzo surfaces, Proc. London Math. Soc. [7] (3) 57 (I) (1988) 25-87. [8] Dalawat e.S. - Le groupe de Chow d'une surface de CMtelet sur un corps local, Indag. Mathern. (3)57(I)(1988)25-87.[8] Dalawat C.S. - Le groupe de Chow d'une surface de Chiltelet sur un corps local, Indag. Mathern.
- (N.S.) 11 (2) (2000) 173–185.
- [9] Dalawat C.S. The Chow group of a Châtelet surface over a number field, arXiv:math/0604339.
[10] Fesenko I.B., Vostokov S.V. Local Fields and Their Extensions, 2nd ed., Translations of
- [10] Fesenko LB., Vostokov S.V Local Fields and Their Extensions, 2nd ed., Translations of Mathematical Monographs, vol. 121, AMS, Providence, RI, 2002.
- [11] Hasse H. Number Theory, Classics in Mathematics, Springer-Verlag, Berlin, 2002. (Translated from the third (1969) German edition.) from the third (1969) German edition.)
[12] Neukirch J. – Algebraic Number Theory, Grund. der Math. Wiss., vol. 322, Springer-Verlag, Berlin,
- 1999. (Translated from the 1992 German original.)
- [13] Salberger P. Zero-cycles on rational surfaces over number fields, Invent. Math. 91 (3) (1988)
505–524.
[14] Sansuc J.J. À propos d'une conjecture arithmétique sur le groupe de Chow d'une surface 505-524.
- $[14]$ Sansuc J.J. \dot{A} propos d'une conjecture arithmétique sur le groupe de Chow d'une surface rationnelle, Seminaire de Théorie des nombres de Bordeaux, Exposé 33 (1982).
- [15] Serre J.P. A Course in Arithmetic, GTM, vol. 7, Springer-Verlag, New York–Heidelberg, 1973.
[16] Serre J.P. Local Fields, GTM No. 67, Springer-Verlag, 1979.
(Received July 2008)
- [16] Serre J.P. Local Fields, GTM No. 67, Springer-Verlag, 1979.

(Received July 2008)