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1. Introduction

Only simple and finite graphs are considered in this paper. For a graph G, we use V (G), E(G), and A(G) (for short, A) to
denote the set of vertices, the set of edges, and the maximum degree of G, respectively. A total k-coloring of a graph G is a
mapping ¢ from V(G) U E(G) to the set of colors {1, 2, ..., k} such that ¢ (x) # ¢(y) for every pair of adjacent or incident
elements x, y € V(G) U E(G). The graph G is total k-colorable if it has a total k-coloring. The total chromatic number x"(G)
of G is the smallest integer k such that G is total k-colorable. Let ¢ be a total k-coloring of G. For a vertex v € V(G), we set
Cyp(v) = {@p(uv)| uv € E(G)} U {¢(v)}. The coloring ¢ is called an adjacent vertex distinguishing total coloring or an avd-total
coloring if Cy(u) # Cy(v) for any pair of adjacent vertices u and v. The adjacent vertex distinguishing total chromatic number
X. (G) of G is the smallest integer k such that G has a k-avd-total coloring.

It is evident that x/(G) > x”(G) > A + 1 for any graph G. The well-known Total Coloring Conjecture (TCC) [1,6] asserts
that x”(G) < A + 2 for any graph G. However, there exists many graphs such that x,(G) > A + 2, for instance, a complete
graph on odd order. Zhang et al. [8] first introduced and investigated the adjacent vertex distinguishing total coloring of
graphs. In particular, they proposed the following challenging conjecture:

Conjecture 1. If G is a connected graph with at least two vertices, then x/(G) < A + 3.

Chen [2], and independently Wang [7], confirmed Conjecture 1 for graphs G with A < 3. Hulgan [5] presented a more
concise proof for this result. Coker and Johannson [3] used a probabilistic method to establish an upper bound A + ¢ for
X2 (G), where ¢ > 0is a constant.

Let x (G) and x’(G) denote the chromatic number and chromatic index of a graph G, respectively. By the definitions, the
following result is an easy observation:

Proposition 1. For any graph G, x/(G) < x(G) + x'(G).
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The celebrated Vizing’s Theorem on the edge coloring says that every graph Ghas A < x'(G) < A + 1. Gis of Class 1 if
x'(G) = A, and Class 2 if x'(G) = A + 1. Suppose that G is neither a complete graph nor an odd cycle. Brooks’ Theorem on
the vertex coloring asserts that x (G) < A. By Proposition 1, it is immediate to derive that x/ (G) < 2A + 1. For a planar
graph G, by the Four-Color Theorem and Vizing’s Theorem, we deduce that x.(G) < A + 5. Moreover, if G is of Class 1, then
Xo (G) < A + 4. More recently, Huang and Wang [4] verified Conjecture 1 for planar graphs G with A > 11.

In this note, we show that if G is a graph with A > 3, then x (G) < 2A.

2. Main result

Let G be a connected graph with x(G) = k > 3. Clearly, a proper (vertex) k-coloring of G admits a k-partition
V1, Va, ..., Vi) of V(G) such that G[V;], the subgraph of G induced by V;, is edgeless. Let A,(G) denote the set of all such
k-partitions (V1, V,, ..., Vi) of V(G). Given Ax(G) = (V4, Vo, ..., Vi) € Ax(G) and i, j € {1,2, ..., k}, let E; j(A) denote the
setof edges of G joining a vertex in V; to avertexin Vj,and e; j(1) = |E;j(A)|. Further, we sete(X) = (e1(A), e2(A), ..., ex(A)),
where

k
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Suppose that A = (ay, aa, ..., ay) and B = (by, by, ..., b,) are two distinct real sequences with n > 1. We say that A is
greater than B in a lexicographical order if thereis anindex 1 <i < nsuchthata; > b;andg; = b;forallj =1,2,...,i—1.

Lemma 2. Let G be a connected graph with k = x (G). Let A* = (V{, V', ..., V) be a lexicographically maximal sequence in
Ag(G) according to e(A*) = (e1(1*), e2(A"), ..., ex(A*)). Assume that x € V* with2 < i < k. Thenforeach1 <j <i—1,
there exists a vertex y € Vj* such that xy € E(G).

Lemma 2 holds obviously.
" 1, i i ,
Lemma 3 (/85]. ;K = {113 20

Theorem 4. For any graph G with A > 3, we have x/(G) < 2A.

Proof. Let A = k. The theorem holds automatically for complete graphs by Lemma 3. So assume that G is not a complete
graph. By Brooks’ Theorem, x (G) < k.If x(G) < k — 1, it follows from Proposition 1 that x,(G) < x(G) + x'(G) <
k—14k+1 = 2k. Thus, assume that x (G) = k.Let A = (V, V5, ..., V) € Ax(G) be alexicographically maximal sequence
in A,(G) according to e(A) = (e1(A), e3(A), ..., ex(A)). By Lemma 2,if x € V; with2 <i < k,thenforeach1 <j <i—1,
there exists a vertex y € V; such thatxy € E(G).

For X, Y C V(G) withX NY = @, we use G[X, Y] to denote the subgraph of G induced by all the edges with an endpoint
in X and the other endpoint in Y. Clearly, G[X, Y] is a bipartite graph.

To give our coloring scheme, we need to define the following bipartite subgraphs:

i—1
Hl-:G|:V,-,UV]-:| fori=kk—1,...,2.
j=1

Note that H; is of Class 1 by Konig’s Theorem. Now let us construct a proper total 2k-coloring ¢ of G in the following ways.
Step 1.Fori =1, 2, ..., k, color all the vertices in V; with i.

Step 2. Color E(Hy) using the colorset Co = {k+ 1,k + 2, ..., 2k}.

Step 3. Color E(G) \ E(Hy) by the following procedure:

(a) Leti= 1. ,
(b) Let G ={k—i+1,k—i+2,...,2k}. Color UJ’;‘*] Ex—ij(*) with C; in the following ways:
(b1) Letj = 1.

(b2) Color Ey_; j(A) properly with C;. When an edge e € E,_; j(1) cannot be colored, we leave e uncolored and continue.
(b3) Ifj =k —i— 1, goto(c). Otherwise, setj := j + 1, go to (b2).
(c) Ifi = k — 1, stop. Otherwise, seti := i+ 1, go to (b).

First, we show that E(G) can be properly colored by the above procedure. To do this, it suffices to show that, for each

fixed1 <i < k — 1, all edges in E_; j(A) can be colored properly using the colors in C; foreachj = 1,2,..., k—i— 1.
Assume to the contrary that there exists an edge vi—;v; € Ex—ij(1), 1 <j < k — i — 1, which cannot be colored properly.
Suppose that d(vg—;) = sand d(vj) = t. Let wy, wy, ..., ws_q be the neighbors of vy_; other than v;,and uq, u,, ..., u;—1 be

the neighbors of v; other than v,_;. By Lemma 2, for each 1 < | < j — 1, there exists a vertex u; € V; such that vju; € E(G).
Note that vju; remains uncolored at the current step by (c). Similarly, for eachj+1 < q < k—i— 1, there exists an uncolored
edge vg_jwg in G where wy € V.
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For u € V(G), let B(u) denote the sets of colors assigned to the edges incident to u under the coloring ¢. Since vy_;v; is
uncolored, we have the following:

Bog-d)| <d(ve—i) —1—(k—i—1-(G+D+1) =s—k+i+],
Bv)| <d(v) —1-(G—-1) =t—]

Thus
[B(vk—i) U B(vj)| < |B(ve-i)| + [B(vp)| = s+t —k+i.

Ifs < kort < k, thenitis easy to derive that |B(vx—;) UB(v;)| < k+1i— 1.Since |G| = 2k — (k—i+1) +1 = k+i, then
vk—iv; can be colored with a color in G; \ (B(vk—;) UB(v;)), contradicting the hypothesis. So suppose thats = t = k, and all the
colors in C; occur on the edges incident to vy_; or v;. This implies that B(vk—;) UB(v;) = G. Since |B(vk—;)| < s—k+i+j =i+j
and |B(v;)| < k —j, we have that k + i = |G| = |B(vk—;) U B(vj)| < [B(vk—i)| + |B(vj)| < (i+)) + (k —j) = k 4+ i. It follows
that [B(vk—i)| = i +j, IB(vj)| = k — j, and B(vr—;) N B(vj) = @.

The proof is split into the following two cases:

Case 1.k — i+ 1 € B(vi—j).

Let p(w,vk—i) = k—i+1,wherer € {1,2,...,s—1}.Since |B(vk—)| < d(vk—i) =1 =k —1,Co € G = B(vg—;) UB(v)),
and |G| = k, we have B(vj) N Gy # @. If there is a color o € (B(v;) N Cp) \ B(w;), then we can recolor w;,v,—; with ¢, and
color v,_;v; with k — i 4 1, deriving a contradiction. Hence B(v;) N Co € B(w;). Since k — i+ 1 € B(w;) \ Co, |Co| =k, and
[B(w;)| <k, thereisacolor B8 € Cy \ B(w;) € Co \ B(vj) € Co N B(v—;). Further, lety € Co \ B(vk—i) S B(vj) N Co € B(wy).
So B,y € Co, B € B(vk—i), and y € B(vj). This implies that 8 # y.

Let P be the longest (8, y)-alternating path originating from vy_;, i.e., E (P) is colored alternately with the colors g and y.
Switch the colors of the edges on P. If P does not terminate at vj, then we may color v,_;v; with §, a contradiction. Otherwise,
Pisa (y, B)-alternating path from vj_; to v;. Clearly, P cannot arrive at w;. Let Q denote the longest (y, B)-alternating path
originating from w,. Then Q cannot terminate at v,_;, for otherwise, there is some vertex x € V(P) that is incident to two
edges colored the same color g or y. This contradicts the fact that ¢ is a proper partial total coloring of G. Thus, we switch
the colors of the edges on Q, and color w;vk—;, vk—jvj withy, k —i+ 1, also a contradiction.

Case2.k — i+ 1 € B(v)).

With a similar discussion as in Case 1, we can color vi_;v; properly.

Next, we need to prove that ¢ is an avd-total coloring of G. Letuv € E(G) withd(u) = d(v),and assume thatu € V;, v € V},
andi < j.Note that Cy(u) C {i,i+1,i+2,...,2k}andi € C4(u), Cp(v) € {j,j+1,j+2,..., 2k} andj € Cy(v). It follows
thati ¢ C4(v) and hence Cy(u) # Cy(v). Thus, ¢ is a 2A-avd-total coloring of G. O

When A = 3, our Theorem 4 asserts that x,/(G) < 6, which implies the result of [2,7,5].
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