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Abstract

In this paper, we present an algebraic sufficient condition for the existence of a selection of optimal solutions in a parametric
optimization problem that are totally ordered, but not necessarily monotone. Based on this result, we present necessary and
sufficient conditions that ensure the existence of totally ordered selections of minimum cuts for some classes of parametric
maximum flow problems. These classes subsume the class studied by Arai et al. [Discrete Appl. Math. 41 (1993) 69–74] as a
special case.
© 2005 Elsevier B.V. All rights reserved.

MSC:90C31; 90C27; 90C35; 06A05

Keywords:Parametric maximum flow; Minimum cut; Monotonicity; Ordered optimal solutions

1. Introduction

Our paper is concerned with parametric optimization problems and parametric maximum flow problems. It was motivated by
a parametric maximum flow study carried out by Gallo, Grigoriadis and Tarjan (GGT)[8], and by a subsequent extension by
Arai, Ueno and Kajitani (AUK)[1]. GGT considered a maximum network flow problem in which the capacities of arcs incident
to the source or the sink may change as a function of a parameter. They showed that fork = O(n) instances of the parameter,
the maximum flows can be found in a time bound of one maximum flow, wheren is the number of nodes, and that minimum
cuts move monotonically with changes of the parameter. The monotonicity result was observed earlier by Eisner and Severance
[6] for a restricted graph when the capacities of arcs incident to the source are parametrically increased, and by Stone[18] for a
general graph when the capacities of arcs incident to the sink are parametrically decreased.1 AUK extended the analysis of GGT
and showed that when the capacities of arcs incident to a single node (other than the source or the sink) change, maximum flows
for k =O(n) instances of the parameter can be found in a time bound of two maximum flows. In their study, the minimum cuts
are no longer monotone in the parameter. Rather, they may move “back and forth” as the parameter changes, but there always
exists a selection of minimum cuts that are totally ordered.

� This paper is based on results in[4,5]. Research was partially supported by Natural Sciences and Engineering Research Council grants.
∗ Corresponding author. Tel.: +1 6048228432; fax: +16048229574.
E-mail addresses:Daniel.Granot@sauder.ubc.ca(D. Granot),liliu85@hotmail.com(L. Liu).
1 See also[17,13,2]for an analysis of the related parametric repair kit problem.

1572-5286/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2005.03.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82330059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disopt
mailto:Daniel.Granot@sauder.ubc.ca
mailto:liliu85@hotmail.com


124 S. Brumelle et al. /Discrete Optimization 2 (2005) 123–134

The objective of this paper is to provide an algebraic sufficient condition for the existence of totally ordered optimal solutions
for parametric optimization problems, and to demonstrate that this condition can, in turn, be used to provide necessary and
sufficient conditions for the existence of a totally ordered selection of minimum cuts for some classes of parametric maximum
flow problems.
Our results strengthen those derived by AUK by showing that, in their setting, every sub-selection of minimum cuts can be

extended to a complete nested selection. Moreover, the classes for which a totally ordered selection of minimum cuts is shown to
exist subsume the class of problems studied by AUK as a special case. We also present some other interesting special cases. For
example, we show that one can further allow the capacity of the “center node” in the study of AUK to change and still maintain
the existence of a totally ordered selection of minimum cuts. In another special case, we show that a totally ordered selection
of minimum cuts exists when the capacities of arcs on a path are parametrically changed, given that no two arcs on the path are
parallel.2

Finally, we note that our results are related to the various monotone selection theorems developed, e.g., by Topkis[19,20],
Topkis and Veinott[22], Veinott[23], Granot and Veinott[11], Milgrom and Shannon[15], and Gautier et al.[9], for parametric
optimization problems.3 These theorems, which have numerous applications, present sufficient conditions under which it is
possible to select an optimal solution for each instance in the parameter set such that the selected solutions are monotone in the
parameters.
The rest of this article is organized as follows. Section 2 presents some preliminary results regarding lattices and a sufficient

condition for the existence of a selection of totally ordered optimal solutions for parametric optimization problems. In Section
3 we develop some path closure properties, which are subsequently used in Section 4 to develop a characterization of classes
of parametric capacity functions such that for every capacity function in these classes, there exists totally ordered selection of
minimum cuts.

2. The totally ordered selection theorem

A lattice is a partially ordered set, say(L,�), in which each pair of elements,x andy inL, has asupremumor least upper
bound and aninfimumor greatest lower bound. The least upper bound (resp., greatest lower bound) ofx andy in a latticeL is
their join (resp.,meet) and is denotedx ∨ y (resp.,x ∧ y). A subsetS of a latticeL is asublatticeif S contains the join and meet
(with respect toL) for each pair of elements ofS.
SublatticeS is lower than sublatticeT , or S�V T , if for everyx ∈ S andy ∈ T we havex ∨ y ∈ T andx ∧ y ∈ S. On the

set of all non-empty sublattices of a lattice, this order, which, according to Topkis[20], was introduced by Veinott, is reflexive,
antisymmetric and transitive, and so partially orders sublattices of a lattice[20].
Suppose(�, �) is a partially ordered set,(L,�) is a lattice and{S�} is a family of subsets ofL indexed in�. If for any �1

and�2 in�, �1��2 implies thatS�1 is lower thanS�2 (respectively,S�2 is lower thanS�1), then{S�} isascending(respectively,
descending) in � on�. If �1��2 implies thatx � y (respectively,y � x) for eachx ∈ S�1 andy ∈ S�2, then{S�} is strongly
ascending(respectively,strongly descending)in � on�. See, e.g.,[21] for a more detailed discussion.
Let (L,�) be a lattice. Letf (x, �) be a function defined onL × �, where� is the parameter. The objective is to minimize

f (·, �) for each�. LetF ∗(�) be the set of minimum solutions off (·, �) for a specific�; i.e.,F ∗(�)=argminx{f (x, �) : x ∈ L}.
For an arbitrary subset�0 of �, amonotone sub-selection of optimal solutionsis a mapping,x(·), from �0 toL, such that
x(�) ∈ F ∗(�) for each� ∈ �0 andx(�) is monotone in�. Similarly, atotally ordered sub-selection of optimal solutionsis a
mapping,x(·), from�0 toL, such thatx(�) ∈ F ∗(�) for each� ∈ �0 and the collection{x(�)|� ∈ �0} is totally ordered by�.
A sub-selection is reffered to as aselection, if �0 = �.
If F ∗(�)=∅ for any� ∈ �, then� can be ignored in this study. Therefore, we assume in this section thatF ∗(�) �= ∅ for every

� ∈ �. For conditions which ensure non-emptiness ofF ∗(�) see, e.g.,[20].
The following condition ensures the existence of a totally ordered optimal solutions:

Condition I. For every�1, �2 ∈ � and arbitraryx ∈ F ∗(�1), y ∈ F ∗(�2), eitherx ∧ y ∈ F ∗(�1) andx ∨ y ∈ F ∗(�2) or
x ∨ y ∈ F ∗(�1) andx ∧ y ∈ F ∗(�2) holds.

Theorem 1 (Strong totally ordered selection theorem). LetL be a lattice, letf (·, ·) be defined onL×�,and supposeCondition
I is satisfied.

2A definition of parallel arcs is given in Section 3.
3 For related books with large bibliographies the reader is referred to, e.g.,[24,21].
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(i) If � is a countable set, then a totally ordered sub-selection of optimal solutions{x(�) ∈ F ∗(�)|� ∈ �0}, for a finite set�0,
can be extended to a totally ordered selection on�.

(ii) If L is finite, then(i) still holds without requiring� to be countable.
(iii) If a minimum elements(�) (respectively,maximum elementS(�)) exists in everyF ∗(�), then the collection{s(�)} (respec-

tively, {S(�)}) is totally ordered.
Proof. (i) Consider the first claim. The mappingx(·) can be constructed by the following inductive procedure. Suppose that
at a certain step, one has obtained a totally ordered sub-selection for�k , which consists ofk elements and contains�0 as a
subset. Since�k is finite, the elements in�k can be denoted by�1, �2, . . . , �k so thatx1 � x2 � · · · � xk , wherexi = x(�i )
for i = 1,2, . . . , k. Choose an arbitrary�k+1 in �\�k . We wish to findxk+1 = x(�k+1) such thatxk+1 ∈ F ∗(�k+1) and the
collectionCk+1 = {x1, x2, . . . , xk, xk+1} is totally ordered.
We claim thatF ∗(�k+1) either contains an elementm1 such thatm1 � x1 or an elementM1 such thatx1 � M1. To show

this, pick an arbitraryx in F ∗(�k+1). Since Condition I holds, eitherx ∧ x1 is in F ∗(�k+1) or x ∨ x1 is in F ∗(�k+1). If the
former is true, we choosem1 = x ∧ x1, and if the latter is true, we chooseM1 = x ∨ x1.
If m1 exists, letxk+1 = m1 andCk+1 = Ck ∪ {xk+1} is totally ordered. Otherwise, letl be the largest index such that there

exists an elementMl in F ∗(�k+1) for whichxl � Ml . If l = k, letxk+1=Ml andCk+1=Ck ∪ {xk+1} is again totally ordered.
If l < k, then there does not exist an elementMl+1 in F ∗(�k+1) such thatxl+1 � Ml+1. Considerxl+1 ∨ Ml andxl+1 ∧ Ml .
By Condition I, one of them must be inF ∗(�k+1). The former cannot be inF ∗(�k+1), since otherwise, there exists an element
Ml+1= xl+1∨Ml in F ∗(�k+1) satisfyingxl+1 � Ml+1, contradicting the assumption that no suchMl+1 exists. Soxl+1∧Ml

is inF ∗(�k+1). Letxk+1= xl+1∧Ml . Clearly,xk+1 � xl+1. Sincexl � Ml andxl � xl+1, it follows from the definition of∧
thatxl � xl+1 ∧ Ml = xk+1. Thus the collectionCk+1 = Ck ∪ {xk+1} is totally ordered. This completes the proof of the first
claim.
(ii) Observe that if for two values of the parameter,�1 and�2, F ∗(�1) = F ∗(�2), then one only has to select an optimal

solutionx(�1) for �1 and letx(�2) = x(�1). Letn = |L| be the cardinality ofL. For each� ∈ �, F ∗(�)must be one of the 2n
subsets ofL. Therefore, one has to consider at most 2n representative instances in�. Since this set of representative instances
is finite and thus countable, claim (i) applies and the proof of (ii) is complete.
(iii) To prove the third part of the theorem, consider two arbitrary instances of the parameter�1 and�2. Sinces(�1) ∧ s(�2)

is either inF ∗(�1) or in F ∗(�2), s(�1) ∧ s(�2)must be equal to eithers(�1) or s(�2). In the former case,s(�1) � s(�2) and in
the latter case,s(�2) � s(�1). Similarly,S(�1) andS(�2) must be ordered by�. �

The reader is referred to[12] for a weaker sufficient condition than Condition I, for the existence of a totally ordered selection
of optimal solutions in a parametric optimization problem. However, this condition does not necessarily ensure that an arbitrary
sub-selection of ordered optimal solutions can be extended to a complete one.
The strong totally ordered selection theorem can be easily used to strengthen the AUK result by demonstrating that every

totally ordered sub-selection of minimum cuts in their parametric network flow problem can be extended to a totally ordered
selection of minimum cuts. To show it, we first need to recall some basic definitions in graph theory.
LetG(N,A) denote a directed network, with nodesN and arcsA. Lets andt be the source node and the sink node, respectively.

A cut is a bi-partition(X,X) of the node setN , wheres ∈ X andt ∈ X. A partial order can be defined on the set of cuts in a
network. Namely,(X,X)�c(Y, Y ) if X ⊆ Y . Under this partial order, the set of cuts in a network is a lattice.
Let cij denote the capacity associated with arc(i, j). In this study, we assume that arc capacities are strictly positive, in

order to avoid some degenerate cases. For two subsets of nodesX andY , (X, Y ) can be interpreted as the set of arcs{(i, j)|i ∈
X, j ∈ Y }. Let c(X, Y ) = ∑

i∈X,j∈Y cij be the capacity of(X, Y ). In particular, the capacity of cut(X,X) is defined as

c(X,X) = ∑
i∈X,j∈Xcij . A minimum cutin a network is one whose capacity is minimum among all cuts in the network.

Finally, recall that in theAUKmodel, arcs incident to a nodev, v �= s, v �= t have linearly increasing capacities in a real-valued
parameter�, and arcs elsewhere have fixed capacities.

Lemma 2. In the AUK setting, let (Y,N\Y ) be a minimum cut at�Y and let(W,N\W) be a minimum cut at�W . Then, either
(Y ∩ W,N\(Y ∩ W)) is a minimum cut at�Y and(Y ∪ W,N\(Y ∪ W)) is a minimum cut at�W or (Y ∪ W,N\(Y ∪ W)) is a
minimum cut at�Y and(Y ∩ W,N\(Y ∩ W)) is a minimum cut at�W .

Proof. The proof is similar to the proof of Lemma 2 in AUK and thus omitted.�

Lemma 2 can now be used to extend the AUK parametric result.

Theorem 3. For a given set of parameter values� = {�1, . . . , �k . . .}, in the AUK setting, a totally ordered sub-selection of
minimum cuts{(X(�), N\X(�)) : � ∈ �0,�0 ⊆ �} for a finite set�0, can be extended to a totally ordered selection on�.
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Proof. By Lemma 2, Condition I holds. Further, the set of all cuts in a network is a finite lattice. The proof then follows by
Theorem 1 (ii). �

3. Parallel arcs and path closure properties

This section introduces the notion of parallel arcs, which is independent of arc capacities and only depends on the network
topology. It also develops some path closure properties along lines motivated by Picard and Queyranne[16] and Granot et al.
[10]. Our study of ordered minimum cuts in the next subsection will depend on these concepts.
A path inG is a sequence,<n1, (n1, n2), n2, (n2, n3), n3, . . . , nk−1, (nk−1, nk), nk >, of nodes and arcs. When there is no

ambiguity, the above path will also be denoted as<n1, n2, . . . , nk >. A simple pathis one in which the nodes do not repeat. An
s-t pathis a simple path from the source nodes to the sink nodet . For simplicity of presentation, we will writep1 ∩ p2 = ∅ to
denote the fact that pathsp1 andp2 are vertex disjoint;e ∈ p1 to denote the fact that arce is in pathp1; andu ∈ p1 to denote
the fact that nodeu is in pathp1.

Definition 4. Two arcs(i, j) and(k, l) areparallel if there exist simple pathsp1 from s to i, p2 from s to k, p3 from j to t ,
andp4 from l to t such thatp1 ∩ p4 = ∅, p2 ∩ p3= ∅, p1 ∩ p3= ∅ andp2 ∩ p4 = ∅. In this case, the subgraph ofG spanned
by (i, j), (k, l), p1, p2, p3 andp4 is called a bypassbetween(i, j) and(k, l).

Intuitively, if two arcs(i, j) and(k, l) are parallel inG, then there exists asimples–t pathpa = <p1, (i, j), p3> from s to
t that bypasses(k, l) and anothersimples–t pathpb = <p2, (k, l), p4> from s to t that bypasses(i, j).
Parallel arcs are illustrated inFig. 1, where arcs(i, j) and(k, l) (shown in bold lines) are parallel.
For an arbitrary directed network, verifying whether a pair of arcs is parallel is NP-hard. This is due to the fact that finding

two vertex-disjoint paths between two pairs of nodes in directed graphs is NP-hard. See[7].

Definition 5. Let (i, j) and(k, l) be two parallel arcs in a directed networkG. Arc (i, j) is called afront arcwith respect to
(k, l) if in every bypass between(i, j) and(k, l), i is the last common node inp1 andp2. Arc (k, l) is called aback arcwith
respect to(i, j) if in every bypass between(i, j) and(k, l), l is the first common node inp3 andp4.

Fig. 2 illustrates the notion of front and back parallel arcs. In Diagram (a),(i, j) is a front arc with respect to(k, l) and(k, l)
is a back arc with respect to(i, j). In Diagram (b),(i, j) is a front arc with respect to(k, l), but (k, l) is not a back arc with
respect to(i, j), since in a bypass spanned by the two arcs andp1, p2, p

′
3 andp4, l is not onp

′
3. In Diagram (c), arc(i, j) is

both a front arc and a back arc with respect to(k, l).
The following definitions and results help identify sets of arcs related to minimum cuts, across which each pair of arcs is

parallel.
For each set of nodes,X, define thes-kernelby

s [X] = {i : there exists a path froms to i which is contained in X};
define thet-kernelby

[X]t = {i : there exists a path fromi to t which is contained inX};
define the setSX by

SX = {i : there exists a path froms to i which does not meet[X̄]t };

Fig. 1. Parallel arcs.
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(a) (b)

(c)

Fig. 2. Front and back arcs.

define the setTX by

TX = {i : there exists a path fromi to t which does not meetSX};

and define the setZX to consist of all other nodes neither inSX nor inTX.
Define a set,X, to bes-closedif for each nodei in X there is a path froms to i which does not meet̄X; and define it to be

t-closedif for each nodei in X there is a path fromi to t which does not meet̄X.

Lemma 6. For each cut(X,X),

(i) The setss [X] andSX are s-closed, and the sets[X̄]t andTX are t-closed;
(ii) s [SX] = SX and[TX]t = TX;
(iii) SX ∩ TX = ∅;
(iv) (SX, SX) = (TX, TX) = (SX, [X̄]t ) = (SX, TX) ⊆ (X,X);
(v) Each pair of arcs in(SX, SX) is parallel.

Proof. Statements (i), (ii) and (iii) essentially follow from the associated definitions. Thus, for brevity, we will only prove (iv)
and (v).
If (i, j) is in (SX, SX), thenj must belong to[X̄]t ; otherwise by the definition ofSX there would be a path froms to j (via i)

which does not meet[X̄]t . Hence,(SX, SX) ⊆ (SX, [X̄]t ). However, since[X̄]t ⊆ SX it follows that(SX, SX) = (SX, [X̄]t ).
The last equality in (iv) now follows since[X̄]t ⊆ TX ⊆ SX. Further, for(i, j) ∈ (SX, SX), we must have thati ∈ X. Indeed,
if i is not inX, then the path consisting of the arc(i, j), followed by the path fromj to t which is contained in[X̄]t ,would lie
in X̄ andi would be in[X̄]t , contradicting the fact that it is inSX. Hence(SX, SX) ⊆ (X,X).
To finish the proof of (iv), it remains to show that (SX, [X̄]t ) = (TX, TX). SinceSX ⊆ TX and[X̄]t ⊆ TX, it is clear that

(SX, [X̄]t ) ⊆ (TX, TX). On the other hand, suppose that(i, j) is in(TX, TX). Theni is inSX; otherwise, the path consisting of arc
(i, j) followed by the path fromj to t which is contained inTX would not meetSX andi would be inTX. The previous paragraph
established that ifi is inSX, thenj must be in[X̄]t . Hence(SX, [X̄]t ) ⊇ (TX, TX), andwe conclude that(SX, [X̄]t )=(TX, TX).
To prove (v), suppose that(i, j) and(k, l) are in the cut(SX, SX). Then by (iv) they are also contained in the set of arcs

(SX, [X̄]t ). Sincei and k are inSX, there are pathsp1 andp2 contained inSX connectings to i and tok, respectively.
Sincej and l are in [X̄]t , there are pathsp3 andp4 contained in[X̄]t connectingj and l to t , respectively. The pathsp1
andp2 must be disjoint fromp3 andp4 since they are in disjoint sets. Therefore, by definition, arcs(i, j) and (k, l) are
parallel. �
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Lemma 7. The following are equivalent:

(i) (X,X) is a minimum cut for some capacity functionc;
(ii) (SX, TX) = (X,X);
(iii) (SX, SX) = (X,X).

Each of the above implies the following:

(iv) SX ⊆ X andTX ⊆ X̄;
(v) SX=s [X] andTX = [X̄]t .

Moreover, SX ⊆ X if and only ifSX=s [X], andTX ⊆ X̄ if and only ifTX = [X̄]t .

Proof. From Lemma 6(iv) we have that

(SX, TX) = (SX, SX) ⊆ (X,X). (1)

This, together with the standing hypothesis that capacities are positive, shows that (i) implies (ii) and that (ii)
implies (iii).
Suppose that (iii) holds. Define a capacity function,c, by c(e)=1 if e ∈ (SX, SX) andc(e)=∞ otherwise. Then(SX, SX)=

(X,X) is a minimum cut forc, and so (iii) implies (i). From the previous paragraph it follows that (i), (ii), and (iii) are equivalent.
From the definitions of thes andt kernels, it is clear thats [X] ⊆ X and that[X̄]t ⊆ X̄. Hence each part of (v) implies the

corresponding part of (iv).
Also from the definitions of thes andt kernels, it is clear that the kernel operators are monotone, so that if (iv) holds it follows

that s [SX]⊆s [X]. Since by Lemma 6(ii) we haveSX=s [SX], it follows thatSX⊆s [X]. By the definitions ofs [X] andSX, it
follows thats [X] ⊆ SX. HenceSX=s [X]. A similar argument shows thatTX ⊆ X̄ implies thatTX = [X̄]t . Hence each part of
(iv) implies the corresponding part of (v).
To finish the proof it is sufficient to show that (ii) implies (iv). Suppose that(SX, TX) = (X,X). If i ∈ SX\X, then because

SX is s-closed, there is a path,p, from s to i in SX. Sinces ∈ SX andi /∈X, there is at least one arc inp which is in(X,X) but
not in (SX, TX), which contradicts the hypothesis that(SX, TX) = (X,X). HenceSX ⊆ X.
A similar argument shows thatTX ⊆ X̄, so that (ii) implies (iv). �

Lemma 8. LetX andY be two subsets of nodes such thats ∈ X ∩ Y andt /∈X ∪ Y .

(i) If X ⊆ Y , thenSX ⊆ SY andTY ⊆ TX.
(ii) SX∩Y ⊆ SX ∩ SY andSX∪Y ⊇ SX ∪ SY .
(iii) TX∩Y ⊇ TX ∪ TY andTX∪Y ⊆ TX ∩ TY .

Proof. The hypothesis in (i) implies̄Y ⊆ X̄, so that[Ȳ ]t ⊆ [X̄]t . Suppose nodei is in SX. Then there exists a path froms to
i which does not meet[X̄]t . But this path cannot meet[Ȳ ]t since it is contained in[X̄]t . Consequently,i ∈ SY andSX ⊆ SY .
Supposei is in TY . Then there exists a path fromi to t which does not meetSY . This path cannot meetSX since it is contained
in SY . Consequently,i ∈ TX andTY ⊆ TX completing the proof of (i). (ii) and (iii) follow from (i). �

Define two cuts, say(X,X) and(Y, Y ), to beequivalentif SX = SY . If two cuts are each minimum (not necessarily for the
same capacity function), then the next lemma shows that they are equivalent if and only if they have the same set of arcs, although
the node sets might not be identical.

Lemma 9. If (X,X) is a minimum cut for some capacity function andSX = SY , then(X,X) ⊆ (Y, Y ). If, in addition, (Y, Y )

is also a minimum cut for some capacity function then(X,X) = (Y, Y ).

Proof. Since(X,X) is assumed to be a minimum cut, by Lemma 7(iii) it follows that(SX, SX) = (X,X). By hypothesis,
SX = SY . Thus,(X,X) = (SX, SX) = (SY , SY ) ⊆ (Y, Y ), where the set inclusion follows from Lemma 6(iv). If, in addition,
(Y, Y ) is a minimum cut for some capacity functionc, then an identical argument applied to(Y, Y ) shows that(Y, Y ) ⊆ (X,X).
So in this case(X,X) = (Y, Y ). �
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4. Ordered selection of minimum cuts

In this section, we use the totally ordered selection theorem to derive a necessary and sufficient condition for the existence of
a totally ordered selection of minimum cuts in a parametric maximum flow problem.
A parametric maximum flowproblem is a maximum flow problem in which the capacities of the arcs may change as functions

of a parameter�. In such a problem, the notation is modified to include the parameter, so the capacity of an arc(i, j) is denoted
by c(�; i, j) and the capacity of(X, Y ) is written asc(�;X, Y ). Again, we assume that the capacities on the arcs are positive to
avoid degenerate cases.
A parametric maximum flow problem was studied by GGT (1989). Therein, they have shown that the lattices of minimum

cuts are ascending in a parametric maximum flow problem in which the capacities of arcs incident to the source are increasing
functions of a parameter� and the capacities of arcs incident to the sink are decreasing functions of�. Notice that this result does
not pertain to any specific parametric capacity functionc(·; ·) onG. Rather, a class of parametric capacity functions is specified
such that the aforementioned property holds for every parametric capacity function in this class.
The main concern in this section is to characterize classes of parametric capacity functions such that foreveryparametric

capacity function in the specified class a totally ordered selection of minimum cuts exists. To that end, we introduce the following
terminology.A parametric capacity function,c(·; ·), isconstanton a set of arcsA0 ⊆ A if for each arce inA0, c(�1; e)=c(�2; e)
for all �1 and�2 in �; it changes in the same directiononA0 if for each�1 and�2 in �, c(�1; ẽ)− c(�2; ẽ) >0 for someẽ ∈ A0
implies thatc(�1; e) − c(�2; e)�0 for all e ∈ A0; it changes in opposite directionsbetween two sets of arcsA+ andA− if
for each�1 and�2 in �, c(�1; ẽ) − c(�2; ẽ) >0 for someẽ ∈ A+ implies thatc(�1; e) − c(�2; e)�0 for all e ∈ A− and
c(�1; ẽ) − c(�2; ẽ) >0 for someẽ ∈ A− implies thatc(�1; e) − c(�2; e)�0 for all e ∈ A+.
Next, we introduce a mechanism for specifying classes of parametric capacity functions, which we refer to as Generalized

GGT (G3T) classes. A G3T class of parametric capacity functions is obtained by specifying a set of arcs,Av , on which the
capacities can change. In addition, two subsets ofAv , sayA+

v andA−
v , are specified which restrict the direction of change.

GivenAv , A+
v andA−

v , the G
3T class of parametric capacity functions,F(Av,A

+
v , A−

v ), are those capacity functions which
are constant onA\Av , change in the same direction onA+

v and onA−
v , and change in opposite directions betweenA+

v andA−
v .

Examples of G3T classes have been used in the literature. GGT have introduced a class of parametric capacity functions which
are included inF(Av,A

+
v , A−

v ), whereA+
v = {(s, i)|(s, i) ∈ A,∀i ∈ N},A−

v = {(i, t)|(i, t) ∈ A,∀i ∈ N} andAv =A+
v ∪A−

v

(assume that arc(s, t) does not exist in the network). The GGT class imposes some explicit monotonicity conditions on the
capacity functionswhichare slightlymore restrictive than thedirectional restrictionswhichweuse inG3T classes.AUKexamined
the class of capacity functionsF(Av,A

+
v , A−

v ), whereA+
v = {(v, i)|(v, i) ∈ A,∀i ∈ N} ∪ {(i, v)|(i, v) ∈ A,∀i ∈ N},A−

v = ∅
andAv = A+

v for a specific nodev called the “center node”. They showed that for every parametric capacity function in
F(Av,A

+
v , A−

v ), a totally ordered selection of minimum cuts exists. Our Corollary 14 provides an alternative proof.
TheG3T specification of parametric capacity functions is fairly broad.As justmentioned, it subsumes the classes of parametric

capacity functions studied by GGT and AUK as special cases. However, there are other possible ways of defining classes of
parametric functions which are not included in our framework. For example, McCormick[14] restricts the magnitude of the
parametric capacity change.
Our goal is to characterize the setsAv ,A+

v andA−
v which will ensure the existence of a totally ordered selection of minimum

cuts. Indeed, Theorem12 provides a necessary and sufficient condition for the existence of a totally ordered selection ofminimum
cuts for every capacity function in the classF(Av,A

+
v , A−

v ).

Condition II. LetG(N,A) be a directed network andF(Av,A
+
v , A−

v ) be aG3T class of parametric capacity functions. For
each pair of parallel arcse1 ande2 in Av at least one of the following conditions is valid:

(a) e1 ande2 are both front arcs or are both back arcs, ande1 ande2 are either both inA+
v or both inA

−
v ;

(b) e1 or e2 is a front arc and the other is a back arc, and one of them is inA+
v and the other is inA

−
v ;

(c) e1 or e2 is both a front arc and a back arc.

Lemma 10. Suppose that ConditionII holds, that (X,X) is a minimum cut for the capacity functionc1(·) = c(�1; ·), and that
(Y, Y ) is a minimum cut for the capacity functionc2(·) = c(�2; ·).
Then either

c1(SX∩Y , Ȳ\X̄) + c2(X\Y, TX∪Y )�c1(X\Y, TX∪Y ) + c2(SX∩Y , Ȳ\X̄) (2)

or

c2(SX∩Y , X̄\Ȳ ) + c1(Y\X, TX∪Y )�c2(Y\X, TX∪Y ) + c1(SX∩Y , X̄\Ȳ ) (3)

holds.
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Proof. Suppose that neither (2) nor (3) holds. Then

c1(SX∩Y , Ȳ\X̄) − c2(SX∩Y , Ȳ\X̄) + c2(X\Y, TX∪Y ) − c1(X\Y, TX∪Y )>0 (4)

and

c2(SX∩Y , X̄\Ȳ ) − c1(SX∩Y , X̄\Ȳ ) + c1(Y\X, TX∪Y ) − c2(Y\X, TX∪Y )>0. (5)

From (4), either

c1(SX∩Y , Ȳ\X̄) − c2(SX∩Y , Ȳ\X̄)>0, (6)

or

c2(X\Y, TX∪Y ) − c1(X\Y, TX∪Y )>0. (7)

From (5), either

c2(SX∩Y , X̄\Ȳ ) − c1(SX∩Y , X̄\Ȳ ) >0, (8)

or

c1(Y\X, TX∪Y ) − c2(Y\X, TX∪Y )>0. (9)

Selecting one inequality from each set gives four cases. The proof will be completed when we show that none of the four cases
can hold.
Suppose, on the contrary, that inequalities (6) and (8) hold. Then, because the capacities are positive, there exist arcs(i, j) ∈

Av ∩ (SX∩Y , Ȳ\X̄) and(k, l) ∈ Av ∩ (SX∩Y , X̄\Ȳ ) such thatc1(i, j)− c2(i, j)>0 andc2(k, l)− c1(k, l)>0. These two arcs
are parallel by Lemma 6(v) since they belong to the cut(SX∩Y , SX∩Y ) and so must satisfy one of the criteria in Condition II.
Condition II(a) cannot hold since the capacities change in opposite directions.
Arc (i, j) cannot be a back arc with respect to(k, l). Indeed, sincel ∈ TX by Lemma 7(ii), it follows from Lemma 6(i) that

there exists a path froml to t in TX. By Lemma 7(iv),TX ⊆ X̄; and sincej ∈ Ȳ\X̄, this path cannot pass throughj . Similarly,
(k, l) cannot be a back arc with respect to(i, j). Hence neither II(b) nor II(c) can hold. Consequently, there is a contradiction
and inequalities (6) and (8) cannot hold.
Next suppose, on the contrary, that inequalities (6) and (9) hold. Then there exist arcs(i, j) ∈ Av ∩ (SX∩Y , Ȳ\X̄) and

(k, l) ∈ Av ∩ (Y\X, TX∪Y ) such thatc1(i, j) − c2(i, j)>0 andc1(k, l) − c2(k, l)>0. By Lemma 8,SX∩Y ⊆ SY and
TX∪Y ⊆ TY ; and by Lemma 7(iv),SY ⊆ Y andTY ⊆ Ȳ . Thus, both(SX∩Y , Ȳ\X̄) and(Y\X, TX∪Y ) are included in the cut
(Y, Y ). Therefore the arcs(i, j) and(k, l) are parallel by Lemma 6(v), since they belong to the cut(Y, Y ) = (SY , SY ) and so
must satisfy one of the criteria in Condition II.
Condition II(b) cannot hold since the capacity functions change in the same direction. Condition II(a) cannot hold since the

nodesi, j , k andl are in four disjoint sets, namelyX ∩ Y , Ȳ\X̄, Y\X andX̄ ∩ Ȳ .
Arc (i, j) cannot be a back arc with respect to(k, l). Indeed, by Lemma 8(iii),TX∪Y ⊆ TX, and by Lemma 7(iv),TX ⊆ X̄.

Thus if l ∈ TX∪Y ⊆ TX, then by Lemma 6(i) there exists a path froml to t in TX which cannot pass throughj ∈ Ȳ\X̄. Similarly
(k, l) cannot be a front arc with respect to(i, j). So Condition II(c) cannot be satisfied. Consequently, there is a contradiction
and inequalities (6) and (9) cannot hold.
The last two cases are proved similarly.�

The next theorem shows that the set of cuts which are minimum for some parametric capacity function in a G3T class forms
a lattice with the order�c defined in Section 2.

Theorem 11. LetG(N,A) be a directed network andF = F(Av,A
+
v , A−

v ) be aG3T class of parametric capacity functions
satisfying ConditionII. LetC be the set of cuts which are minimum for some parametric capacity functionc(·; ·) ∈ F. ThenC
ordered by�c is a sublattice of the lattice of all cuts. Moreover, if (X,X) and(Y, Y ) are minimum cuts forc1(·) = c(�1; ·) and
c2(·)=c(�2; ·), respectively, then(X∩Y,X ∩ Y ) is a minimum cut for one of the capacity functionsc1 or c2 and(X∪Y,X ∪ Y )

is a minimum cut for the other.

Proof. LetR = (X̄ ∩ Ȳ\TX∪Y ) and letL = (X ∩ Y\SX∩Y ).
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By Lemma 10, Condition II ensures that either (2) or (3) holds. Suppose that (2) holds. The following set of inequalities
(11)–(18) are chosen to make up the difference between (2) and

c1(SX∩Y , X̄ ∪ Ȳ ) + c2(X ∪ Y, TX∪Y )�c1(X, X̄) + c2(Y, Ȳ ). (10)

Inequalities (11)–(14) follow from the inequalities in Lemma 8 and sinceSX ⊆ X, TX ⊆ X̄, SY ⊆ Y , andTY ⊆ Ȳ hold by
Lemma 7(iv). The last four inequalities hold since the capacity functions are assumed to be positive.

c1(SX∩Y , X̄\Ȳ )�c1(X ∩ Y, X̄\Ȳ ), (11)

c2(Y\X, TX∪Y )�c2(Y\X, X̄ ∩ Ȳ ), (12)

c1(SX∩Y , X̄ ∩ Ȳ )�c1(X ∩ Y, X̄ ∩ Ȳ ), (13)

c2(X ∩ Y, TX∪Y )�c2(X ∩ Y, X̄ ∩ Ȳ ), (14)

0�c1(X\Y,R), (15)

0�c2(L, Ȳ\X̄), (16)

0�c1(X\Y, X̄\Ȳ ), (17)

0�c2(Y\X, Ȳ\X̄). (18)

Adding the above inequalities to (2), yields (10).
By the definition of the operatorS, (SX∩Y , L)= ∅. The set of arcs(R, TX∪Y ) is also empty, since the hypothesis that(X,X)

and(Y, Y ) are minimum cuts implies by Lemmas 7(iv) and 8(iii) thatTX∪Y ⊆ X ∪ Y . Then by Lemma 7,TX∪Y = [X ∪ Y ]t ,
from which the emptiness of(R, TX∪Y ) follows.
It follows from (SX∩Y , L) = (R, TX∪Y ) = ∅ that (SX∩Y , SX∩Y ) = (SX∩Y , X̄ ∪ Ȳ ) ∪ (SX∩Y , L) = (SX∩Y , X̄ ∪ Ȳ ) and

(TX∪Y , TX∪Y ) = (X ∪ Y, TX∪Y ) ∪ (R, TX∪Y ) = (X ∪ Y, TX∪Y ). Hence (10) and the assumptions that(X,X) and(Y, Y ) are
minimum cuts forc1 andc2, respectively, imply that(SX∩Y , SX∩Y ) and(TX∪Y , TX∪Y ) are also minimum cuts forc1 andc2,
respectively. Moreover, inequalities (2), (10) and (11)–(18) are satisfied as equalities.
Next, we show that(SX∩Y , X̄ ∪ Ȳ ) = (X ∩ Y, X̄ ∪ Ȳ ) and (X ∪ Y, TX∪Y ) = (X ∪ Y, X̄ ∩ Ȳ ). The sets of arcs in the

arguments of the capacity functionsc1 andc2 on the left-hand sides of (11)–(14) are subsets of the corresponding sets on the
right-hand sides. Since capacities are assumed to be positive, these sets of arcs must be equal. Similarly, the sets of arcs involved
in (15)–(18) must be empty. So from (11),(L, X̄\Ȳ ) = ∅; from (13), (L, X̄ ∩ Ȳ ) = ∅; and from (16),(L, Ȳ\X̄) = ∅. Also,
note that(X ∩ Y, X̄ ∪ Ȳ ) = (SX∩Y , X̄ ∪ Ȳ ) ∪ (L, X̄ ∪ Ȳ ) and that(L, X̄ ∪ Ȳ ) = (L, X̄\Ȳ ) ∪ (L, X̄ ∩ Ȳ ) ∪ (L, Ȳ\X̄). Hence,
(SX∩Y , X̄ ∪ Ȳ ) = (X ∩ Y, X̄ ∪ Ȳ ).
An analogous argument shows that(X ∪ Y, TX∪Y ) = (X ∪ Y, X̄ ∩ Ȳ ) follows from (12), (14) and (15).
Consequently, if (2) holds, then

c1(X ∩ Y, X̄ ∪ Ȳ ) + c2(X ∪ Y, X̄ ∩ Ȳ ) = c1(X,X) + c2(Y, Y ). (19)

A similar argument shows that if (3) holds, then

c2(X ∩ Y, X̄ ∪ Ȳ ) + c1(X ∪ Y, X̄ ∩ Ȳ ) = c1(X,X) + c2(Y, Y ). (20)

In either case, bothX ∪ Y andX ∩ Y are minimum cuts and so belong toC. �

Theorem 12. LetG(N,A) be a directed network andF(Av,A
+
v , A−

v ) be aG3T class of parametric capacity functions. A
totally ordered selection of minimum cuts exists for every capacity functionc(·; ·) inF(Av,A

+
v , A−

v ) if and only if Condition
II holds. Furthermore, if ConditionII is satisfied, then each totally ordered sub-selection of minimum cuts can be extended to a
totally ordered selection.

Proof. If Condition II holds, then by Theorem 11,C is a sublattice and Condition I is satisfied as equalities onC. The claimed
selection and extension properties follow from Theorem 1.
To prove the “only if” part, suppose there exists a pair of parallel arcse1 = (i, j) ande2 = (k, l) in Av such that none of the

three criteria in Condition II is satisfied. It suffices to construct a capacity functionc(·; ·) ∈ F(Av,A
+
v , A−

v ) for which a totally
ordered selection of minimum cuts does not exist.
Sincee1 ande2 do not satisfy criterion II(c), neither of them is both a front arc and a back arc. Since neither criterion II(a)

nor criterion II(b) holds, at least one of the following three cases must be valid.
Case1: At least one of the arcse1 ande2 is neither a front arc nor a back arc.
Case2: e1 ande2 are either both front arcs or are both back arcs (i.e.i = j or k = l), and the capacities ofe1 ande2 are

allowed to change in opposite directions.
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Fig. 3.G′ for Case 1.

Fig. 4.G′ for Case 1.

Case3: Eithere1 or e2 is a front arc and the other is a back arc, and their capacities are allowed to change in the same direction.
We will now construct a parametric capacity functionc(·; ·) for each of the above three cases. Sincee1= (i, j) ande2= (k, l)

are parallel, there are simple pathsp1 from s to i, p2 from s to k, p3 from j to t andp4 from l to t such thatp1 ∩ p4 = ∅,
p1 ∩ p3 = ∅, p2 ∩ p3 = ∅ andp2 ∩ p4 = ∅. LetG′ be the subgraph ofG spanned by arcs(i, j), (k, l) and pathsp1, p2, p3
andp4. Assign very small constant capacities to arcs not inG′ so that the total capacity of these arcs is less than 1. Consider
a minimum cut,(X,X), in G for a capacity function yet to be constructed. It disconnectst from s in G′ as well as inG. Thus
(X,X) contains a subset of arcs,A′, which forms a cut set of arcs forG′. In the capacity function being constructed, each arc
in G′ will be assigned an integer capacity greater than or equal to 1. Therefore,A′ must be a minimum cut set of arcs forG′.
Otherwise, a minimum cut inG′ can be augmented with all arcs inG\G′ to form a new cut inG whose capacity is smaller than
the capacity of(X,X).
If for two values of the parameter, say�1< �2, the corresponding minimum cuts are unique and cannot be ordered, then the

minimum cuts inG for �1 and�2 cannot be ordered. Thus it suffices to show that unique minimum cuts cannot be ordered inG′
for two values,�1 and�2 in �.
In the following counterexamples, assign constant values to capacities of arcs other thane1 ande2 in G′. G′ corresponding

to Case 1 is illustrated inFigs. 3and4.G′ corresponding to Cases 2 and 3 is illustrated inFigs. 5and6, respectively. The dotted
lines represent paths inG′. Each such path may be empty. Letc(�; e) = ∞ for each arce in the paths represented by the dotted
lines and for each� ∈ R. Values ofc(�1; ·) andc(�2; ·) for other arcs inG′ are as follows.
In Case 1, if the capacities ofe1 ande2 are allowed to change in the same direction, then the values ofc(�1; ·) andc(�2; ·)

are shown inFig. 3. If the capacities ofe1 ande2 are allowed to change in opposite directions, then the values ofc(�1; ·) and
c(�2; ·) are shown inFig. 4. In Cases 2 and 3, the values ofc(�1; ·) andc(�2; ·) are illustrated, respectively, inFigs. 5and6.
In each figure, Diagram (1) corresponds to�1 and Diagram (2) corresponds to�2. It can be seen that the direction of change in
capacities ofe1 ande2 is consistent with the one set forth in the corresponding case.
The dashed lines represent the minimum cuts. In each case, the unique minimum cuts for�1 and�2 are not ordered. This

completes the proof.�

The following corollary presents anecessary and sufficient condition for theexistenceof a totally ordered selection ofminimum
cuts for every capacity function in a G3T class,F(Av,∅,∅), with no directional restrictions.
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Fig. 5.G′ for Case 2.

Fig. 6.G′ for Case 3.

Corollary 13. LetAv be a set of arcs in a directed networkG(N,A). Then a totally ordered selection of minimum cuts exists
for each parametric capacity functionc(·; ·) inF(Av,∅,∅), if and only if for each pair of parallel arcs inAv , one arc is both
a front arc and a back arc.

Proof. For eachc(·; ·) ∈ F(Av,∅,∅), only arcs inAv can change in�, but the direction of change is unrestricted. By Theorem
12, a totally ordered selection of minimum cuts exists for everyc(·; ·) inF(Av,∅,∅), if and only if each pair of parallel arcs
in Av satisfies at least one of items (a), (b) and (c) in Condition II. Conditions (a) and (b) require each pair of parallel arcs to
be inA+

v orA−
v , which are empty sets in this setting. Thus (a) and (b) cannot be satisfied and (c) must hold. This completes the

proof. �

Next, we present some special cases of the class of parametric flow problems presented in Theorem 12.

Corollary 14. LetG(N,A) be a capacitated network and letv1 and v2 be two arbitrary nodes therein. Suppose capacities
of all arcs terminating atv1 are either all nondecreasing functions of� or are all nonincreasing functions of�, and similarly,
capacities of all arcs originating fromv2 are either all nondecreasing functions of� or are all nonincreasing functions of�.
Further, the capacities of the arcs on a directed pathp fromv1 to v2 are arbitrary positive functions of�, and capacities of all
other arcs are constant. LetAv be the set of all variable arcs. If each pair of parallel arcs inAv either both originate fromv2
or both terminate atv1, then there exists a totally ordered selection of minimum cuts when� changes.

Proof. From the assumptions, each pair of parallel arcs must share the same head or the same tail, and their capacities change
in the same direction. By Theorem 12, a totally ordered selection of minimum cuts exists.�

For the parametric flow problem studied by AUK (1993)[1], if the capacities of arcs incident to a single nodev are all
nondecreasing functions of�, then a totally ordered selection of minimum cuts exists. This result is a special case of Corollary
14 as can be seen by identifying nodesv1 andv2 and letting the pathp from v1 to v2 to be empty. For the same problem, if
nodev is allowed to have a capacity which changes in�, a totally ordered selection of minimum cuts still exists. Indeed, one can
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transform this node-and-arc-capacitated network into an arc-capacitated network by splitting nodev into nodesv1 andv2. All
arcs terminating atv will now terminate atv1 and all arcs originating fromv will now originate fromv2. A directed arc(v1, v2)
is added which has the capacity of nodev. This arc-capacitated network is a special case of Corollary 14, since in this case the
pathp is the single arc(v1, v2).
It can be shown that in theAUK setting, a totally ordered selection ofminimumcuts does not exist if we further allow capacities

on nodes adjacent tov to change. For a counterexample, see[12].
In Corollary 14, if one letsv1 bes andv2 bet , then the set of arcs terminating atv1 or originating fromv2 will be empty, and

the following result can be obtained.

Corollary 15. Let p be a path from the sources to the sinkt in a networkG(N,A). Suppose no two arcs inp are parallel
to each other. Then, when the capacities of arcs onp are parametrically changed, a totally ordered selection of minimum cuts
exists.

In ans–t series–parallel network, no pairs of arcs on a path froms to t are parallel. Thus by Corollary 15, when the capacities
on ans–t path are arbitrarily changed in such a network, a totally ordered selection of minimum cuts exists. Liu[12] applied
Corollary 15 to conduct a qualitative analysis of a parametric extended selection problem.4 He has shown therein that when the
costs of a nested sequence of facilities are parameterized, a totally ordered selection of optimal solutions exists.
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