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Abstract

The notion of t-design in a Grassmannian space Gm;n was introduced by the 0rst and last
authors and G. Nebe in a previous paper. In the present work, we give a general lower bound
for the size of such designs. The method is inspired by Delsarte, Goethals and Seidel work in
the case of spherical designs. This leads us to introduce a notion of f-code in Grassmannian
spaces, for which we obtain upper bounds, as well as a kind of duality tight-designs/tight-codes.
The bounds are in terms of the dimensions of the irreducible representations of the orthogonal
group O(n) occurring in the decomposition of the space L2(G◦

m;n) of square integrable functions
on G◦

m;n, the set of oriented Grassmanianns.
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MSC: 05E99; 52C99

Keywords: Grassmann manifold; Designs; Codes; Zonal functions; Bounds

1. Introduction

There are various combinatorial problems related to 0nite sets of Euclidean spheres.
Among those, two, in a sense dual to each other, have received much attention, namely
the notions of spherical t-design (t an integer), and spherical A-codes (A a 0nite set
in [ − 1; 1]). The notion of spherical design was motivated by numerical integration:
a spherical t-design is a 0nite subset X of a sphere Sd−1, such that the integral over
Sd−1 of a polynomial function up to degree t coincides with its average value at the
points of X . It is thus important, for instance for applications, to 0nd designs with
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smallest possible cardinality. So the question of 0nding a lower bound for the size of
a spherical design is central. As for A-codes, it is natural conversely to ask for an
upper bound of their size: an A-code is a 0nite set in a sphere Sd−1 such that the
scalar products of pairwise distinct elements belong to a 0xed set A ⊂ [− 1; 1]. When
A = [ − 1; 1=2], 0nding an upper bound is equivalent to the kissing number problem,
known as the problem of the thirteen spheres when n=3. In their landmark paper [6],
Delsarte, Goethals and Seidel proposed a general method, based on harmonic analysis
on the orthogonal group, to study both questions.
The problem of packings, and related combinatorial questions, in the Grassmanian

spaces Gm;n of m-dimensional subspaces of Rn have been investigated in a series of
recent papers (see [4,3]). In [1], a theory of designs was developed in that framework.
One task of the present paper is to de0ne a notion of f-code in Grassmannian spaces,
which reduces to A-code when m= 1 (the codes in the 0rst Grassmannian G1; n are in
one-to-one correspondence with the antipodal codes of the unit sphere). Then, inspired
by Delsarte, Goethals and Seidel’s works, we establish lower/upper bounds for the size
of such designs/codes, which involve the dimensions of some irreducible representations
of O(n).

2. Zonal functions on Grassmannian spaces

Let Gm;n � O(n)=O(m) × O(n − m) be the Grassmannian space of m-dimensional
subspaces of Rn. Recall (see [1,9]), that the orbits under O(n) of pairs (p; q)∈Gm;n×
Gm;n are parametrized by the m-tuples

1¿ t1¿ t2¿ · · ·¿ tm¿ 0:

Namely, to a couple (p; q) of m-dimensional subspaces, one associates the m-tuple
t1 = cos �1; : : : ; tm = cos �m, where 06 �16 · · ·6 �m 6 �=2 are the principal angles
between p and q. One way to compute the ti, is as follows: denoting by p0 the
subspace generated by the 0rst m vectors of the canonical basis of Rn, and writing
p= g ·p0, q= h ·p0, with suitable g, h in O(n), then the yi := t2i are the eigenvalues
of the m × m symmetric matrix AAt , where A is the m-size block appearing in the
block-decomposition

hg−1 =

(
A B

C D

)
: (1)

Moreover, g and h are de0ned up to multiplication by an element in Stab(p0) �
O(m)× O(n− m), and may be chosen so that

A=




cos �1 0 : : : 0

0 cos �2 : : : 0

...
...

...

0 0 : : : cos �m



;
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C =




sin �1 0 : : : 0

0 sin �2 : : : 0

...
...

...

0 0 : : : sin �m

0 0 : : : 0

...
...

...

0 0 : : : 0




: (2)

Besides Gm;n, we have to consider the set G◦
m;n of oriented m-dimensional subspaces of

Rn. We may view the elements of G◦
m;n as couples p̃=(p; s), with p an m-dimensional

subspace, and s an element in
∧m p. The action of O(n) on these couples is given by

g:(p; s) := (gp; gs);

so that if we 0x an orientation s0 on p0, the stabilizer of p̃0 = (p0; s0) identi0es with
SO(m)× O(n− m). Consequently

G◦
m;n � SO(n)=SO(m)× SO(n− m)) � O(n)=SO(m)× O(n− m);

which is a 2 to 1 covering of Gm;n. The orbits under O(n) of pairs (p̃; q̃)∈G◦
m;n×G◦

m;n
can be likewise parametrized by (m+1)-tuples (�; t1; : : : ; tm), where t1; : : : ; tm are de0ned
as above, in terms of the principal angles between p and q, regardless to the orientation,
and �∈{±1} is de0ned as follows: if the block A in (1) is non-singular, we set
�=det A=|det A|, otherwise we set �=+1. We still have a canonical block-decomposition
like (2), but with top-left block

A=




� cos �1 0 : : : 0

0 cos �2 : : : 0

...
...

...

0 0 : : : cos �m



: (2′)

Both Gm;n and G◦
m;n inherit from the Haar measure of O(n), a measure denoted dp and

dp̃ respectively. Since we will be mainly interested in non-oriented Grassmanians, we
normalize it so as

∫
Gm; n

dp=1 (whence
∫
G◦
m; n
dp̃=2). Accordingly, the space L2(G◦

m;n)
of square integrable functions on G◦

m;n is endowed with the scalar product

〈f; g〉= 1
2

∫
G◦
m; n

f(p̃)g(p̃) dp̃;

so that its restriction to L2(Gm;n) satis0es

〈f; g〉=
∫
Gm; n

f(p)g(p) dp; f∈L2(Gm;n); g∈L2(Gm;n):
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The group O(n) acts isometrically on L2(G◦
m;n) by

� · f(p̃) = f(�−1p̃):

The structure of L2(G◦
m;n) as an O(n)-module is well-known, and is given for instance

in [8, p. 546]. To be precise, if we consider the subset R(G◦
m;n) of regular functions

on G◦
m;n (i.e. the set of functions induced by regular functions on O(n)) which is a

dense subset of L2(G◦
m;n), we have the following decomposition:

R(G◦
m;n) =⊕H�

m;n

into pairwise orthogonal nonisomorphic irreducible O(n)-submodules H�
m;n, the sum

being over partitions �=�1¿ �2¿ · · · �m¿ 0, of depth at most m, with �i ≡ �j mod 2
for all (i; j). We call these partitions m-admissible, or admissible for short. They split
into odd and even, according to the parity of the �i.

Remark 1. For a given even partition �, the admissibility does not depend on m, as
long as depth(�)6m6 n=2, whereas for � odd it does, since in that case the �i have
to be nonzero for all 16 i6m.

It turns out that the O(n)-isomorphism class of H�
m;n is independent of m, provided

that depth(�)6m6 n=2 and � is m-admissible (see [1] for a more detailed descrip-
tion of H�

m;n). The space H
�
m;n is isomorphic to the irreducible representation of O(n)

canonically associated to the partition �, and denoted V�
n in [8]. We shall denote the

dimension of this space d�.
The sum over even, resp. odd, partitions corresponds respectively to R(Gm;n) and

its orthogonal complement R(Gm;n)⊥. This also corresponds to the eigenspace decom-
position of R(G◦

m;n) with respect to the canonical involution �
∗ induced by orientation

changing, namely

R(Gm;n) =R(G◦
m;n)

+ := {f∈R(G◦
m;n) | �∗(f) = f};

and

R(Gm;n)⊥ =R(G◦
m;n)

− := {f∈R(G◦
m;n) | �∗(f) =−f}:

Let Z◦ (resp. Z) be the set of O(n)-invariant functions F on G◦
m;n × G◦

m;n (resp.
Gm;n × Gm;n), such that

F(p̃; :)∈R(G◦
m;n); F(:; q̃)∈R(G◦

m;n) for all (p̃; q̃)∈G◦
m;n × G◦

m;n; (3)

resp.

F(p; :)∈R(Gm;n); F(:; q)∈R(Gm;n) for all (p; q)∈Gm;n × Gm;n: (3′)

As usual, we call such functions zonal. Alternatively, if a base point p̃ is 0xed, one
can identify Zo with R(G◦

m;n)
Stab(p̃), mapping F ∈Zo on F(p̃; :)∈R(G◦

m;n)
Stab(p̃), and

similarly Z identi0es with R(Gm;n)Stab(p).
As explained in [1,9], it follows from the Frobenius reciprocity theorem that

H� Stab(p̃)
m;n is one-dimensional for any � (if � is even, then H�

m;n ⊂ R(Gm;n)=R(G◦
m;n)

+,
so that H� Stab(p̃)

m;n = H� Stab(p)
m;n ). Consequently, to each summand H�

m;n is attached a
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unique (up to scaling) zonal function P�, which can be computed in the following
way: denoting by d� the dimension of H

�
m;n, and {e�; i}16i6d� an orthonormal basis of

it, one has

P�(p̃; p̃
′) :=

1
d�

d�∑
i=1

e�; i(p̃)e�; i(p̃
′): (4)

The results of the next section rely on the following properties of the P�:

Lemma 2. (i) P�(p̃; p̃) = 1, for any � and p̃.
(ii) For any $, � and p̃, p̃′, one has

〈P�(p̃; :); P$(p̃′; :)〉= %$;�
d�

P�(p̃; p̃
′); (5)

if, for =xed p̃, we view the map q̃ �→ P�(p̃; q̃) as a function in L2(G◦
m;n). In particular,

for any =nite set X ⊂ G◦
m;n, the matrix (P�(p̃; p̃

′))p̃; p̃′∈X 2 is positive semide=nite.
(iii) For any $, �, one has

P$P� =
∑
&

c$;�(&)P&; (6)

with non-negative coe>cients c$;�(&). In particular, c$;�(0) = %$;�=d�.

Proof. Since P�(p̃; p̃) does not depend on p̃, one has

P�(p̃; p̃) =
1
2

∫
G◦
m; n

P�(p̃; p̃) dp̃=
1
2d�

d�∑
i=1

∫
G◦
m; n

|e�; i(p̃)|2 dp̃

=
1
d�

d�∑
i=1

〈e�; i; e�; i〉= 1;

which proves (i). As for (ii), this is clear using (4) and the orthogonality relations
between the e�; i. Finally, assertion (iii) is classical, see [10, Theorem 3.1].

The algebraic structure of Z and Zo can be easily deduced from [8]. For lack of
reference, we state it in the next proposition.

Proposition 3. (i) There is an isomorphism

Z � C[Y1; : : : ; Ym]Sm ;

the ring of symmetric polynomials in m variables, mapping Yi to yi = yi(p; q). Simi-
larly, one has

Zo � C[Y1; : : : ; Ym]Sm [�]; with � 2 = Y1 · · ·Ym;
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by mapping � to �t1 · · · tm, where � = �(p̃; q̃), ti = ti(p̃; q̃). Moreover, the eigenspace
decomposition of Zo with respect to the involution �∗ is given by

Zo+ =Z and Zo− = �t1 · · · tmZ � �C[Y1; : : : ; Ym]Sm :

(ii) The P� corresponding to even partitions may be expressed as

P�(p; q) = p�(y1(p; q); : : : ; ym(p; q))

with p�(Y1; : : : ; Ym) a symmetric polynomial of total degree |�|=2, and those corre-
sponding to odd partitions as

P�(p̃; q̃) = (�t1; : : : ; tm)p�(y1; : : : ; ym);

with p�(Y1; : : : ; Ym) a symmetric polynomial of degree |�| − m=2.

Proof. (i) As explained above, we can identify Z with R(Gm;n)Stab(p) (resp. Zo

with R(G◦
m;n)

Stab(p̃)), p (resp. p̃) being any 0xed base point. From the isomorphism
Stab(p) � O(m) × O(n − m), it is easily seen, using (2), that an element F =
F(p; ·)∈R(Gm;n)Stab(p) is of the form

F = P(cos �1; : : : ; cos �m; sin �1; : : : sin �m);

where P(T1; : : : ; Tm; Z1; : : : ; Zm) is a polynomial, symmetric in T1; : : : ; Tm and Z1; : : : ; Zm
respectively. Now the Stab(p)-invariance also implies that all the exponents are even,
so that F is indeed a symmetric polynomial in Y1 = T 21 ; : : : ; Ym = T 2m, which is the 0rst
part of assertion (i). As for the second part of the assertion, one 0rst shows in the
same way that a Stab(p̃)-invariant element in R(G◦

m;n) is of the form

F = F(p̃; ·) = P(� cos �1; : : : ; cos �m; sin �1; : : : ; sin �m);

where P(T1; : : : ; Tm; Z1; : : : ; Zm) is a polynomial, symmetric in T1; : : : ; Tm and Z1; : : : ; Zm
respectively. Since Stab(p̃) � SOm×On−m, the Stab(p̃)-invariance also implies that the
exponents in the last m variables are even, whereas the exponents in the 0rst m ones
are only restricted to have the same parity. Consequently, P is the sum of a polynomial
in Y1 = T 21 ; : : : ; Ym = T 2m plus T1 · · ·Tm times a polynomial in Y1; : : : ; Ym, as asserted.
The eigenspace decomposition is clear.
As for assertion (ii), we only need to observe that the P� belong to Zo+ or Zo−

according to as � is even or odd, and that the p� have total degree |�| in T1; : : : ; Tm.

3. Bounds on codes and designs

Among the various equivalent de0nitions of a t-design given in [1] we recall the
following one (see [1, Proposition 4.2])

De nition 4. A 0nite subset D of Gm;n is a 2k-design if

∀’∈H+
2k ; 〈’; 1〉= 1

|D|
∑
p∈D

’(p): (7)
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As for spherical codes, the natural generalization to our context is as follows:

De nition 5. Let f(Y1; : : : ; Ym) be a symmetric polynomial, normalized so as
f(1; : : : ; 1) = 1. A 0nite subset D of the Grassmannian space Gm;n is a f-code, if
for any pair (p; q) of distinct elements in D one has

f(y1(p; q); : : : ; ym(p; q)) = 0:

On the other hand, one can associate canonically to a symmetric polynomial
f(Y1; : : : ; Ym) as above, an O(n)-invariant function F on Gm;n × Gm;n, satisfying
F(p;p) = 1, by the formula:

F(p; q) := f(y1(p; q); : : : ; ym(p; q));

and the de0nition of an f-code now reads

F(p; q) = %p;q; (p; q)∈D2: (8)

The following notion of type is consistent with [5, De0nition 5.4.]:

De nition 6. The type of an f-code is 1 if Y1; : : : ; Ym divides the polynomial
f(Y1; : : : ; Ym), and 0 otherwise.

For any integer k, we de0ne

Hk = ⊕
|�|6k

� admissible

H�
m;n:

It decomposes under �∗ as Hk=H+
k ⊕H−

k , and we have, for the respective dimensions
d±k of H±

k ,

d+k :=
∑
|�|6k

� even; admissible

d�; resp: d−k :=
∑
|�|6k

� odd; admissible

d�:

It’s worth noticing, from Remark 1, that for 0xed k, and big enough m (namely,
m¿ [k=2]), d+k does not depend on m, while d

−
k does. The next two theorems establish

bounds for t-designs and f-codes in terms of these numbers. Some explicit values of
d+k and d−k are collected in the appendix (the d� are computed from the formulas in
[7, Section 24.2, pp. 407–410]):

Remark 7. In [1], we considered only non-oriented Grassmanians, and what was de-
noted Hk there, corresponds to what is denoted H+

k here.

Theorem 8. Let D ⊂ Gm;n be a 2k-design. Then

|D|¿max{d+k ; d−k }: (9)
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If equality holds in (9), then D is an f-code for f = 1=d+k
∑

|�|6k
� even

d�p� or f =

(Y1; : : : ; Ym)=d−k
∑

|�|6k
� odd

d�p�, depending on whether d+k ¿d−k or not.

Proof. Let s be a section of the canonical surjection G◦
m;n → Gm;n, and D̃= s(D). Fix

p̃ and q̃ in G◦
m;n. If � and $ are two partitions of degree 6 k, the formula

’(p̃′) = P�(p̃; p̃
′)P$(q̃; p̃′)

de0nes an element in H2k . If moreover � and $ are both even (resp. odd), then ’ is
�∗-invariant, so it belongs to H+

2k . Consequently (7) applies in both cases and reads:

1
|D|

∑
p̃′∈D̃

’(p̃′) =
1
|D|

∑
p′∈D

’(p′)

= 〈’; 1〉L2(Gm; n)

= 〈P�(p; :)P$(q; :); 1〉L2(Gm; n)

= 〈P�(p̃; :); P$(q̃; :)〉L2(G◦
m; n)

=
%$;�
d�

P�(p̃; q̃):

In other words, the matrices S� := (d�P�(p̃; p̃
′))p̃; p̃′ in D̃, |�|6 k, satisfy the relations

S�S$ = %$;�|D̃|S� = %$;�|D|S�;

as long as � and $ are both even (resp. odd). Setting S+ :=
∑

|�|6k
� even

S�, resp. S− :=∑
|�|6k
� odd

S�, it follows that

S±
2
= |D|S±: (10)

On the other hand, one has Tr S� = d�|D|, from Lemma 2, so that Tr S+ =∑
|�|6k
� even

Tr S� = d+k |D|, and likewise Tr S− = d−k |D|. Therefore,

d±k =
Tr S±

|D| = rank S±6 |D|;

whence the conclusion.
When equality holds, then (10) implies that S+ = |D|I|D| = d+k I|D| resp. S− =

d−k I|D|, depending on whether d+k ¿d−k or not, where I|D| stands for the identity
matrix in dimension |D|. This means that F(p; q) = %p;q, for all (p; q)∈D2, where
F =1=d+k

∑
|�|6k
� even

d�P�, resp. F =1=d−k
∑

|�|6k
� odd

d�P�. In the 0rst case, this is clearly

equivalent to the assertion that D be an f-code, according to (8) and the de0nition
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of f. This is also true in the second case, since each P�, � odd, is divisible by the
product t1 · · · tm, so that

1
d−k

∑
|�|6k
� odd

d�P�(p; q) = %p;q ⇔ 1
d−k

∑
|�|6k
� odd

(t1 · · · tm)d�P�(p; q) = %p;q:

Theorem 9. Any f-code D in Gm;n satis=es

|D|6d+k (11)

where k = 2degf. If moreover f is of type 1, then

|D|6d−k (12)

where k = 2degf − m. Whenever equality holds in (11), resp. (12), then

f =
1
d+k

∑
|�|6k
� even

d�p�;

resp.

f =
Y1 · · ·Ym
d−k

∑
|�|6k
� odd

d�p�;

and D is a 2k-design.

Proof. Setting k = 2degf, we 0rst see that the functions F(p; :); p∈D are in H+
k .

We claim that they form a linearly independent system. Indeed, if
∑

p∈D $pF(p; :)=0,
then evaluating the left-hand side successively on each p∈D, and using (8), we see
that $p = 0 for all p∈D. Hence |D|6 dimH+

k = d+k , which is the 0rst assertion.
As for the second one, if f is divisible by Y1 · · ·Ym, we write it as f(Y1; : : : ; Ym) =
(Y1 · · ·Ym)g(Y1; : : : ; Ym). Then the functions t1(p; :) · · · tm(p; :)G(p; :); p∈D are lin-
early independent elements in H−

k , with k =2degf−m, and the inequality |D|6d−k
follows, as in the 0rst case.
To see when equality is achieved, let us assume, for instance that |D|=d+k , k=2degf

(the case |D|=d−k ; k=2degf−m for D of type 1 is dealt with similarly). Under this
assumption, the family {F(p; :); p∈D} is now a basis of H+

k . Moreover, it is readily
checked that the following formula holds for any ’ in H+

k :

’=
∑
p∈D

’(p)F(p; :): (13)

On the other hand, we know from Proposition 3 that F (resp. f) may be written as a
linear combination of the P� (resp. p�),

F =
∑
|�|6k
� even

f�P�


resp: f = ∑

|�|6k
� even

f�p�


 : (14)
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Let P :=
∑

|�|6k
� even

d�P�. What we want to show is that F =1=d+k P, or in other words

that

f� =
d�
d+k

for |�|6 k; � even: (15)

To that end, it is suMcient to show that

06f�6
d�
d+k

for |�|6 k; � even: (16)

since applying (14) to any p in D, we see that 1 = F(p;p) =
∑

f�P�(p;p) =
∑

f�,
so the right inequality in (16) is an equality. First we note, using (5) and the above
decomposition, that〈

F(q; :);
∑
|�|6k

d�P�(p; :)

〉
= F(p; q);

so that the condition F(p; q) = %p;q; (p; q)∈D2 implies that the family
{∑|�|6k d�P�(p; :); p∈D} is a basis, dual to {F(p; :); p∈D} with respect
to the scalar product 〈; 〉. Consequently, the matrix S = (P(p; q))p;q∈D2 =
(〈P(p; :); P(q; :)〉)p;q∈D2 is invertible and its inverse is given by

S−1 = (〈F(p; :); F(q; :)〉)p;q∈D2 :

One easily checks, using Lemma 2 that

〈F(p; :); P�(q; :)〉= f�
d�

P�(q; p);

for p; q in D2, and |�|6 k, � even. But according to (13), this means that the
functions P�(q; :), q∈D, |�|6 k, � even, are eigenfunctions of the matrix
(〈F(p; :); F(q; :)〉)p;q∈D2 = S−1, with corresponding eigenvalue f�=d�. Thus the f�=d�
are eigenvalues of the Gram matrix of a basis of H+

k , hence positive. Now, writing
(14) for all (p; q)∈D2, and adding up we obtain

|D|=
∑

(p;q)∈D2

F(p; q) =
∑
|�|6k
� even

f�
∑

(p;q)∈D2

P�(p; q);

whence

|D|(1− f0|D|) =
∑
|�|6k

� even;� 	=0

f�
∑

(p;q)∈D2

P�(p; q)¿ 0; (17)
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because of the positivity of the matrix (P�(p;p′))p;p′∈D2 (Lemma 2)(ii)), so that
f06 1=|D|= 1=d+k . If we now consider the annihilator polynomial

F$ := P$F =
∑
|�|6k
� even

g$;�P�;

we contend that the g$;� are nonnegative and that g$;0 = f$=d$: this is an easy conse-
quence of Lemma 2 (6). Consequently, the argument used to get (17) still holds, and
we obtain g$;0 = f$=d$6 1=d+k , as desired.
It remains to prove that D is a 2k-design. From [1, Proposition 4.2], it amounts to

prove that

∀’∈H+
2k ; 〈’; 1〉= 1

|D|
∑
p∈D

’(p) =
1
d+k

∑
p∈D

’(p):

It’s enough to check this for functions of the form gh, with g, h in H+
k , since they

generate H+
2k . Using expansion (13) of g and h, we see that

〈1; gh〉= 〈g; Nh〉

=
∑

p;q∈D2

g(p)h(q)〈F(p; :); F(q; :)〉

=
1
|D|

∑
p∈D

g(p)h(p);

whence the conclusion.

4. Examples

4.1. The case m= 1

This is the case of the projective space over the real numbers, the codes of which are
studied in [5]. The 2k-designs in the real projective space can be viewed as antipodal
(2k + 1)-designs on the unit sphere of the Euclidean space for which absolute bounds
are given in [6]. We recover here these bounds, since for � = �1¿ 0 the space H�

1; n
is isomorphic to the space of harmonic polynomials in n variables of degree �1. One
has d+k = (

n+k−1
n−1 ) and d

−
k = (

n+k−2
n−1 ) if k is even, and vice versa if k is odd.

A t-design is called tight if its cardinality attains this lower bound. Tight t-designs
are only known for (n; t) = (7; 4); (8; 6); (23; 4); (23; 6); (24; 10). Moreover, it is known
that tight t-designs cannot exist when t¿ 8, apart from the (24; 10) given by the lines
supporting the minimal vectors of the Leech lattice (see [2]).
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4.2. The case k = 2

In [4,3], packings in the Grassmannian spaces are considered, with respect to the
so-called chordal distance, given in our notations by

d2(p; q) = m−
m∑
i=1

yi:

In [4], a simplex bound is settled for the sets D for which d(p; q)¿d (using an
isometric embedding into the Euclidean sphere of R(n−1)(n+2)=2). Equality holds if and
only if |D|= n(n+ 1)=2 and d(p; q) is constant.
In [3, Section 5], an in0nite family of packings in G(p−1)=2;p meeting this bound, is

constructed. Here p is a prime, which is either equal to 3 or congruent to −1 modulo
8. Let us denote it by Dp. Then one has:

Proposition 10. Dp is a tight 4-design in G(p−1)=2;p.

Proof. According to [3, Theorem 3], Dp consists on p(p+1)=2=d[0; :::;0] +d[2;0; :::;0] =
d+2 subspaces with same pairwise chordal distance d2 = (p + 1)2=4(p + 2). Since
d2 =

∑
sin2 �i = (p− 1)=2−∑yi, the conclusion follows, applying Theorem 9 to the

polynomial f = 4(p+ 2)(
∑

Yi)− (p2 − 5)=p2 − 5.

4.3. The case k = 3

From the de0nitions, one has d+3 =d
+
2 = (n(n+1))=2, and d

−
3 equals 0 unless m=1

in which case d−3 = (
n+2
3 ), or m= 3 in which case d

−
3 = d(1;1;1) = (

n
3 ). Therefore, it is

very unlikely that tight 6-designs exist for m �= 1; 3.
A family of packings in the Grassmannian G2k ;2m is constructed in [3, Theorem

1], each of them are orbits under the CliOord group Cm. We have checked that, for
m=2; 3; 4, and for (m; k)=(5; 4), these packings are 6-designs. For each m, the smallest
of these sets corresponds to k=m−1 and its cardinality equals 22m+2m−2=2(d+2 −1).

Remark 11. It is known that the orbits of the CliOord group on the =rst Grass-
mannian provide 6-designs, because the 0rst nontrivial invariant polynomial of this
group has degree 8 (and corresponds to the Hamming code, see [11] and the earlier
work of B. Runge). We conjecture that the orbits of the CliOord group on all the
Grassmannians provide 6-designs. This, according to [1, Theorem 4.5, Remark 4.6], is
equivalent to the fact that the Cm-invariants of the (n = 2m) Gln-irreducible modules
canonically associated to the partitions (4; 2) and (2; 2; 2) (denoted F�

n in [8]) have
dimension 1.

Appendix A.

We list in Table 1 some values of d+k and d
−
k for m= 2; 3 and 4.
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Table 1

m= 2 m= 3 m= 4

n k d+k d−k n k d+k d−k n k d+k d−k

4 1 1 0 6 1 1 0 8 1 1 0
4 2 10 3 6 2 21 0 8 2 36 0
4 3 10 3 6 3 21 10 8 3 36 0
4 4 40 18 6 4 210 10 8 4 630 35
4 5 40 18 6 5 210 136 8 5 630 35

5 1 1 0 7 1 1 0 9 1 1 0
5 2 15 10 7 2 28 0 9 2 45 0
5 3 15 10 7 3 28 35 9 3 45 0
5 4 105 91 7 4 378 35 9 4 990 126
5 5 105 91 7 5 378 651 9 5 990 126

6 1 1 0 8 1 1 0 10 1 1 0
6 2 21 15 8 2 36 0 10 2 55 0
6 3 21 15 8 3 36 56 10 3 55 0
6 4 210 190 8 4 630 56 10 4 1485 210
6 5 210 190 8 5 630 1352 10 5 1485 210

7 1 1 0 9 1 1 0 11 1 1 0
7 2 28 21 9 2 45 0 11 2 66 0
7 3 28 21 9 3 45 84 11 3 66 0
7 4 378 351 9 4 990 84 11 4 2145 330
7 5 378 351 9 5 990 2541 11 5 2145 330

8 1 1 0 10 1 1 0 12 1 1 0
8 2 36 28 10 2 55 0 12 2 78 0
8 3 36 28 10 3 55 120 12 3 78 0
8 4 630 595 10 4 1485 120 12 4 3003 495
8 5 630 595 10 5 1485 4432 12 5 3003 495

9 1 1 0 11 1 1 0 13 1 1 0
9 2 45 36 11 2 66 0 13 2 91 0
9 3 45 36 11 3 66 165 13 3 91 0
9 4 990 946 11 4 2145 165 13 4 4095 715
9 5 990 946 11 5 2145 7293 13 5 4095 715
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