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a b s t r a c t

An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G
such that any pair of adjacent vertices have different sets of colors. The minimum number
of colors needed for such a total coloring of G is denoted by χ ′′

a (G). In this note, we show
that χ ′′

a (G) ≤ 2∆ for any graph Gwith maximum degree ∆ ≥ 3.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Only simple and finite graphs are considered in this paper. For a graph G, we use V (G), E(G), and ∆(G) (for short, ∆) to
denote the set of vertices, the set of edges, and the maximum degree of G, respectively. A total k-coloring of a graph G is a
mapping φ from V (G) ∪ E(G) to the set of colors {1, 2, . . . , k} such that φ(x) ≠ φ(y) for every pair of adjacent or incident
elements x, y ∈ V (G) ∪ E(G). The graph G is total k-colorable if it has a total k-coloring. The total chromatic number χ ′′(G)
of G is the smallest integer k such that G is total k-colorable. Let φ be a total k-coloring of G. For a vertex v ∈ V (G), we set
Cφ(v) = {φ(uv)| uv ∈ E(G)} ∪ {φ(v)}. The coloring φ is called an adjacent vertex distinguishing total coloring or an avd-total
coloring if Cφ(u) ≠ Cφ(v) for any pair of adjacent vertices u and v. The adjacent vertex distinguishing total chromatic number
χ ′′
a (G) of G is the smallest integer k such that G has a k-avd-total coloring.
It is evident that χ ′′

a (G) ≥ χ ′′(G) ≥ ∆ + 1 for any graph G. The well-known Total Coloring Conjecture (TCC) [1,6] asserts
that χ ′′(G) ≤ ∆ + 2 for any graph G. However, there exists many graphs such that χ ′′

a (G) > ∆ + 2, for instance, a complete
graph on odd order. Zhang et al. [8] first introduced and investigated the adjacent vertex distinguishing total coloring of
graphs. In particular, they proposed the following challenging conjecture:

Conjecture 1. If G is a connected graph with at least two vertices, then χ ′′
a (G) ≤ ∆ + 3.

Chen [2], and independently Wang [7], confirmed Conjecture 1 for graphs G with ∆ ≤ 3. Hulgan [5] presented a more
concise proof for this result. Coker and Johannson [3] used a probabilistic method to establish an upper bound ∆ + c for
χ ′′
a (G), where c > 0 is a constant.
Let χ(G) and χ ′(G) denote the chromatic number and chromatic index of a graph G, respectively. By the definitions, the

following result is an easy observation:

Proposition 1. For any graph G, χ ′′
a (G) ≤ χ(G) + χ ′(G).

∗ Corresponding author.
E-mail address:wwf@zjnu.cn (W. Wang).

0012-365X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2012.08.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82330068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.disc.2012.08.006
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:wwf@zjnu.cn
http://dx.doi.org/10.1016/j.disc.2012.08.006


D. Huang et al. / Discrete Mathematics 312 (2012) 3544–3546 3545

The celebrated Vizing’s Theorem on the edge coloring says that every graph G has ∆ ≤ χ ′(G) ≤ ∆ + 1. G is of Class 1 if
χ ′(G) = ∆, and Class 2 if χ ′(G) = ∆ + 1. Suppose that G is neither a complete graph nor an odd cycle. Brooks’ Theorem on
the vertex coloring asserts that χ(G) ≤ ∆. By Proposition 1, it is immediate to derive that χ ′′

a (G) ≤ 2∆ + 1. For a planar
graph G, by the Four-Color Theorem and Vizing’s Theorem, we deduce that χ ′′

a (G) ≤ ∆ + 5. Moreover, if G is of Class 1, then
χ ′′
a (G) ≤ ∆ + 4. More recently, Huang and Wang [4] verified Conjecture 1 for planar graphs G with ∆ ≥ 11.
In this note, we show that if G is a graph with ∆ ≥ 3, then χ ′′

a (G) ≤ 2∆.

2. Main result

Let G be a connected graph with χ(G) = k ≥ 3. Clearly, a proper (vertex) k-coloring of G admits a k-partition
(V1, V2, . . . , Vk) of V (G) such that G[Vi], the subgraph of G induced by Vi, is edgeless. Let Λk(G) denote the set of all such
k-partitions (V1, V2, . . . , Vk) of V (G). Given λk(G) = (V1, V2, . . . , Vk) ∈ Λk(G) and i, j ∈ {1, 2, . . . , k}, let Ei,j(λ) denote the
set of edges ofG joining a vertex in Vi to a vertex in Vj, and ei,j(λ) = |Ei,j(λ)|. Further, we set e(λ) = (e1(λ), e2(λ), . . . , ek(λ)),
where

ei(λ) =

k
j=1, j≠i

ei,j(λ) =


v∈Vi

d(v).

Suppose that A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) are two distinct real sequences with n ≥ 1. We say that A is
greater than B in a lexicographical order if there is an index 1 ≤ i ≤ n such that ai > bi and aj = bj for all j = 1, 2, . . . , i−1.

Lemma 2. Let G be a connected graph with k = χ(G). Let λ∗
= (V ∗

1 , V ∗

2 , . . . , V ∗

k ) be a lexicographically maximal sequence in
Λk(G) according to e(λ∗) = (e1(λ∗), e2(λ∗), . . . , ek(λ∗)). Assume that x ∈ V ∗

i with 2 ≤ i ≤ k. Then for each 1 ≤ j ≤ i − 1,
there exists a vertex y ∈ V ∗

j such that xy ∈ E(G).

Lemma 2 holds obviously.

Lemma 3 ([8,5]). χ ′′
a (Kn) =


n + 1, if n is even,
n + 2, if n is odd.

Theorem 4. For any graph G with ∆ ≥ 3, we have χ ′′
a (G) ≤ 2∆.

Proof. Let ∆ = k. The theorem holds automatically for complete graphs by Lemma 3. So assume that G is not a complete
graph. By Brooks’ Theorem, χ(G) ≤ k. If χ(G) ≤ k − 1, it follows from Proposition 1 that χ ′′

a (G) ≤ χ(G) + χ ′(G) ≤

k−1+k+1 = 2k. Thus, assume that χ(G) = k. Let λ = (V1, V2, . . . , Vk) ∈ Λk(G) be a lexicographically maximal sequence
in Λk(G) according to e(λ) = (e1(λ), e2(λ), . . . , ek(λ)). By Lemma 2, if x ∈ Vi with 2 ≤ i ≤ k, then for each 1 ≤ j ≤ i − 1,
there exists a vertex y ∈ Vj such that xy ∈ E(G).

For X, Y ⊆ V (G) with X ∩ Y = ∅, we use G[X, Y ] to denote the subgraph of G induced by all the edges with an endpoint
in X and the other endpoint in Y . Clearly, G[X, Y ] is a bipartite graph.

To give our coloring scheme, we need to define the following bipartite subgraphs:

Hi = G


Vi,

i−1
j=1

Vj


for i = k, k − 1, . . . , 2.

Note thatHi is of Class 1 by König’s Theorem. Now let us construct a proper total 2k-coloring φ of G in the followingways.
Step 1. For i = 1, 2, . . . , k, color all the vertices in Vi with i.
Step 2. Color E(Hk) using the color set C0 = {k + 1, k + 2, . . . , 2k}.
Step 3. Color E(G) \ E(Hk) by the following procedure:

(a) Let i = 1.
(b) Let Ci = {k − i + 1, k − i + 2, . . . , 2k}. Color

k−i−1
j=1 Ek−i,j(λ) with Ci in the following ways:

(b1) Let j = 1.
(b2) Color Ek−i,j(λ) properly with Ci. When an edge e ∈ Ek−i,j(λ) cannot be colored, we leave e uncolored and continue.
(b3) If j = k − i − 1, go to (c). Otherwise, set j := j + 1, go to (b2).

(c) If i = k − 1, stop. Otherwise, set i := i + 1, go to (b).

First, we show that E(G) can be properly colored by the above procedure. To do this, it suffices to show that, for each
fixed 1 ≤ i ≤ k − 1, all edges in Ek−i,j(λ) can be colored properly using the colors in Ci for each j = 1, 2, . . . , k − i − 1.
Assume to the contrary that there exists an edge vk−ivj ∈ Ek−i,j(λ), 1 ≤ j ≤ k − i − 1, which cannot be colored properly.
Suppose that d(vk−i) = s and d(vj) = t . Let w1, w2, . . . , ws−1 be the neighbors of vk−i other than vj, and u1, u2, . . . , ut−1 be
the neighbors of vj other than vk−i. By Lemma 2, for each 1 ≤ l ≤ j − 1, there exists a vertex ul ∈ Vl such that vjul ∈ E(G).
Note that vjul remains uncolored at the current step by (c). Similarly, for each j+1 ≤ q ≤ k− i−1, there exists an uncolored
edge vk−iwq in G where wq ∈ Vq.
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For u ∈ V (G), let B(u) denote the sets of colors assigned to the edges incident to u under the coloring φ. Since vk−ivj is
uncolored, we have the following:

|B(vk−i)| ≤ d(vk−i) − 1 − (k − i − 1 − (j + 1) + 1) = s − k + i + j,
|B(vj)| ≤ d(vj) − 1 − (j − 1) = t − j.

Thus

|B(vk−i) ∪ B(vj)| ≤ |B(vk−i)| + |B(vj)| ≤ s + t − k + i.

If s < k or t < k, then it is easy to derive that |B(vk−i)∪ B(vj)| ≤ k+ i− 1. Since |Ci| = 2k− (k− i+ 1)+ 1 = k+ i, then
vk−ivj can be coloredwith a color in Ci \(B(vk−i)∪B(vj)), contradicting the hypothesis. So suppose that s = t = k, and all the
colors in Ci occur on the edges incident to vk−i or vj. This implies that B(vk−i)∪B(vj) = Ci. Since |B(vk−i)| ≤ s−k+i+j = i+j
and |B(vj)| ≤ k − j, we have that k + i = |Ci| = |B(vk−i) ∪ B(vj)| ≤ |B(vk−i)| + |B(vj)| ≤ (i + j) + (k − j) = k + i. It follows
that |B(vk−i)| = i + j, |B(vj)| = k − j, and B(vk−i) ∩ B(vj) = ∅.

The proof is split into the following two cases:
Case 1. k − i + 1 ∈ B(vk−i).

Let φ(wrvk−i) = k− i+ 1, where r ∈ {1, 2, . . . , s− 1}. Since |B(vk−i)| ≤ d(vk−i) − 1 = k− 1, C0 ⊆ Ci = B(vk−i) ∪ B(vj),
and |C0| = k, we have B(vj) ∩ C0 ≠ ∅. If there is a color α ∈ (B(vj) ∩ C0) \ B(wr), then we can recolor wrvk−i with α, and
color vk−ivj with k − i + 1, deriving a contradiction. Hence B(vj) ∩ C0 ⊆ B(wr). Since k − i + 1 ∈ B(wr) \ C0, |C0| = k, and
|B(wr)| ≤ k, there is a color β ∈ C0 \ B(wr) ⊆ C0 \ B(vj) ⊆ C0 ∩ B(vk−i). Further, let γ ∈ C0 \ B(vk−i) ⊆ B(vj) ∩ C0 ⊆ B(wr).
So β, γ ∈ C0, β ∈ B(vk−i), and γ ∈ B(vj). This implies that β ≠ γ .

Let P be the longest (β, γ )-alternating path originating from vk−i, i.e., E(P) is colored alternately with the colors β and γ .
Switch the colors of the edges on P . If P does not terminate at vj, thenwemay color vk−ivj with β , a contradiction. Otherwise,
P is a (γ , β)-alternating path from vk−i to vj. Clearly, P cannot arrive at wr . Let Q denote the longest (γ , β)-alternating path
originating from wr . Then Q cannot terminate at vk−i, for otherwise, there is some vertex x ∈ V (P) that is incident to two
edges colored the same color β or γ . This contradicts the fact that φ is a proper partial total coloring of G. Thus, we switch
the colors of the edges on Q , and color wrvk−i, vk−ivj with γ , k − i + 1, also a contradiction.
Case 2. k − i + 1 ∈ B(vj).

With a similar discussion as in Case 1, we can color vk−ivj properly.
Next,weneed to prove thatφ is an avd-total coloring ofG. Letuv ∈ E(G)with d(u) = d(v), and assume thatu ∈ Vi, v ∈ Vj,

and i < j. Note that Cφ(u) ⊆ {i, i+ 1, i+ 2, . . . , 2k} and i ∈ Cφ(u), Cφ(v) ⊆ {j, j+ 1, j+ 2, . . . , 2k} and j ∈ Cφ(v). It follows
that i ∉ Cφ(v) and hence Cφ(u) ≠ Cφ(v). Thus, φ is a 2∆-avd-total coloring of G. �

When ∆ = 3, our Theorem 4 asserts that χ ′′
a (G) ≤ 6, which implies the result of [2,7,5].
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