Codes and designs in Grassmannian spaces

Christine Bachoc ${ }^{\text {a }}$, Eiichi Bannai ${ }^{\text {b }}$, Renaud Coulangeon ${ }^{\text {a }}$
${ }^{\text {a }}$ Laboratoire A2X, Université Bordeaux I, 351, cours de la Libération, 33405 Talence, France
${ }^{\mathrm{b}}$ Graduate School of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-ku, 812-8581 Fukuoka, Japan

Received 2 April 2002; received in revised form 6 March 2003; accepted 17 March 2003

Abstract

The notion of t-design in a Grassmannian space $\mathscr{G}_{m, n}$ was introduced by the first and last authors and G. Nebe in a previous paper. In the present work, we give a general lower bound for the size of such designs. The method is inspired by Delsarte, Goethals and Seidel work in the case of spherical designs. This leads us to introduce a notion of f-code in Grassmannian spaces, for which we obtain upper bounds, as well as a kind of duality tight-designs/tight-codes. The bounds are in terms of the dimensions of the irreducible representations of the orthogonal group $O(n)$ occurring in the decomposition of the space $L^{2}\left(\mathscr{G}_{m, n}^{\circ}\right)$ of square integrable functions on $\mathscr{G}_{m, n}^{\circ}$, the set of oriented Grassmanianns. (c) 2003 Elsevier B.V. All rights reserved.

MSC: 05E99; 52C99
Keywords: Grassmann manifold; Designs; Codes; Zonal functions; Bounds

1. Introduction

There are various combinatorial problems related to finite sets of Euclidean spheres. Among those, two, in a sense dual to each other, have received much attention, namely the notions of spherical t-design (t an integer), and spherical A-codes (A a finite set in $[-1,1]$). The notion of spherical design was motivated by numerical integration: a spherical t-design is a finite subset X of a sphere S^{d-1}, such that the integral over S^{d-1} of a polynomial function up to degree t coincides with its average value at the points of X. It is thus important, for instance for applications, to find designs with

[^0]smallest possible cardinality. So the question of finding a lower bound for the size of a spherical design is central. As for A-codes, it is natural conversely to ask for an upper bound of their size: an A-code is a finite set in a sphere S^{d-1} such that the scalar products of pairwise distinct elements belong to a fixed set $A \subset[-1,1]$. When $A=[-1,1 / 2]$, finding an upper bound is equivalent to the kissing number problem, known as the problem of the thirteen spheres when $n=3$. In their landmark paper [6], Delsarte, Goethals and Seidel proposed a general method, based on harmonic analysis on the orthogonal group, to study both questions.

The problem of packings, and related combinatorial questions, in the Grassmanian spaces $\mathscr{G}_{m, n}$ of m-dimensional subspaces of \mathbb{R}^{n} have been investigated in a series of recent papers (see $[4,3]$). In [1], a theory of designs was developed in that framework. One task of the present paper is to define a notion of f-code in Grassmannian spaces, which reduces to A-code when $m=1$ (the codes in the first Grassmannian $\mathscr{G}_{1, n}$ are in one-to-one correspondence with the antipodal codes of the unit sphere). Then, inspired by Delsarte, Goethals and Seidel's works, we establish lower/upper bounds for the size of such designs/codes, which involve the dimensions of some irreducible representations of $O(n)$.

2. Zonal functions on Grassmannian spaces

Let $\mathscr{G}_{m, n} \simeq O(n) / O(m) \times O(n-m)$ be the Grassmannian space of m-dimensional subspaces of \mathbb{R}^{n}. Recall (see [1,9]), that the orbits under $O(n)$ of pairs $(p, q) \in \mathscr{G}_{m, n} \times$ $\mathscr{G}_{m, n}$ are parametrized by the m-tuples

$$
1 \geqslant t_{1} \geqslant t_{2} \geqslant \cdots \geqslant t_{m} \geqslant 0
$$

Namely, to a couple (p, q) of m-dimensional subspaces, one associates the m-tuple $t_{1}=\cos \theta_{1}, \ldots, t_{m}=\cos \theta_{m}$, where $0 \leqslant \theta_{1} \leqslant \cdots \leqslant \theta_{m} \leqslant \pi / 2$ are the principal angles between p and q. One way to compute the t_{i}, is as follows: denoting by p_{0} the subspace generated by the first m vectors of the canonical basis of \mathbb{R}^{n}, and writing $p=g \cdot p_{0}, q=h \cdot p_{0}$, with suitable g, h in $O(n)$, then the $y_{i}:=t_{i}^{2}$ are the eigenvalues of the $m \times m$ symmetric matrix $A A^{t}$, where A is the m-size block appearing in the block-decomposition

$$
h g^{-1}=\left(\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right)
$$

Moreover, g and h are defined up to multiplication by an element in $\operatorname{Stab}\left(p_{0}\right) \simeq$ $O(m) \times O(n-m)$, and may be chosen so that

$$
A=\left(\begin{array}{cccc}
\cos \theta_{1} & 0 & \ldots & 0 \\
0 & \cos \theta_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \cos \theta_{m}
\end{array}\right)
$$

$$
C=\left(\begin{array}{cccc}
\sin \theta_{1} & 0 & \ldots & 0 \tag{2}\\
0 & \sin \theta_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \sin \theta_{m} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right) .
$$

Besides $\mathscr{G}_{m, n}$, we have to consider the set $\mathscr{G}_{m, n}^{\circ}$ of oriented m-dimensional subspaces of \mathbb{R}^{n}. We may view the elements of $\mathscr{G}_{m, n}^{\circ}$ as couples $\tilde{p}=(p, s)$, with p an m-dimensional subspace, and s an element in $\bigwedge^{m} p$. The action of $O(n)$ on these couples is given by

$$
g \cdot(p, s):=(g p, g s)
$$

so that if we fix an orientation s_{0} on p_{0}, the stabilizer of $\tilde{p_{0}}=\left(p_{0}, s_{0}\right)$ identifies with $S O(m) \times O(n-m)$. Consequently

$$
\left.\mathscr{G}_{m, n}^{\circ} \simeq S O(n) / S O(m) \times S O(n-m)\right) \simeq O(n) / S O(m) \times O(n-m)
$$

which is a 2 to 1 covering of $\mathscr{G}_{m, n}$. The orbits under $O(n)$ of pairs $(\tilde{p}, \tilde{q}) \in \mathscr{G}_{m, n}^{\circ} \times \mathscr{G}_{m, n}^{\circ}$ can be likewise parametrized by $(m+1)$-tuples $\left(\varepsilon, t_{1}, \ldots, t_{m}\right)$, where t_{1}, \ldots, t_{m} are defined as above, in terms of the principal angles between p and q, regardless to the orientation, and $\varepsilon \in\{ \pm 1\}$ is defined as follows: if the block A in (1) is non-singular, we set $\varepsilon=\operatorname{det} A /|\operatorname{det} A|$, otherwise we set $\varepsilon=+1$. We still have a canonical block-decomposition like (2), but with top-left block

$$
A=\left(\begin{array}{cccc}
\varepsilon \cos \theta_{1} & 0 & \ldots & 0 \\
0 & \cos \theta_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & \cos \theta_{m}
\end{array}\right)
$$

Both $\mathscr{G}_{m, n}$ and $\mathscr{G}_{m, n}^{\circ}$ inherit from the Haar measure of $O(n)$, a measure denoted $\mathrm{d} p$ and $\mathrm{d} \tilde{p}$ respectively. Since we will be mainly interested in non-oriented Grassmanians, we normalize it so as $\int_{\mathscr{G}_{m, n}} \mathrm{~d} p=1$ (whence $\int_{\mathscr{G}_{m, n}^{\circ}} \mathrm{d} \tilde{p}=2$). Accordingly, the space $L^{2}\left(\mathscr{G}_{m, n}^{\circ}\right)$ of square integrable functions on $\mathscr{G}_{m, n}^{\circ}$ is endowed with the scalar product

$$
\langle f, g\rangle=\frac{1}{2} \int_{\mathscr{g}_{m, n}^{\circ}} f(\tilde{p}) \overline{g(\tilde{p})} \mathrm{d} \tilde{p}
$$

so that its restriction to $L^{2}\left(\mathscr{G}_{m, n}\right)$ satisfies

$$
\langle f, g\rangle=\int_{\mathscr{G}_{m, n}} f(p) \overline{g(p)} \mathrm{d} p, \quad f \in L^{2}\left(\mathscr{G}_{m, n}\right), \quad g \in L^{2}\left(\mathscr{G}_{m, n}\right) .
$$

The group $O(n)$ acts isometrically on $L^{2}\left(\mathscr{G}_{m, n}^{\circ}\right)$ by

$$
\sigma \cdot f(\tilde{p})=f\left(\sigma^{-1} \tilde{p}\right)
$$

The structure of $L^{2}\left(\mathscr{G}_{m, n}^{\circ}\right)$ as an $O(n)$-module is well-known, and is given for instance in [8, p. 546]. To be precise, if we consider the subset $\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)$ of regular functions on $\mathscr{G}_{m, n}^{\circ}$ (i.e. the set of functions induced by regular functions on $O(n)$) which is a dense subset of $L^{2}\left(\mathscr{G}_{m, n}^{\circ}\right)$, we have the following decomposition:

$$
\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)=\oplus H_{m, n}^{\mu}
$$

into pairwise orthogonal nonisomorphic irreducible $O(n)$-submodules $H_{m, n}^{\mu}$, the sum being over partitions $\mu=\mu_{1} \geqslant \mu_{2} \geqslant \cdots \mu_{m} \geqslant 0$, of depth at most m, with $\mu_{i} \equiv \mu_{j} \bmod 2$ for all (i, j). We call these partitions m-admissible, or admissible for short. They split into odd and even, according to the parity of the μ_{i}.

Remark 1. For a given even partition μ, the admissibility does not depend on m, as long as depth $(\mu) \leqslant m \leqslant n / 2$, whereas for μ odd it does, since in that case the μ_{i} have to be nonzero for all $1 \leqslant i \leqslant m$.

It turns out that the $O(n)$-isomorphism class of $H_{m, n}^{\mu}$ is independent of m, provided that $\operatorname{depth}(\mu) \leqslant m \leqslant n / 2$ and μ is m-admissible (see [1] for a more detailed description of $H_{m, n}^{\mu}$). The space $H_{m, n}^{\mu}$ is isomorphic to the irreducible representation of $O(n)$ canonically associated to the partition μ, and denoted V_{n}^{μ} in [8]. We shall denote the dimension of this space d_{μ}.

The sum over even, resp. odd, partitions corresponds respectively to $\mathscr{R}\left(\mathscr{G}_{m, n}\right)$ and its orthogonal complement $\mathscr{R}\left(\mathscr{G}_{m, n}\right)^{\perp}$. This also corresponds to the eigenspace decomposition of $\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)$ with respect to the canonical involution σ^{*} induced by orientation changing, namely

$$
\mathscr{R}\left(\mathscr{G}_{m, n}\right)=\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)^{+}:=\left\{f \in \mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right) \mid \sigma^{*}(f)=f\right\}
$$

and

$$
\mathscr{R}\left(\mathscr{G}_{m, n}\right)^{\perp}=\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)^{-}:=\left\{f \in \mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right) \mid \sigma^{*}(f)=-f\right\} .
$$

Let \mathscr{Z}° (resp. \mathscr{Z}) be the set of $O(n)$-invariant functions F on $\mathscr{G}_{m, n}^{\circ} \times \mathscr{G}_{m, n}^{\circ}$ (resp. $\left.\mathscr{G}_{m, n} \times \mathscr{G}_{m, n}\right)$, such that

$$
\begin{equation*}
F(\tilde{p}, .) \in \mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right), F(., \tilde{q}) \in \mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right) \quad \text { for all }(\tilde{p}, \tilde{q}) \in \mathscr{G}_{m, n}^{\circ} \times \mathscr{G}_{m, n}^{\circ} \tag{3}
\end{equation*}
$$

resp.

$$
F(p, .) \in \mathscr{R}\left(\mathscr{G}_{m, n}\right), F(., q) \in \mathscr{R}\left(\mathscr{G}_{m, n}\right) \quad \text { for all }(p, q) \in \mathscr{G}_{m, n} \times \mathscr{G}_{m, n}
$$

As usual, we call such functions zonal. Alternatively, if a base point \tilde{p} is fixed, one can identify \mathscr{Z}^{o} with $\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)^{\operatorname{Stab}(\tilde{p})}$, mapping $F \in \mathscr{Z}^{\circ}$ on $F(\tilde{p},.) \in \mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)^{\operatorname{Stab}(\tilde{p})}$, and similarly \mathscr{Z} identifies with $\mathscr{R}\left(\mathscr{G}_{m, n}\right)^{\operatorname{Stab}(p)}$.
As explained in $[1,9]$, it follows from the Frobenius reciprocity theorem that $H_{m, n}^{\mu} \operatorname{Stab}(\tilde{p})^{(s)}$ is one-dimensional for any μ (if μ is even, then $H_{m, n}^{\mu} \subset \mathscr{R}\left(\mathscr{G}_{m, n}\right)=\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)^{+}$, so that $H_{m, n}^{\mu} \operatorname{Stab}(\tilde{p})=H_{m, n}^{\mu} \operatorname{Stab}(p)$. Consequently, to each summand $H_{m, n}^{\mu}$ is attached a
unique (up to scaling) zonal function P_{μ}, which can be computed in the following way: denoting by d_{μ} the dimension of $H_{m, n}^{\mu}$, and $\left\{e_{\mu, i}\right\}_{1 \leqslant i \leqslant d_{\mu}}$ an orthonormal basis of it, one has

$$
\begin{equation*}
P_{\mu}\left(\tilde{p}, \tilde{p}^{\prime}\right):=\frac{1}{d_{\mu}} \sum_{i=1}^{d_{\mu}} e_{\mu, i}(\tilde{p}) \overline{e_{\mu, i}\left(\tilde{p}^{\prime}\right)} . \tag{4}
\end{equation*}
$$

The results of the next section rely on the following properties of the P_{μ} :
Lemma 2. (i) $P_{\mu}(\tilde{p}, \tilde{p})=1$, for any μ and \tilde{p}.
(ii) For any λ, μ and $\tilde{p}, \tilde{p}^{\prime}$, one has

$$
\begin{equation*}
\left\langle P_{\mu}(\tilde{p}, .), P_{\lambda}\left(\tilde{p}^{\prime}, .\right)\right\rangle=\frac{\delta_{\lambda, \mu}}{d_{\mu}} P_{\mu}\left(\tilde{p}, \tilde{p}^{\prime}\right) \tag{5}
\end{equation*}
$$

if, for fixed \tilde{p}, we view the map $\tilde{q} \mapsto P_{\mu}(\tilde{p}, \tilde{q})$ as a function in $L^{2}\left(\mathscr{G}_{m, n}^{\circ}\right)$. In particular, for any finite set $X \subset \mathscr{G}_{m, n}^{\circ}$, the matrix $\left(P_{\mu}\left(\tilde{p}, \tilde{p}^{\prime}\right)\right)_{\tilde{p}, \tilde{p}^{\prime} \in X^{2}}$ is positive semidefinite.
(iii) For any λ, μ, one has

$$
\begin{equation*}
P_{\lambda} P_{\mu}=\sum_{\tau} c_{\lambda, \mu}(\tau) P_{\tau} \tag{6}
\end{equation*}
$$

with non-negative coefficients $c_{\lambda, \mu}(\tau)$. In particular, $c_{\lambda, \mu}(0)=\delta_{\lambda, \mu} / d_{\mu}$.
Proof. Since $P_{\mu}(\tilde{p}, \tilde{p})$ does not depend on \tilde{p}, one has

$$
\begin{aligned}
P_{\mu}(\tilde{p}, \tilde{p}) & =\frac{1}{2} \int_{\mathscr{S}_{m, n}} P_{\mu}(\tilde{p}, \tilde{p}) \mathrm{d} \tilde{p}=\frac{1}{2 d_{\mu}} \sum_{i=1}^{d_{\mu}} \int_{\mathscr{S}_{m, n}^{\circ}}\left|e_{\mu, i}(\tilde{p})\right|^{2} \mathrm{~d} \tilde{p} \\
& =\frac{1}{d_{\mu}} \sum_{i=1}^{d_{\mu}}\left\langle e_{\mu, i}, e_{\mu, i}\right\rangle=1,
\end{aligned}
$$

which proves (i). As for (ii), this is clear using (4) and the orthogonality relations between the $e_{\mu, i}$. Finally, assertion (iii) is classical, see [10, Theorem 3.1].

The algebraic structure of \mathscr{Z} and \mathscr{Z}^{o} can be easily deduced from [8]. For lack of reference, we state it in the next proposition.

Proposition 3. (i) There is an isomorphism

$$
\mathscr{Z} \simeq \mathbb{C}\left[Y_{1}, \ldots, Y_{m}\right]^{S_{m}}
$$

the ring of symmetric polynomials in m variables, mapping Y_{i} to $y_{i}=y_{i}(p, q)$. Similarly, one has

$$
\mathscr{Z}^{o} \simeq \mathbb{C}\left[Y_{1}, \ldots, Y_{m}\right]^{S_{m}}[\theta], \quad \text { with } \theta^{2}=Y_{1} \cdots Y_{m}
$$

by mapping θ to $\varepsilon t_{1} \cdots t_{m}$, where $\varepsilon=\varepsilon(\tilde{p}, \tilde{q}), t_{i}=t_{i}(\tilde{p}, \tilde{q})$. Moreover, the eigenspace decomposition of \mathscr{Z}^{o} with respect to the involution σ^{*} is given by

$$
\mathscr{Z}^{o+}=\mathscr{Z} \quad \text { and } \quad \mathscr{Z}^{o-}=\varepsilon t_{1} \cdots t_{m} \mathscr{Z} \simeq \theta \mathbb{C}\left[Y_{1}, \ldots, Y_{m}\right]^{S_{m}} .
$$

(ii) The P_{μ} corresponding to even partitions may be expressed as

$$
P_{\mu}(p, q)=p_{\mu}\left(y_{1}(p, q), \ldots, y_{m}(p, q)\right)
$$

with $p_{\mu}\left(Y_{1}, \ldots, Y_{m}\right)$ a symmetric polynomial of total degree $|\mu| / 2$, and those corresponding to odd partitions as

$$
P_{\mu}(\tilde{p}, \tilde{q})=\left(\varepsilon t_{1}, \ldots, t_{m}\right) p_{\mu}\left(y_{1}, \ldots, y_{m}\right)
$$

with $p_{\mu}\left(Y_{1}, \ldots, Y_{m}\right)$ a symmetric polynomial of degree $|\mu|-m / 2$.
Proof. (i) As explained above, we can identify \mathscr{Z} with $\mathscr{R}\left(\mathscr{G}_{m, n}\right)^{\operatorname{Stab}(p)}$ (resp. \mathscr{Z}^{o} with $\left.\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)^{\operatorname{Stab}(\tilde{p})}\right)$, p (resp. \tilde{p}) being any fixed base point. From the isomorphism $\operatorname{Stab}(p) \simeq O(m) \times O(n-m)$, it is easily seen, using (2), that an element $F=$ $F(p, \cdot) \in \mathscr{R}\left(\mathscr{G}_{m, n}\right)^{\operatorname{Stab}(p)}$ is of the form

$$
F=P\left(\cos \theta_{1}, \ldots, \cos \theta_{m}, \sin \theta_{1}, \ldots \sin \theta_{m}\right)
$$

where $P\left(T_{1}, \ldots, T_{m}, Z_{1}, \ldots, Z_{m}\right)$ is a polynomial, symmetric in T_{1}, \ldots, T_{m} and Z_{1}, \ldots, Z_{m} respectively. Now the $\operatorname{Stab}(p)$-invariance also implies that all the exponents are even, so that F is indeed a symmetric polynomial in $Y_{1}=T_{1}^{2}, \ldots, Y_{m}=T_{m}^{2}$, which is the first part of assertion (i). As for the second part of the assertion, one first shows in the same way that a $\operatorname{Stab}(\tilde{p})$-invariant element in $\mathscr{R}\left(\mathscr{G}_{m, n}^{\circ}\right)$ is of the form

$$
F=F(\tilde{p}, \cdot)=P\left(\varepsilon \cos \theta_{1}, \ldots, \cos \theta_{m}, \sin \theta_{1}, \ldots, \sin \theta_{m}\right)
$$

where $P\left(T_{1}, \ldots, T_{m}, Z_{1}, \ldots, Z_{m}\right)$ is a polynomial, symmetric in T_{1}, \ldots, T_{m} and Z_{1}, \ldots, Z_{m} respectively. Since $\operatorname{Stab}(\tilde{p}) \simeq S O_{m} \times O_{n-m}$, the $\operatorname{Stab}(\tilde{p})$-invariance also implies that the exponents in the last m variables are even, whereas the exponents in the first m ones are only restricted to have the same parity. Consequently, P is the sum of a polynomial in $Y_{1}=T_{1}^{2}, \ldots, Y_{m}=T_{m}^{2}$ plus $T_{1} \cdots T_{m}$ times a polynomial in Y_{1}, \ldots, Y_{m}, as asserted. The eigenspace decomposition is clear.

As for assertion (ii), we only need to observe that the P_{μ} belong to \mathscr{Z}^{o+} or \mathscr{Z}^{o-} according to as μ is even or odd, and that the p_{μ} have total degree $|\mu|$ in T_{1}, \ldots, T_{m}.

3. Bounds on codes and designs

Among the various equivalent definitions of a t-design given in [1] we recall the following one (see [1, Proposition 4.2])

Definition 4. A finite subset \mathscr{D} of $\mathscr{G}_{m, n}$ is a $2 k$-design if

$$
\begin{equation*}
\forall \varphi \in H_{2 k}^{+}, \quad\langle\varphi, 1\rangle=\frac{1}{|\mathscr{D}|} \sum_{p \in \mathscr{D}} \varphi(p) \tag{7}
\end{equation*}
$$

As for spherical codes, the natural generalization to our context is as follows:
Definition 5. Let $f\left(Y_{1}, \ldots, Y_{m}\right)$ be a symmetric polynomial, normalized so as $f(1, \ldots, 1)=1$. A finite subset \mathscr{D} of the Grassmannian space $\mathscr{G}_{m, n}$ is a f-code, if for any pair (p, q) of distinct elements in \mathscr{D} one has

$$
f\left(y_{1}(p, q), \ldots, y_{m}(p, q)\right)=0 .
$$

On the other hand, one can associate canonically to a symmetric polynomial $f\left(Y_{1}, \ldots, Y_{m}\right)$ as above, an $O(n)$-invariant function F on $\mathscr{G}_{m, n} \times \mathscr{G}_{m, n}$, satisfying $F(p, p)=1$, by the formula:

$$
F(p, q):=f\left(y_{1}(p, q), \ldots, y_{m}(p, q)\right)
$$

and the definition of an f-code now reads

$$
\begin{equation*}
F(p, q)=\delta_{p, q}, \quad(p, q) \in \mathscr{D}^{2} . \tag{8}
\end{equation*}
$$

The following notion of type is consistent with [5, Definition 5.4.]:
Definition 6. The type of an f-code is 1 if Y_{1}, \ldots, Y_{m} divides the polynomial $f\left(Y_{1}, \ldots, Y_{m}\right)$, and 0 otherwise.

For any integer k, we define

$$
H_{k}=\underset{\substack{|\mu| \leq k \\ \mu \text { admissible }}}{\oplus} H_{m, n}^{\mu} .
$$

It decomposes under σ^{*} as $H_{k}=H_{k}^{+} \oplus H_{k}^{-}$, and we have, for the respective dimensions $d_{k}^{ \pm}$of $H_{k}^{ \pm}$,

$$
d_{k}^{+}:=\sum_{\substack{|\mu| \leq k \\ \mu \text { even, admissible }}} d_{\mu}, \quad \text { resp. } d_{k}^{-}:=\sum_{\substack{|\mu| \leq k \\ \mu \text { odd, admissible }}} d_{\mu} .
$$

It's worth noticing, from Remark 1, that for fixed k, and big enough m (namely, $m \geqslant[k / 2]$), d_{k}^{+}does not depend on m, while d_{k}^{-}does. The next two theorems establish bounds for t-designs and f-codes in terms of these numbers. Some explicit values of d_{k}^{+}and d_{k}^{-}are collected in the appendix (the d_{μ} are computed from the formulas in [7, Section 24.2, pp. 407-410]):

Remark 7. In [1], we considered only non-oriented Grassmanians, and what was denoted H_{k} there, corresponds to what is denoted H_{k}^{+}here.

Theorem 8. Let $\mathscr{D} \subset \mathscr{G}_{m, n}$ be a $2 k$-design. Then

$$
\begin{equation*}
|\mathscr{D}| \geqslant \max \left\{d_{k}^{+}, d_{k}^{-}\right\} . \tag{9}
\end{equation*}
$$

If equality holds in (9), then \mathscr{D} is an f-code for $f=1 / d_{k}^{+} \sum_{\substack{|\mu| \leqslant k \\ \mu \text { even }}} d_{\mu} p_{\mu}$ or $f=$ $\left(Y_{1}, \ldots, Y_{m}\right) / d_{k}^{-} \sum_{\substack{\mu \mid \leqslant k \\ \mu \text { odd }}}^{\mid c} d_{\mu} p_{\mu}$, depending on whether $d_{k}^{+} \geqslant d_{k}^{-}$or not.

Proof. Let s be a section of the canonical surjection $\mathscr{G}_{m, n}^{\circ} \rightarrow \mathscr{G}_{m, n}$, and $\tilde{\mathscr{D}}=s(\mathscr{D})$. Fix \tilde{p} and \tilde{q} in $\mathscr{G}_{m, n}^{\circ}$. If μ and λ are two partitions of degree $\leqslant k$, the formula

$$
\varphi\left(\tilde{p}^{\prime}\right)=P_{\mu}\left(\tilde{p}, \tilde{p}^{\prime}\right) P_{\lambda}\left(\tilde{q}, \tilde{p}^{\prime}\right)
$$

defines an element in $H_{2 k}$. If moreover μ and λ are both even (resp. odd), then φ is σ^{*}-invariant, so it belongs to $H_{2 k}^{+}$. Consequently (7) applies in both cases and reads:

$$
\begin{aligned}
\frac{1}{|\mathscr{D}|} \sum_{\tilde{p}^{\prime} \in \tilde{\mathscr{O}}} \varphi\left(\tilde{p}^{\prime}\right) & =\frac{1}{|\mathscr{D}|} \sum_{p^{\prime} \in \mathscr{O}} \varphi\left(p^{\prime}\right) \\
& =\langle\varphi, 1\rangle_{L^{2}\left(\mathscr{S}_{m, n}\right)} \\
& =\left\langle P_{\mu}(p, .) P_{\lambda}(q, .), 1\right\rangle_{L^{2}\left(\mathscr{S}_{m, n}\right)} \\
& =\left\langle P_{\mu}(\tilde{p}, .), P_{\lambda}(\tilde{q}, .)\right\rangle_{L^{2}\left(\mathscr{C}_{m, n}\right)} \\
& =\frac{\delta_{\lambda, \mu}}{d_{\mu}} P_{\mu}(\tilde{p}, \tilde{q}) .
\end{aligned}
$$

In other words, the matrices $S_{\mu}:=\left(d_{\mu} P_{\mu}\left(\tilde{p}, \tilde{p}^{\prime}\right)\right)_{\tilde{p}, \tilde{p}^{\prime}}$ in $\tilde{\mathscr{V}},|\mu| \leqslant k$, satisfy the relations

$$
S_{\mu} S_{\lambda}=\delta_{\lambda, \mu}|\tilde{\mathscr{D}}| S_{\mu}=\delta_{\lambda, \mu}|\mathscr{D}| S_{\mu},
$$

as long as μ and λ are both even (resp. odd). Setting $S^{+}:=\sum_{\substack{|\mu| \leqslant k \\ \mu \text { even }}} S_{\mu}$, resp. $S^{-}:=$ $\sum_{\substack{|\mu| \leq k \\ \mu \text { odd }}} S_{\mu}$, it follows that

$$
\begin{equation*}
S^{ \pm^{2}}=|\mathscr{D}| S^{ \pm} \tag{10}
\end{equation*}
$$

On the other hand, one has $\operatorname{Tr} S_{\mu}=d_{\mu}|\mathscr{D}|$, from Lemma 2, so that $\operatorname{Tr} S^{+}=$ $\sum_{\substack{|\mu| \leqslant k \\ \mu \text { even }}}^{\substack{ }} S_{\mu}=d_{k}^{+}|\mathscr{D}|$, and likewise $\operatorname{Tr} S^{-}=d_{k}^{-}|\mathscr{D}|$. Therefore,

$$
d_{k}^{ \pm}=\frac{\operatorname{Tr} S^{ \pm}}{|\mathscr{D}|}=\operatorname{rank} S^{ \pm} \leqslant|\mathscr{D}|
$$

whence the conclusion.
When equality holds, then (10) implies that $S^{+}=|\mathscr{D}| I_{|\mathscr{D}|}=d_{k}^{+} I_{|\mathscr{D}|}$ resp. $S^{-}=$ $d_{k}^{-} I_{|\mathscr{Q}|}$, depending on whether $d_{k}^{+} \geqslant d_{k}^{-}$or not, where $I_{|\mathscr{}|}$ stands for the identity matrix in dimension $|\mathscr{D}|$. This means that $F(p, q)=\delta_{p, q}$, for all $(p, q) \in \mathscr{D}^{2}$, where $F=1 / d_{k}^{+} \sum_{\substack{|\mu| \leqslant k \\ \mu}} d_{\mu} P_{\mu}$, resp. $F=1 / d_{k}^{-} \sum_{\substack{|\mu| \leqslant k \\ \mu \text { odd }}}^{\mid} d_{\mu} P_{\mu}$. In the first case, this is clearly equivalent to the assertion that \mathscr{D} be an f-code, according to (8) and the definition
of f. This is also true in the second case, since each P_{μ}, μ odd, is divisible by the product $t_{1} \cdots t_{m}$, so that

$$
\frac{1}{d_{k}^{-}} \sum_{\substack{|\mu| \leq k \\ \mu \text { odd }}} d_{\mu} P_{\mu}(p, q)=\delta_{p, q} \Leftrightarrow \frac{1}{d_{k}^{-}} \sum_{\substack{|\mu| \leq k \\ \mu \text { odd }}}\left(t_{1} \cdots t_{m}\right) d_{\mu} P_{\mu}(p, q)=\delta_{p, q} .
$$

Theorem 9. Any f-code \mathscr{D} in $\mathscr{G}_{m, n}$ satisfies

$$
\begin{equation*}
|\mathscr{D}| \leqslant d_{k}^{+} \tag{11}
\end{equation*}
$$

where $k=2 \operatorname{deg} f$. If moreover f is of type 1 , then

$$
\begin{equation*}
|\mathscr{D}| \leqslant d_{k}^{-} \tag{12}
\end{equation*}
$$

where $k=2 \operatorname{deg} f-m$. Whenever equality holds in (11), resp. (12), then

$$
f=\frac{1}{d_{k}^{+}} \sum_{\substack{|\mu| \leqslant k \\ \mu \text { even }}} d_{\mu} p_{\mu},
$$

resp.

$$
f=\frac{Y_{1} \cdots Y_{m}}{d_{k}^{-}} \sum_{\substack{|\mu| \leq k \\ \mu \text { odd }}} d_{\mu} p_{\mu}
$$

and \mathscr{D} is a $2 k$-design.
Proof. Setting $k=2 \operatorname{deg} f$, we first see that the functions $F(p,),. p \in \mathscr{D}$ are in H_{k}^{+}. We claim that they form a linearly independent system. Indeed, if $\sum_{p \in \mathscr{O}} \lambda_{p} F(p,)=$.0 , then evaluating the left-hand side successively on each $p \in \mathscr{D}$, and using (8), we see that $\lambda_{p}=0$ for all $p \in \mathscr{D}$. Hence $|\mathscr{D}| \leqslant \operatorname{dim} H_{k}^{+}=d_{k}^{+}$, which is the first assertion. As for the second one, if f is divisible by $Y_{1} \cdots Y_{m}$, we write it as $f\left(Y_{1}, \ldots, Y_{m}\right)=$ $\left(Y_{1} \cdots Y_{m}\right) g\left(Y_{1}, \ldots, Y_{m}\right)$. Then the functions $t_{1}(p,.) \cdots t_{m}(p,) G.(p,),. \quad p \in \mathscr{D}$ are linearly independent elements in H_{k}^{-}, with $k=2 \operatorname{deg} f-m$, and the inequality $|\mathscr{D}| \leqslant d_{k}^{-}$ follows, as in the first case.

To see when equality is achieved, let us assume, for instance that $|\mathscr{D}|=d_{k}^{+}, k=2 \operatorname{deg} f$ (the case $|\mathscr{D}|=d_{k}^{-}, k=2 \operatorname{deg} f-m$ for \mathscr{D} of type 1 is dealt with similarly). Under this assumption, the family $\{F(p,),. p \in \mathscr{D}\}$ is now a basis of H_{k}^{+}. Moreover, it is readily checked that the following formula holds for any φ in H_{k}^{+}:

$$
\begin{equation*}
\varphi=\sum_{p \in \mathscr{D}} \varphi(p) F(p, .) \tag{13}
\end{equation*}
$$

On the other hand, we know from Proposition 3 that F (resp. f) may be written as a linear combination of the P_{μ} (resp. p_{μ}),

$$
\begin{equation*}
F=\sum_{\substack{|\mu| \leq k \\ \mu \text { even }}} f_{\mu} P_{\mu}\left(\text { resp. } f=\sum_{\substack{|\mu| \leqslant k \\ \mu \text { even }}} f_{\mu} p_{\mu}\right) . \tag{14}
\end{equation*}
$$

Let $P:=\sum_{\substack{|\mu| \leqslant k \\ \mu \text { even }}} d_{\mu} P_{\mu}$. What we want to show is that $F=1 / d_{k}^{+} P$, or in other words that

$$
\begin{equation*}
f_{\mu}=\frac{d_{\mu}}{d_{k}^{+}} \quad \text { for }|\mu| \leqslant k, \mu \text { even. } \tag{15}
\end{equation*}
$$

To that end, it is sufficient to show that

$$
\begin{equation*}
0 \leqslant f_{\mu} \leqslant \frac{d_{\mu}}{d_{k}^{+}} \quad \text { for }|\mu| \leqslant k, \mu \text { even. } \tag{16}
\end{equation*}
$$

since applying (14) to any p in \mathscr{D}, we see that $1=F(p, p)=\sum f_{\mu} P_{\mu}(p, p)=\sum f_{\mu}$, so the right inequality in (16) is an equality. First we note, using (5) and the above decomposition, that

$$
\left\langle F(q, .), \sum_{|\mu| \leqslant k} d_{\mu} P_{\mu}(p, .)\right\rangle=F(p, q),
$$

so that the condition $F(p, q)=\delta_{p, q}, \quad(p, q) \in \mathscr{D}^{2}$ implies that the family $\left\{\sum_{|\mu| \leqslant k} d_{\mu} P_{\mu}(p,),. \quad p \in \mathscr{D}\right\}$ is a basis, dual to $\{F(p,),. \quad p \in \mathscr{D}\}$ with respect to the scalar product \langle,$\rangle . Consequently, the matrix S=(P(p, q))_{p, q \in \mathscr{Q}^{2}}=$ $(\langle P(p, .), P(q, .)\rangle)_{p, q \in \mathscr{P}^{2}}$ is invertible and its inverse is given by

$$
S^{-1}=(\langle F(p, .), F(q, .)\rangle)_{p, q \in \mathscr{P}^{2}} .
$$

One easily checks, using Lemma 2 that

$$
\left\langle F(p, .), P_{\mu}(q, .)\right\rangle=\frac{f_{\mu}}{d_{\mu}} P_{\mu}(q, p)
$$

for p, q in \mathscr{D}^{2}, and $|\mu| \leqslant k, \mu$ even. But according to (13), this means that the functions $P_{\mu}(q,),. \quad q \in \mathscr{D},|\mu| \leqslant k, \mu$ even, are eigenfunctions of the matrix $(\langle F(p, .), F(q, .)\rangle)_{p, q \in \mathscr{Q}^{2}}=S^{-1}$, with corresponding eigenvalue f_{μ} / d_{μ}. Thus the f_{μ} / d_{μ} are eigenvalues of the Gram matrix of a basis of H_{k}^{+}, hence positive. Now, writing (14) for all $(p, q) \in \mathscr{D}^{2}$, and adding up we obtain

$$
|\mathscr{D}|=\sum_{(p, q) \in \mathscr{Q}^{2}} F(p, q)=\sum_{\substack{|\mu| \leqslant k \\ \mu \text { even }}} f_{\mu} \sum_{(p, q) \in \mathscr{P}^{2}} P_{\mu}(p, q),
$$

whence

$$
\begin{equation*}
|\mathscr{D}|\left(1-f_{0}|\mathscr{D}|\right)=\sum_{\substack{\mid \mu \mu \leqslant k \\ \mu \text { even }, \mu \neq 0}} f_{\mu} \sum_{(p, q) \in \mathscr{Q}^{2}} P_{\mu}(p, q) \geqslant 0, \tag{17}
\end{equation*}
$$

because of the positivity of the matrix $\left(P_{\mu}\left(p, p^{\prime}\right)\right)_{p, p^{\prime} \in \mathscr{O}^{2}}$ (Lemma 2)(ii)), so that $f_{0} \leqslant 1 /|\mathscr{D}|=1 / d_{k}^{+}$. If we now consider the annihilator polynomial

$$
F_{\lambda}:=P_{\lambda} F=\sum_{\substack{|\mu| \leq k \\ \mu \text { even }}} g_{\lambda, \mu} P_{\mu}
$$

we contend that the $g_{\lambda, \mu}$ are nonnegative and that $g_{\lambda, 0}=f_{\lambda} / d_{\lambda}$: this is an easy consequence of Lemma 2 (6). Consequently, the argument used to get (17) still holds, and we obtain $g_{\lambda, 0}=f_{\lambda} / d_{\lambda} \leqslant 1 / d_{k}^{+}$, as desired.

It remains to prove that \mathscr{D} is a $2 k$-design. From [1, Proposition 4.2], it amounts to prove that

$$
\forall \varphi \in H_{2 k}^{+}, \quad\langle\varphi, 1\rangle=\frac{1}{|\mathscr{D}|} \sum_{p \in \mathscr{O}} \varphi(p)=\frac{1}{d_{k}^{+}} \sum_{p \in \mathscr{O}} \varphi(p) .
$$

It's enough to check this for functions of the form $g h$, with g, h in H_{k}^{+}, since they generate $H_{2 k}^{+}$. Using expansion (13) of g and h, we see that

$$
\begin{aligned}
\langle 1, g h\rangle & =\langle g, \bar{h}\rangle \\
& =\sum_{p, q \in \mathscr{Q}^{2}} g(p) h(q)\langle F(p, .), F(q, .)\rangle \\
& =\frac{1}{|\mathscr{D}|} \sum_{p \in \mathscr{D}} g(p) h(p),
\end{aligned}
$$

whence the conclusion.

4. Examples

4.1. The case $m=1$

This is the case of the projective space over the real numbers, the codes of which are studied in [5]. The $2 k$-designs in the real projective space can be viewed as antipodal $(2 k+1)$-designs on the unit sphere of the Euclidean space for which absolute bounds are given in [6]. We recover here these bounds, since for $\mu=\mu_{1} \geqslant 0$ the space $H_{1, n}^{\mu}$ is isomorphic to the space of harmonic polynomials in n variables of degree μ_{1}. One has $d_{k}^{+}=\binom{n+k-1}{n-1}$ and $d_{k}^{-}=\binom{n+k-2}{n-1}$ if k is even, and vice versa if k is odd.

A t-design is called tight if its cardinality attains this lower bound. Tight t-designs are only known for $(n, t)=(7,4),(8,6),(23,4),(23,6),(24,10)$. Moreover, it is known that tight t-designs cannot exist when $t \geqslant 8$, apart from the $(24,10)$ given by the lines supporting the minimal vectors of the Leech lattice (see [2]).

4.2. The case $k=2$

In $[4,3]$, packings in the Grassmannian spaces are considered, with respect to the so-called chordal distance, given in our notations by

$$
d^{2}(p, q)=m-\sum_{i=1}^{m} y_{i}
$$

In [4], a simplex bound is settled for the sets \mathscr{D} for which $d(p, q) \geqslant d$ (using an isometric embedding into the Euclidean sphere of $\mathbb{R}^{(n-1)(n+2) / 2}$). Equality holds if and only if $|\mathscr{D}|=n(n+1) / 2$ and $d(p, q)$ is constant.

In [3, Section 5], an infinite family of packings in $\mathscr{G}_{(p-1) / 2, p}$ meeting this bound, is constructed. Here p is a prime, which is either equal to 3 or congruent to -1 modulo 8. Let us denote it by \mathscr{D}_{p}. Then one has:

Proposition 10. \mathscr{D}_{p} is a tight 4-design in $\mathscr{G}_{(p-1) / 2, p}$.
Proof. According to [3, Theorem 3], \mathscr{D}_{p} consists on $p(p+1) / 2=d_{[0, \ldots, 0]}+d_{[2,0, \ldots, 0]}=$ d_{2}^{+}subspaces with same pairwise chordal distance $d^{2}=(p+1)^{2} / 4(p+2)$. Since $d^{2}=\sum \sin ^{2} \theta_{i}=(p-1) / 2-\sum y_{i}$, the conclusion follows, applying Theorem 9 to the polynomial $f=4(p+2)\left(\sum Y_{i}\right)-\left(p^{2}-5\right) / p^{2}-5$.

4.3. The case $k=3$

From the definitions, one has $d_{3}^{+}=d_{2}^{+}=(n(n+1)) / 2$, and d_{3}^{-}equals 0 unless $m=1$ in which case $d_{3}^{-}=\binom{n+2}{3}$, or $m=3$ in which case $d_{3}^{-}=d_{(1,1,1)}=\binom{n}{3}$. Therefore, it is very unlikely that tight 6 -designs exist for $m \neq 1,3$.

A family of packings in the Grassmannian $\mathscr{G}_{2^{k}, 2^{m}}$ is constructed in [3, Theorem 1], each of them are orbits under the Clifford group \mathscr{C}_{m}. We have checked that, for $m=2,3,4$, and for $(m, k)=(5,4)$, these packings are 6 -designs. For each m, the smallest of these sets corresponds to $k=m-1$ and its cardinality equals $2^{2 m}+2^{m}-2=2\left(d_{2}^{+}-1\right)$.

Remark 11. It is known that the orbits of the Clifford group on the first Grassmannian provide 6 -designs, because the first nontrivial invariant polynomial of this group has degree 8 (and corresponds to the Hamming code, see [11] and the earlier work of B. Runge). We conjecture that the orbits of the Clifford group on all the Grassmannians provide 6 -designs. This, according to [1, Theorem 4.5, Remark 4.6], is equivalent to the fact that the \mathscr{C}_{m}-invariants of the ($n=2^{m}$) $G l_{n}$-irreducible modules canonically associated to the partitions $(4,2)$ and $(2,2,2)$ (denoted F_{n}^{μ} in [8]) have dimension 1.

Appendix A.

We list in Table 1 some values of d_{k}^{+}and d_{k}^{-}for $m=2,3$ and 4 .

Table 1

$m=2$				$m=3$				$m=4$			
n	k	d_{k}^{+}	d_{k}^{-}	n	k	d_{k}^{+}	d_{k}^{-}	n	k	d_{k}^{+}	d_{k}^{-}
4	1	1	0	6	1	1	0	8	1	1	0
4	2	10	3	6	2	21	0	8	2	36	0
4	3	10	3	6	3	21	10	8	3	36	0
4	4	40	18	6	4	210	10	8	4	630	35
4	5	40	18	6	5	210	136	8	5	630	35
5	1	1	0	7	1	1	0	9	1	1	0
5	2	15	10	7	2	28	0	9	2	45	0
5	3	15	10	7	3	28	35	9	3	45	0
5	4	105	91	7	4	378	35	9	4	990	126
5	5	105	91	7	5	378	651	9	5	990	126
6	1	1	0	8	1	1	0	10	1	1	0
6	2	21	15	8	2	36	0	10	2	55	0
6	3	21	15	8	3	36	56	10	3	55	0
6	4	210	190	8	4	630	56	10	4	1485	210
6	5	210	190	8	5	630	1352	10	5	1485	210
7	1	1	0	9	1	1	0	11	1	1	0
7	2	28	21	9	2	45	0	11	2	66	0
7	3	28	21	9	3	45	84	11	3	66	0
7	4	378	351	9	4	990	84	11	4	2145	330
7	5	378	351	9	5	990	2541	11	5	2145	330
8	1	1	0	10	1	1	0	12	1	1	0
8	2	36	28	10	2	55	0	12	2	78	0
8	3	36	28	10	3	55	120	12	3	78	0
8	4	630	595	10	4	1485	120	12	4	3003	495
8	5	630	595	10	5	1485	4432	12	5	3003	495
9	1	1	0	11	1	1	0	13	1	1	0
9	2	45	36	11	2	66	0	13	2	91	0
9	3	45	36	11	3	66	165	13	3	91	0
9	4	990	946	11	4	2145	165	13	4	4095	715
9	5	990	946	11	5	2145	7293	13	5	4095	715

References

[1] C. Bachoc, R. Coulangeon, G. Nebe, Designs in Grassmanian spaces and lattices, J. Algebraic Combin. 16 (1) (2002) 5-19.
[2] E. Bannai, R.M. Damerell, Tight spherical designs II, J. London Math. Soc. 21 (3) (1980) 13-30.
[3] A.R. Calderbank, R.H. Hardin, E.M. Rains, P.W. Shor, N.J.A. Sloane, A group-theoretic framework for the construction of packings in Grassmannian spaces, J. Algebraic Combin. 9 (2) (1999) 129-140.
[4] J.H. Conway, R.H. Hardin, N.J.A. Sloane, Packing lines, planes, etc., packings in Grassmannian spaces, Exper. Math. 5 (1996) 139-159.
[5] Ph. Delsarte, J.M. Goethals, J.J. Seidel, Bounds for systems of lines, and Jacobi polynomials, Philips Res. Rep. 30 (1975) 91*-105* (Bouwkamp volume).
[6] Ph. Delsarte, J.M. Goethals, J.J. Seidel, Spherical codes and designs, Geom. Dedicata (6) (1977) 363388.
[7] W. Fulton, J. Harris, Representation Theory, a first course, in: GTM, Vol. 129, Springer, Berlin, 1991.
[8] R. Goodman, N.R. Wallach, Representations and invariants of the classical groups, in: Encyclopedia of Mathematics and its Applications, Vol. 68, Cambridge University Press, Cambridge, 1998.
[9] A.T. James, A.G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold, Proc. London Math. Soc. 29 (3) (1974) 174-192.
[10] T. Koornwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. 18 (2) (1978) 101-114.
[11] G. Nebe, E. Rains, N.J.A. Sloane, The invariants of the Clifford groups, Des. Codes Cryptogr. 24 (1) (2001) 99-122.

[^0]: E-mail addresses: bachoc@math.u-bordeaux.fr (C. Bachoc), bannai@math.kyushu-u.ac.jp (E. Bannai), coulange@math.u-bordeaux.fr (R. Coulangeon).

 URLs: http://www.math.u-bordeaux.fr/bachoc/, http://www.math.u-bordeaux.fr/coulange/

