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Abstract

In this paper, we present an algebraic sufficient condition for the existence of a selection of optimal solutions in a parametric
optimization problem that are totally ordered, but not necessarily monotone. Based on this result, we present necessary and
sufficient conditions that ensure the existence of totally ordered selections of minimum cuts for some classes of parametric
maximum flow problems. These classes subsume the class studied by Arai et al. [Discrete Appl. Math. 41 (1993) 69-74] as a
special case.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Our paper is concerned with parametric optimization problems and parametric maximum flow problems. It was motivated by
a parametric maximum flow study carried out by Gallo, Grigoriadis and Tarjan (§&,Tand by a subsequent extension by
Arai, Ueno and Kajitani (AUK)1]. GGT considered a maximum network flow problem in which the capacities of arcs incident
to the source or the sink may change as a function of a parameter. They showed that@gr) instances of the parameter,
the maximum flows can be found in a time bound of one maximum flow, whésehe number of nodes, and that minimum
cuts move monotonically with changes of the parameter. The monotonicity result was observed earlier by Eisner and Severance
[6] for a restricted graph when the capacities of arcs incident to the source are parametrically increased, and18] 8ioae
general graph when the capacities of arcs incident to the sink are parametrically deévddgeektended the analysis of GGT
and showed that when the capacities of arcs incident to a single node (other than the source or the sink) change, maximum flows
for k = O(n) instances of the parameter can be found in a time bound of two maximum flows. In their study, the minimum cuts
are no longer monotone in the parameter. Rather, they may move “back and forth” as the parameter changes, but there always
exists a selection of minimum cuts that are totally ordered.

* This paper is based on resultsj#5]. Research was partially supported by Natural Sciences and Engineering Research Council grants.
* Corresponding author. Tel.: +1 604 822 8432; fax: +1604 822 9574.
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1see alsq17,13,2]for an analysis of the related parametric repair kit problem.
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The objective of this paper is to provide an algebraic sufficient condition for the existence of totally ordered optimal solutions
for parametric optimization problems, and to demonstrate that this condition can, in turn, be used to provide necessary and
sufficient conditions for the existence of a totally ordered selection of minimum cuts for some classes of parametric maximum
flow problems.

Our results strengthen those derived by AUK by showing that, in their setting, every sub-selection of minimum cuts can be
extended to a complete nested selection. Moreover, the classes for which a totally ordered selection of minimum cuts is shown to
exist subsume the class of problems studied by AUK as a special case. We also present some other interesting special cases. Fc
example, we show that one can further allow the capacity of the “center node” in the study of AUK to change and still maintain
the existence of a totally ordered selection of minimum cuts. In another special case, we show that a totally ordered selection
of minimum cuts exists when the capacities of arcs on a path are parametrically changed, given that no two arcs on the path are
parallel?

Finally, we note that our results are related to the various monotone selection theorems developed, e.g., [y9T2@kis
Topkis and Veinotf22], Veinott[23], Granot and Veinottl1], Milgrom and Shannofil5], and Gautier et a[9], for parametric
optimization problems. These theorems, which have numerous applications, present sufficient conditions under which it is
possible to select an optimal solution for each instance in the parameter set such that the selected solutions are monotone in the
parameters.

The rest of this article is organized as follows. Section 2 presents some preliminary results regarding lattices and a sufficient
condition for the existence of a selection of totally ordered optimal solutions for parametric optimization problems. In Section
3 we develop some path closure properties, which are subsequently used in Section 4 to develop a characterization of classes
of parametric capacity functions such that for every capacity function in these classes, there exists totally ordered selection of
minimum cuts.

2. The totally ordered selection theorem

A latticeis a partially ordered set, s&¥’, <), in which each pair of elements,andy in %, has asupremunor least upper
bound and amfimumor greatest lower bound. The least upper bound (resp., greatest lower bourahaf in a lattice.# is
theirjoin (resp.,meej} and is denoted Vv y (resp.,x A y). A subsetS of a lattice.# is asublatticeif S contains the join and meet
(with respect ta?’) for each pair of elements ¢f.

SublatticeS is lower than sublattice’, or S<y T, if for everyx € Sandy € T we havex vy € T andx Ay € S. On the
set of all non-empty sublattices of a lattice, this order, which, according to T)iswas introduced by Veinott, is reflexive,
antisymmetric and transitive, and so partially orders sublattices of a Ii20¢e

Supposé, <) is a partially ordered set,#, <) is a lattice and S} is a family of subsets of# indexed in/. If for any 11
and/z in A, 21 < A2 implies thatS,, is lower thans,, (respectivelys;, is lower thanS, ), then{S;} is ascendindrespectively,
descendinpin Z on A. If 21 <42 implies thatr < y (respectivelyy < x) for eachx € S, andy € S, then{S;} is strongly
ascendingrespectivelystrongly descendingh 1 on A. See, e.g[21] for a more detailed discussion.

Let (¢, <) be a lattice. Letf (x, 1) be a function defined o x A, wherel is the parameter. The objective is to minimize
f(, 2) for eachi. Let F*(2) be the set of minimum solutions gf(-, ) for a specifici; i.e., F*(1) =argmin { f (x, 1) : x € Z}.
For an arbitrary subsetg of A4, amonotone sub-selection of optimal solutiages mappingx(-), from Ag to ., such that
x(A) € F*(2) for eachl € Ag andx (1) is monotone inl. Similarly, atotally ordered sub-selection of optimal solutiossa
mappingx(-), from Ag to #, such that (1) € F*(A) for eachi € Ag and the collectiorix (1)|4 € Ag} is totally ordered by.

A sub-selection is reffered to assalectionif Ag = A.

If F*(2)=¢foranyl € A, then/ can be ignored in this study. Therefore, we assume in this sectioftliat # ¢ for every
A € A. For conditions which ensure non-emptinesg6f 1) see, e.g.[20].

The following condition ensures the existence of a totally ordered optimal solutions:

Condition |. For everyl1, /2 € A and arbitraryx € F*(11), y € F*(12), eitherx Ay € F*(J1) andx v y € F*(lp) or
xVye F*(J1) andx Ay € F*(J2) holds

Theorem 1 (Strong totally ordered selection theoreniet ¥ be alatticelet £ (-, -) be defined o’ x A, and suppose Condition
| is satisfied

2 A definition of parallel arcs is given in Section 3.
3 For related books with large bibliographies the reader is referred to[24¢21]
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() If Ais a countable sethen a totally ordered sub-selection of optimal soluti@nél) € F*(1)|4 € Ag}, for a finite setd,
can be extended to a totally ordered selectionfon
(i) If Zis finite then(i) still holds without requiringa to be countable
(i) If a minimum element(2) (respectivelymaximum elemerft(1)) exists in every* (1), then the collectioris (1)} (respec-
tively, {S(1)}) is totally ordered

Proof. (i) Consider the first claim. The mapping-) can be constructed by the following inductive procedure. Suppose that
at a certain step, one has obtained a totally ordered sub-selectiai} farhich consists ok elements and containgg as a

subset. Sincely, is finite, the elements inl;, can be denoted by, /2, ..., A so thatx; < x2 < -+ < x;, Wherex; = x(/;)
fori =1,2,...,k. Choose an arbitrarjy 1 in A\4y. We wish to findxz41 = x(2411) such thatez 11 € F*(Ax11) and the
collection®j1 = {x1, x2, ..., x¢, xx+1} is totally ordered.

We claim thatF*(11) either contains an elememt; such thatny < x1 or an elemeni/4 such thatey < M1. To show
this, pick an arbitrary in F*(241). Since Condition | holds, either A x1 is in F*(J;41) or x V x1 isin F*(Jz41). If the
former is true, we chooseq = x A x1, and if the latter is true, we chood¢; = x Vv x1.

If mq exists, letyyy1 =mq andéy 41 = %) U {xx41} is totally ordered. Otherwise, |éte the largest index such that there
exists an elemen¥/; in F*(1;41) forwhichx; < M;. If I =k, letxgr1 = M; and%1 = € U {xx11} is again totally ordered.

If I <k, then there does not exist an elemént, 1 in F*(Ax1) such thaty; 1 < M;41. Considerg 1 vV M; andx; 11 A M.

By Condition I, one of them must be ifi* (/x41). The former cannot be if*(Z1), since otherwise, there exists an element
M1 =x;41V M;in F*(J41) satisfyingx;+1 < M1, contradicting the assumption that no suéh, 1 exists. Soq11 A M;

isin F*(Ag41)- Letxg41=x;41 A M;. Clearly,xg 1 < x741. Sincex; < M; andx; < x;41, it follows from the definition ofa
thatx; < x;41 A Mj = xp41. Thus the collectiort 1 = € U {xx+1} is totally ordered. This completes the proof of the first
claim.

(ii) Observe that if for two values of the parametér,and 1o, F*(11) = F*(12), then one only has to select an optimal
solutionx (/1) for 21 and letx (12) = x(11). Letn = | | be the cardinality of#. For eachl. € A, F* () must be one of the'?2
subsets of#. Therefore, one has to consider at mdst@presentative instancesih Since this set of representative instances
is finite and thus countable, claim (i) applies and the proof of (ii) is complete.

(iii) To prove the third part of the theorem, consider two arbitrary instances of the paraipeted/.,. Sinces (/1) A s(12)
is either inF* (A1) orin F*(12), s(11) A s(42) must be equal to eithell1) ors(12). In the former case,(11) < s(12) and in
the latter cases(12) < s(41). Similarly, S(11) andS(12) must be ordered bx. O

The reader is referred {@2] for a weaker sufficient condition than Condition I, for the existence of a totally ordered selection
of optimal solutions in a parametric optimization problem. However, this condition does not necessarily ensure that an arbitrary
sub-selection of ordered optimal solutions can be extended to a complete one.

The strong totally ordered selection theorem can be easily used to strengthen the AUK result by demonstrating that every
totally ordered sub-selection of minimum cuts in their parametric network flow problem can be extended to a totally ordered
selection of minimum cuts. To show it, we first need to recall some basic definitions in graph theory.

LetG (N, A) denote a directed network, with nodésind arcsA. Lets andr be the source node and the sink node, respectively.

A cutis a bi-partition(X, X) of the node selV, wheres € X ands € X. A partial order can be defined on the set of cuts in a
network. Namely(X, X)<.(Y,Y) if X C Y. Under this partial order, the set of cuts in a network is a lattice.

Let ¢;; denote the capacity associated with &icj). In this study, we assume that arc capacities are strictly positive, in
order to avoid some degenerate cases. For two subsets of Kadety, (X, Y) can be interpreted as the set of af@s j)|i €
X,j e Y} Lete(X,Y) = ZieX’jEYCij be the capacity ofX, Y). In particular, the capacity of cutX, X) is defined as
c(X,X) = ZieX,jeYCij . A minimum cuin a network is one whose capacity is minimum among all cuts in the network.

Finally, recall that in the AUK model, arcs incidentto a nade # s, v # ¢ have linearly increasing capacities in a real-valued
parametet, and arcs elsewhere have fixed capacities.

Lemma 2. In the AUK settinglet (Y, N\Y) be a minimum cut aty and let(W, N\W) be a minimum cut aty . Then either
(Y NW, N\(Y N W))is aminimum cutaty and(Y U W, N\(Y U W)) is a minimum cut aty or (Y UW, N\(Y UW))isa
minimum cut aly and (Y N W, N\(¥Y N W)) is a minimum cut aty .

Proof. The proof is similar to the proof of Lemma 2 in AUK and thus omitted

Lemma 2 can now be used to extend the AUK parametric result.

Theorem 3. For a given set of parameter values= {11, ..., / ...}, in the AUK settinga totally ordered sub-selection of
minimum cutg(X (1), N\X (1)) : A € Ag, Ag C A} for a finite set1g, can be extended to a totally ordered selectionbn
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Proof. By Lemma 2, Condition | holds. Further, the set of all cuts in a network is a finite lattice. The proof then follows by
Theorem 1 (ii). O

3. Parallel arcs and path closure properties

This section introduces the notion of parallel arcs, which is independent of arc capacities and only depends on the network
topology. It also develops some path closure properties along lines motivated by Picard and Quéjeame Granot et al.
[10]. Our study of ordered minimum cuts in the next subsection will depend on these concepts.

A pathin G is a sequences n1, (n1, n2), no, (n2, n3),n3, ..., ng_1, (ng_1, nx), nx >, of nodes and arcs. When there is no
ambiguity, the above path will also be denotedas, no, ..., ny >. A simple pattis one in which the nodes do not repeat. An
s-t pathis a simple path from the source nadto the sink node. For simplicity of presentation, we will writp1 N p> = @ to
denote the fact that pathg and p; are vertex disjointz € p; to denote the fact that aecis in pathp1; andu € p1 to denote
the fact that node is in pathp;.

Definition 4. Two arcs(i, j) and(k, [) areparallel if there exist simple pathg, from s to i, po from s to k, p3 from j toz,
andp4 from! tor such thatpy N pa =9, p2 N p3 =0, p1 N p3=P andps N pg =@. In this case, the subgraph 6fspanned
by (i, j), (k, 1), p1, p2, p3 and py is called a bypasbetween(, j) and(k, ).

Intuitively, if two arcs(i, j) and(k, [) are parallel inG, then there exists simples— pathp, = < p1, (i, j), p3 > froms to
t that bypasseg, [) and anothesimples— pathp, = < p2, (k, 1), pa4 > from s to ¢ that bypasseS, j).

Parallel arcs are illustrated Fig. 1, where arcsi, j) and(k, ) (shown in bold lines) are parallel.

For an arbitrary directed network, verifying whether a pair of arcs is parallel is NP-hard. This is due to the fact that finding
two vertex-disjoint paths between two pairs of nodes in directed graphs is NP-hafd@] See

Definition 5. Let (i, j) and(k, /) be two parallel arcs in a directed netwask Arc (i, j) is called afront arc with respect to
(k, 1) if in every bypass betweefi, j) and(k, [), i is the last common node ip; and p». Arc (k, 1) is called aback arcwith
respect tai, j) if in every bypass betweefd, j) and(k, 1), [ is the first common node ip3 and p4.

Fig. 2illustrates the notion of front and back parallel arcs. In Diagram((a), is a front arc with respect t¢, /) and(k, I)
is a back arc with respect @, ;). In Diagram (b),(i, j) is a front arc with respect t¢, 1), but (k, [) is not a back arc with
respect tai, j), since in a bypass spanned by the two arcs ango, p/3 and pg4, [ is not onp/3. In Diagram (c), ardi, j) is
both a front arc and a back arc with respectiol).

The following definitions and results help identify sets of arcs related to minimum cuts, across which each pair of arcs is
parallel.

For each set of nodeg,, define thes-kernelby

s[X1={i : there exists a path fromto i which is contained in X
define thet-kernelby

[X]; = {i : there exists a path fromto r which is contained inX};
define the sefy by

Sx = {i : there exists a path fromto i which does not mediX],};

Do e =
k l

Fig. 1. Parallel arcs.
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Fig. 2. Front and back arcs.

define the seTy by
Tx = {i : there exists a path fromto r which does not meefy};

and define the sefx to consist of all other nodes neitherSg norin Ty . .
Define a setX, to bes-closedf for each node in X there is a path from toi which does not meeX; and define it to be
t-closedif for each node in X there is a path fromto r which does not meeX.

Lemma 6. For each cut(X, X),

() The setg[X]andSy are s-closedand the set§X], and T are t-closed
(i) s[Sx1=Sx and[Tx]; =Tx;
(i) Sx NTx =9, ) -
(V) (Sx,Sx) = (Tx,Tx)=(Sx,[X];) = (Sx, Tx) S (X, X);
(v) Each pair of arcs in(Syx, Sx) is parallel.

Proof. Statements (i), (ii) and (iii) essentially follow from the associated definitions. Thus, for brevity, we will only prove (iv)
and (v).

If (i, j)isin(Sy, Sy), thenj must belong t4X],; otherwise by the definition ofy there would be a path fromto j (via i)
which does not mediX],. Hence,(Sx, Sx) C (Sx, [X],). However, sincéX], < Sy it follows that(Sy, Sx) = (Sx, [X1,).
The last equality in (iv) now follows sindeX], € Tx < Sy. Further, for(i, j) € (Sx. Sx), we must have thate X. Indeed,
if i is notin X, then the path consisting of the &ic j), followed by the path frony to ¢ which is contained inX1,,would lie
in X andi would be in[X],, contradicting the fact that it is ifly. Hence(Sy, Sx) € (X, X).

To finish the proof of (iv), it remains to show thaty, [X];) = (Tx. Tx). SinceSy C Ty and[X]; < Ty, itis clear that
(Sx, [X1,) € (Tx, Tx).Onthe other hand, suppose thatj) isin (T, Tx). Theni isin Sy ; otherwise, the path consisting of arc
(i, j) followed by the path fronj to ¢ which is contained iff’y would not meetSy andi would be inTx . The previous paragraph
established that ifis in Sy, thenj mustbe if X],. Hence(Sx, [X1;) 2 (Tx, Tx), and we conclude thaSy, [X1,)=(Tx, Tx).

To prove (v), suppose that, j) and(k, I) are in the cui(Sy, Sx). Then by (iv) they are also contained in the set of arcs
(Sx,[X1,). Sincei andk are in Sy, there are pathg1 and po contained inSy connectings to i and tok, respectively.
Since j and! are in[X],, there are pathgz and p4 contained in[X]; connectingj and!/ to r, respectively. The pathg;
and p> must be disjoint fromps and p4 since they are in disjoint sets. Therefore, by definition, arcg) and (k,[) are
parallel. O
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Lemma 7. The following are equivalent

() (X,X)isa minimum cut for some capacity functian
(i) (Sx. Tx) = (X, X);
(i) (Sx, Sx) = (X, X).

Each of the above implies the following

(IV) Sx € X andTX - )_(;_
(v) Sx=s[X]andTx = [X],.

Moreovet Sy € X if and only if Sy=;[X], andTy C X if and only if T = [X];.
Proof. From Lemma 6(iv) we have that
(Sx, Tx) = (Sx, Sx) € (X, X). (1)

This, together with the standing hypothesis that capacities are positive, shows that (i) implies (i) and that (ii)
implies (iii).

Suppose that (iii) holds. Define a capacity functioyy c(e) =1 if e € (Sy, Sx) andc(e) = oo otherwise. TheriSy, Sy) =
(X, X) is a minimum cut for, and so (iii) implies (i). From the previous paragraph it follows that (i), (ii), and (iii) are equivalent.

From the definitions of the and: kernels, it is clear that{X] € X and thaX], € X. Hence each part of (v) implies the
corresponding part of (iv).

Also from the definitions of the andr kernels, it is clear that the kernel operators are monotone, so that if (iv) holds it follows
that [Sx]1<s[X]. Since by Lemma 6(ii) we havEy=[Sx], it follows that Sy C;[X]. By the definitions of,[X] and Sy, it
follows that,[X] C Sx. HenceSy=,[X]. A similar argument shows thdty < X implies thatTy = [X],. Hence each part of
(iv) implies the corresponding part of (v).

To finish the proof it is sufficient to show that (i) implies (iv). Suppose {t8t, Tx) = (X, X). If i € Sx\X, then because
Sy is s-closed, there is a path, froms toi in Sy. Sinces € Sy andi ¢ X, there is at least one arc jnwhich is in(X, X) but
not in (Sx, Tx), which contradicts the hypothesis th&iy, Tx) = (X, X). HenceSy C X.

A similar argument shows thaty € X, so that (i) implies (iv). O

Lemma 8. Let X andY be two subsets of nodes suchtha& X N Y andr¢ X U Y.

(i) If X CY,thenSxy € Sy andTy C Ty.
(i) Sxny S Sx NSy andSxuy 2 Sx U Sy.
(i) Txny 2 Tx UTy andTxyy € Tx N Ty.

Proof. The hypothesis in (i) implie¥ < X, so that[Y], C [X],. Suppose nodeis in Sy. Then there exists a path frasrto
i which does not mediX7,. But this path cannot megY], since it is contained ifiX],;. Consequently, € Sy andSx C Sy.
Suppose is in Ty. Then there exists a path frohto ¢ which does not meefy. This path cannot meety since it is contained
in Sy. Consequently, € Ty andTy € Tx completing the proof of (i). (i) and (iii) follow from (i). O

Define two cuts, sayX, X) and(Y, ), to beequivalentf Sy = Sy. If two cuts are each minimum (not necessarily for the
same capacity function), then the next lemma shows that they are equivalent if and only if they have the same set of arcs, although
the node sets might not be identical.

Lemma 9. If (X, X) is a minimum cut for some capacity function asd = Sy, then(X, X) < (¥, Y). If, in addition (Y, Y)
is also a minimum cut for some capacity function th&nX) = (v, Y).

Proof. Since (X, X) is assumed to be a minimum cut, by Lemma 7(iii) it follows ki, Sx) = (X, X). By hypothesis,
Sx = Sy. Thus,(X, X) = (Sx, Sx) = (Sy, Sy) C (¥, Y), where the set inclusion follows from Lemma 6(iv). If, in addition,
(Y,Y) is a minimum cut for some capacity functionthen an identical argument applied(ta Y) shows thatY, Y) € (X, X).
Soin this cas¢X, X)= (¥, Y). O
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4. Ordered selection of minimum cuts

In this section, we use the totally ordered selection theorem to derive a necessary and sufficient condition for the existence of
a totally ordered selection of minimum cuts in a parametric maximum flow problem.

A parametric maximum floproblem is a maximum flow problem in which the capacities of the arcs may change as functions
of a parametef. In such a problem, the notation is modified to include the parameter, so the capacity ofian ricdenoted
by c(4; i, j) and the capacity ofX, Y) is written asc(4; X, Y). Again, we assume that the capacities on the arcs are positive to
avoid degenerate cases.

A parametric maximum flow problem was studied by GGT (1989). Therein, they have shown that the lattices of minimum
cuts are ascending in a parametric maximum flow problem in which the capacities of arcs incident to the source are increasing
functions of a parametérand the capacities of arcs incident to the sink are decreasing functionNatice that this result does
not pertain to any specific parametric capacity function-) on G. Rather, a class of parametric capacity functions is specified
such that the aforementioned property holds for every parametric capacity function in this class.

The main concern in this section is to characterize classes of parametric capacity functions suchetlat fiarametric
capacity function in the specified class a totally ordered selection of minimum cuts exists. To that end, we introduce the following
terminology. A parametric capacity functiary;; -), isconstanbn a setof arcdg € A ifforeach ar@ in Ag, c(41; e) =c(12; e)
for all 21 andA2 in 4; it changes in the same directiom Ag if for eachA1 and/z in A, ¢(A1; &) — c(A2; €) > 0 for somez € Ag
implies thatc(11; e) — c(Jp; e) >0 for alle € Ag; it changes in opposite directiometween two sets of arcs™ and A~ if
for each/y and/p in A, c(iq1; &) — c(Jp; &) > 0 for someé € At implies thatc(i1;e) — c(Jp;e)<Oforalle € A~ and
c(J1; &) — c(Jp; &) > 0 for somez € A~ implies thatc(11; e) — c(Jp;e)<Oforalle € AT,

Next, we introduce a mechanism for specifying classes of parametric capacity functions, which we refer to as Generalized
GGT (G3T) classes. A @T class of parametric capacity functions is obtained by specifying a set of &sc®n which the
capacities can change. In addition, two subsetd gfsay A" and A, are specified which restrict the direction of change.
Given Ay, Aj andAy, the GT class of parametric capacity functiong(A,, Aj, Ay), are those capacity functions which
are constant o\ A, change in the same direction dif’ and onA;, and change in opposite directions betwgéhandA; .

Examples of GT classes have been used in the literature. GGT have introduced a class of parametric capacity functions which
are included inZ (A,, A}, Ay), whereAl = {(s,i)|(s,i) € A,¥i € N}, Ay ={(i,1)|(i,t) € A,Vi e NyandA, = AT UA,

(assume that ar¢s, r) does not exist in the network). The GGT class imposes some explicit monotonicity conditions on the
capacity functions which are slightly more restrictive than the directional restrictions which we u¥EdteGses. AUK examined

the class of capacity function& (A, A7, A7), whereA} = {(v, i)|(v,i) € A, Vi € NYU{(, v)|(i,v) € A,Vi € N}, Ay =0

and A, = A} for a specific node called the “center node”. They showed that for every parametric capacity function in
F (Ay, A, A7), atotally ordered selection of minimum cuts exists. Our Corollary 14 provides an alternative proof.

The G*T specification of parametric capacity functions is fairly broad. As just mentioned, it subsumes the classes of parametric
capacity functions studied by GGT and AUK as special cases. However, there are other possible ways of defining classes of
parametric functions which are not included in our framework. For example, McCofid¢kestricts the magnitude of the
parametric capacity change.

Our goal is to characterize the sets, A" andA;, which will ensure the existence of a totally ordered selection of minimum
cuts. Indeed, Theorem 12 provides a necessary and sufficient condition for the existence of a totally ordered selection of minimum
cuts for every capacity function in the clagy(A,, A], Ay).

Condition Il. LetG(N, A) be a directed network ané (A,, Aj, Ay) be aG3T class of parametric capacity functions. For
each pair of parallel arcg1 andes in A, at least one of the following conditions is valid

(@) e1 ande; are both front arcs or are both back areande; ande; are either both inA;" or both inA7;
(b) e or ez is a front arc and the other is a back arand one of them is id;™ and the other is im;
(c) eq or ep is both a front arc and a back arc

Lemma 10. Suppose that Conditioih holds that (X, X) is a minimum cut for the capacity functief(-) = ¢(/1; -), and that
(Y, Y) is a minimum cut for the capacity functiep(-) = c(J; -).

Then either
c1(Sxny, Y\X) + c2(X\Y, Txuy) <c1(X\Y, Txuy) + c2(Sxny, Y\X) (2)
or
c2(Sxny, X\Y) + c1(Y\X, Txuy) <c2(Y\X, Txuy) + c1(Sxny, X\Y) 3)

holds
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Proof. Suppose that neither (2) nor (3) holds. Then

c1(Sxny. Y\X) — c2(Sxny, Y\X) + c2(X\Y, Txuy) — c1(X\Y, Txuy) >0 (4)

and

c2(Sxny. X\Y) — c1(Sxny. X\Y) + c1(Y\X, Txuy) — c2(Y\X, Txuy) > 0. (%)
From (4), either

c1(Sxny. Y\X) — c2(Sxny. Y\X) > 0, (6)

or

c2(X\Y, Txuy) — c1(X\Y, Txuy) > 0. )
From (5), either

c2(Sxny. X\Y) — c1(Sxny. X\Y) >0, (8)

or

ca(Y\X, Txuy) — c2(Y\X, Txuy) > 0. ©)

Selecting one inequality from each set gives four cases. The proof will be completed when we show that none of the four cases
can hold.

Suppose, on the contrary, that inequalities (6) and (8) hold. Then, because the capacities are positive, therdie¥istarcs
Ay N (Sxny, Y\X) and(k, ) € Ay N (Sxny. X\Y) suchthaty(i, j) —c2(, j) > 0 andea(k, 1) — c1(k, I) > 0. These two arcs
are parallel by Lemma 6(v) since they belong to the(@winy, Sxny) and so must satisfy one of the criteria in Condition Il.

Condition ll(a) cannot hold since the capacities change in opposite directions.

Arc (i, j) cannot be a back arc with respect(to/). Indeed, sincé € Tx by Lemma 7(ii), it follows from Lemma 6(i) that
there exists a path froito 7 in Ty. By Lemma 7(iv),Tx C X; and sincej € Y\ X, this path cannot pass throughSimilarly,
(k, 1) cannot be a back arc with respect(tpj). Hence neither ll(b) nor li(c) can hold. Consequently, there is a contradiction
and inequalities (6) and (8) cannot hold.

Next suppose, on the contrary, that inequalities (6) and (9) hold. Then there exigt,gics Ay N (SxAy, Y\X) and
(k,1) € Ay N (Y\X, Txyuy) such thateq(i, j) — c2(i, .J)>0 andcy(k,1) — c2(k,l)>0. By Lemma 8,Sxny < Sy and
Tyuy < Ty; and by Lemma 7(iv)Sy € Y andTy C Y. Thus, both(Sxny, Y\X) and(Y\ X, Txyy) are included in the cut
(Y,Y). Therefore the arc§, j) and(k, I) are parallel by Lemma 6(v), since they belong to the@utr) = (Sy, Sy) and so
must satisfy one of the criteria in Condition I1.

Condition Il(b) cannot hold since the capacity functions change in the same direction. Condition ll(a) cannot hold since the
nodes, j, k and! are in four disjoint sets, namely N Y, Y\X, Y\X andX NY.

Arc (i, j) cannot be a back arc with respectto!). Indeed, by Lemma 8(iii)Txuy < Tx, and by Lemma 7(iv)Tx C X.
Thusifl € Txyy € Ty, then by Lemma 6(i) there exists a path froto ¢ in Ty which cannot pass throughe Y\ X. Similarly
(k, 1) cannot be a front arc with respect(o j). So Condition ll(c) cannot be satisfied. Consequently, there is a contradiction
and inequalities (6) and (9) cannot hold.

The last two cases are proved similarlyC]

The next theorem shows that the set of cuts which are minimum for some parametric capacity functidi iclass forms
a lattice with the ordek, defined in Section 2.

Theorem 11. Let G(N, A) be a directed network andF = 7 (A,, A, A}) be aG3T class of parametric capacity functions
satisfying Conditioril. Let% be the set of cuts which are minimum for some parametric capacity fungtion € . Then@
ordered by<.. is a sublattice of the lattice of all cuts. Moreoy@r(X, X) and (Y, Y) are minimum cuts fog1(-) = ¢(11; -) and
c2(-)=c(2; -), respectivelythen(X NY, X N Y) is a minimum cut for one of the capacity functiea®r co and(XUY, X UY)

is @ minimum cut for the other

Proof. Let R = (X N Y\Txyy) and letL = (X N Y\Sxny).
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By Lemma 10, Condition Il ensures that either (2) or (3) holds. Suppose that (2) holds. The following set of inequalities
(11)—(18) are chosen to make up the difference between (2) and

c1(Sxny, X UY) +ca(X UY, Txuy) <c1(X, X) + c2(Y, ¥). (10)

Inequalities (11)—(14) follow from the inequalities in Lemma 8 and sifigec X, Ty < X, Sy € Y,andTy C Y hold by
Lemma 7(iv). The last four inequalities hold since the capacity functions are assumed to be positive.

c1(Sxny, X\Y)<er(X NY, X\Y), (11)
c2(Y\X, Txuy) <c2(Y\X, X NY), (12)
c1Sxny. XNY)<ca(XNY, XNY), (13)
(X NY, Txuy)<c2(XNY,XNY), (14)
0<c1(X\Y, B), (15)

0<ea(L, Y\X), (16)

0<e1(X\Y, X\Y), 17)

0<eca(Y\X, Y\ X). (18)

Adding the above inequalities to (2), yields (10).

By the definition of the operatdt, (Syny, L) = @. The set of arcéR, Txy) is also empty, since the hypothesis thst X)
and(Y, Y) are minimum cuts implies by Lemmas 7(iv) and 8(iii) tiaty € X UY. Then by Lemma 7Ty y = [X U Y],,
from which the emptiness @R, Txy) follows.

It follows from (Sxny, L) = (R, Txuy) = 9 that (Sxny, Sxny) = (Sxay, X UY) U (Sxay, L) = (Sxny, X U Y) and
(Txuy. Txuy) = (X UY, Txuy) U (R, Txyuy) = (X U Y, Tyuy). Hence (10) and the assumptions thst X) and(Y, Y) are
minimum cuts forc1 andcp, respectively, imply thatSxny. Sxny) and(Txyy. Txuy) are also minimum cuts far; andcop,
respectively. Moreover, inequalities (2), (10) and (11)—(18) are satisfied as equalities.

Next, we show thatSxny. X UY)= (X NY,XUY)and(X UY, Txuy) = (X UY, X NY). The sets of arcs in the
arguments of the capacity functiong andco on the left-hand sides of (11)—(14) are subsets of the corresponding sets on the
right-hand sides. Since capacities are assumed to be positive, these sets of arcs must be equal. Similarly, the sets of arcs involve
in (15)—(18) must be empty. So from (11),, X\Y) = @; from (13), (L, X N Y) = @; and from (16),(L, Y\X) = @. Also,
note thatX N Y, X UY) = (Sxny, X UY)U (L, X UY)andthat(L, X UY) = (L, X\Y) U (L, X NY) U (L, Y\X). Hence,
(Sxny, XUY)=(XNY,XUY).

An analogous argument shows thiatuU ¥, Tyy) = (X U Y, X N Y) follows from (12), (14) and (15).

Consequently, if (2) holds, then

AXNY,XUY)+c2(XUY,XNY)=c1(X, X) + c2(, 7). (19)
A similar argument shows that if (3) holds, then
(XNY,XUY)+c1(XUY,XNY)=c1(X, X) +c2(¥, 7). (20)

In either case, botlY U Y andX NY are minimum cuts and so belongéo [

Theorem 12. Let G(N, A) be a directed network ang (A,, A}, A;) be aG3T class of parametric capacity functions. A
totally ordered selection of minimum cuts exists for every capacity funetion in #(A,, A}, A;) if and only if Condition

Il holds. Furthermorgif Conditionll is satisfiedthen each totally ordered sub-selection of minimum cuts can be extended to a
totally ordered selection

Proof. If Condition Il holds, then by Theorem 1% is a sublattice and Condition | is satisfied as equalitieg’ohhe claimed
selection and extension properties follow from Theorem 1.

To prove the “only if” part, suppose there exists a pair of parallel ages (i, j) andeo = (k, 1) in A, such that none of the
three criteria in Condition Il is satisfied. It suffices to construct a capacity funetion € # (Ay, A7, A}) for which a totally
ordered selection of minimum cuts does not exist.

Sinceeq ande2 do not satisfy criterion 1l(c), neither of them is both a front arc and a back arc. Since neither criterion li(a)
nor criterion 11(b) holds, at least one of the following three cases must be valid.

Casel: At least one of the arag ande> is neither a front arc nor a back arc.

Case2: e1 andey are either both front arcs or are both back arcs (i=.j or k =), and the capacities ef, ande, are
allowed to change in opposite directions.
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Cases: Eithereq ores is a front arc and the other is a back arc, and their capacities are allowed to change in the same direction.

We will now construct a parametric capacity functigr -) for each of the above three cases. Sieice: (i, j) andes = (k, 1)
are parallel, there are simple pathg from s to i, po from s to k, p3 from j to r and p4 from [ to ¢ such thatp; N pg = 9,
p1N p3=10, pp N p3=¥andpy N ps= . Let G’ be the subgraph af spanned by arc§, j), (k, 1) and pathg1, p2, p3
and p4. Assign very small constant capacities to arcs nafirso that the total capacity of these arcs is less than 1. Consider
a minimum cut(X, X), in G for a capacity function yet to be constructed. It disconne@tsm s in G’ as well as inG. Thus
(X, X) contains a subset of arcs!, which forms a cut set of arcs f@¥'. In the capacity function being constructed, each arc
in G’ will be assigned an integer capacity greater than or equal to 1. Thergfomayst be a minimum cut set of arcs f6r.
Otherwise, a minimum cut iGG" can be augmented with all arcs@hG’ to form a new cut inG whose capacity is smaller than
the capacity of X, X).

If for two values of the parameter, say < Ao, the corresponding minimum cuts are unique and cannot be ordered, then the
minimum cuts inG for A1 and/, cannot be ordered. Thus it suffices to show that unique minimum cuts cannot be ord@fed in
for two values,i1 andiz in A.

In the following counterexamples, assign constant values to capacities of arcs other #male, in G’. G’ corresponding
to Case 1is illustrated iRigs. 3and4. G’ corresponding to Cases 2 and 3 is illustrateBigs. 5and6, respectively. The dotted
lines represent paths @&'. Each such path may be empty. éf; ) = oo for each are in the paths represented by the dotted
lines and for each € R. Values ofc(41; -) andc(Ap; -) for other arcs inG’ are as follows.

In Case 1, if the capacities ef andeo are allowed to change in the same direction, then the value§.ef -) andc(/2; -)
are shown irFig. 3. If the capacities oé; ande, are allowed to change in opposite directions, then the valueglgf -) and
c(42; -) are shown irFig. 4. In Cases 2 and 3, the valuesaifiq; -) andc(/2; -) are illustrated, respectively, iRigs. 5and6.

In each figure, Diagram (1) correspondsiioand Diagram (2) corresponds tg. It can be seen that the direction of change in
capacities okq ande> is consistent with the one set forth in the corresponding case.

The dashed lines represent the minimum cuts. In each case, the unique minimum égtaridrl, are not ordered. This
completes the proof. O

The following corollary presents a necessary and sufficient condition for the existence of a totally ordered selection of minimum
cuts for every capacity function in a3 class,# (Ao, 9, ¥), with no directional restrictions.
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Fig. 5.G’ for Case 2.

Fig. 6.G’ for Case 3.

Corollary 13. Let A, be a set of arcs in a directed netwofK N, A). Then a totally ordered selection of minimum cuts exists
for each parametric capacity functiar(-; -) in 7 (Ay, @, ), if and only if for each pair of parallel arcs i, one arc is both
a front arc and a back arc

Proof. Foreache(:; ) € # (A, @, ?), only arcs inA, can change i, but the direction of change is unrestricted. By Theorem

12, a totally ordered selection of minimum cuts exists for evéry-) in Z (A, @, @), if and only if each pair of parallel arcs

in A, satisfies at least one of items (a), (b) and (c) in Condition Il. Conditions (a) and (b) require each pair of parallel arcs to
be inA;" or A, which are empty sets in this setting. Thus (a) and (b) cannot be satisfied and (c) must hold. This completes the
proof. O

Next, we present some special cases of the class of parametric flow problems presented in Theorem 12.

Corollary 14. Let G(N, A) be a capacitated network and le{ and vo be two arbitrary nodes therein. Suppose capacities
of all arcs terminating a4 are either all nondecreasing functions obr are all nonincreasing functions df and similarly,
capacities of all arcs originating from are either all nondecreasing functions ofor are all nonincreasing functions of.
Further, the capacities of the arcs on a directed patlirom v to v, are arbitrary positive functions of, and capacities of all
other arcs are constant. Let, be the set of all variable arcs. If each pair of parallel arcsAp either both originate fronvy

or both terminate ab1, then there exists a totally ordered selection of minimum cuts winkranges

Proof. From the assumptions, each pair of parallel arcs must share the same head or the same tail, and their capacities change
in the same direction. By Theorem 12, a totally ordered selection of minimum cuts exists.

For the parametric flow problem studied by AUK (1993]), if the capacities of arcs incident to a single nadare all
nondecreasing functions éf then a totally ordered selection of minimum cuts exists. This result is a special case of Corollary
14 as can be seen by identifying nodgsandv, and letting the pathp from v1 to vy to be empty. For the same problem, if
nodev is allowed to have a capacity which changes,ia totally ordered selection of minimum cuts still exists. Indeed, one can
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transform this node-and-arc-capacitated network into an arc-capacitated network by splittingimtmdeodesv; andwvo. All
arcs terminating at will now terminate a1 and all arcs originating from will now originate fromvs. A directed arqv1, v2)
is added which has the capacity of nadérhis arc-capacitated network is a special case of Corollary 14, since in this case the
pathp is the single arcv1, v).

It can be shown that in the AUK setting, a totally ordered selection of minimum cuts does not exist if we further allow capacities
on nodes adjacent toto change. For a counterexample, EE8.

In Corollary 14, if one lets4 bes andvy bet, then the set of arcs terminatingwgtor originating fromvo will be empty, and
the following result can be obtained.

Corollary 15. Let p be a path from the sourceto the sinks in a networkG (N, A). Suppose no two arcs ip are parallel
to each other. Therwhen the capacities of arcs gnare parametrically changed totally ordered selection of minimum cuts
exists

In ans-t series—parallel network, no pairs of arcs on a path fraoy are parallel. Thus by Corollary 15, when the capacities
on ans-t path are arbitrarily changed in such a network, a totally ordered selection of minimum cuts exi§i]lapplied
Corollary 15 to conduct a qualitative analysis of a parametric extended selection pfbltEnhas shown therein that when the
costs of a nested sequence of facilities are parameterized, a totally ordered selection of optimal solutions exists.
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