

Available at www.**Elsevier**Mathematics.com powered by science direct.

Discrete Mathematics 277 (2004) 15-28

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Codes and designs in Grassmannian spaces

Christine Bachoc^a, Eiichi Bannai^b, Renaud Coulangeon^a

^aLaboratoire A2X, Université Bordeaux I, 351, cours de la Libération, 33405 Talence, France ^bGraduate School of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-ku, 812-8581 Fukuoka, Japan

Received 2 April 2002; received in revised form 6 March 2003; accepted 17 March 2003

Abstract

The notion of *t*-design in a Grassmannian space $\mathscr{G}_{m,n}$ was introduced by the first and last authors and G. Nebe in a previous paper. In the present work, we give a general lower bound for the size of such designs. The method is inspired by Delsarte, Goethals and Seidel work in the case of spherical designs. This leads us to introduce a notion of *f*-code in Grassmannian spaces, for which we obtain upper bounds, as well as a kind of duality tight-designs/tight-codes. The bounds are in terms of the dimensions of the irreducible representations of the orthogonal group O(n) occurring in the decomposition of the space $L^2(\mathscr{G}_{m,n}^\circ)$ of square integrable functions on $\mathscr{G}_{m,n}^\circ$, the set of oriented Grassmanianns.

© 2003 Elsevier B.V. All rights reserved.

MSC: 05E99; 52C99

Keywords: Grassmann manifold; Designs; Codes; Zonal functions; Bounds

1. Introduction

There are various combinatorial problems related to finite sets of Euclidean spheres. Among those, two, in a sense dual to each other, have received much attention, namely the notions of spherical *t*-design (*t* an integer), and spherical *A*-codes (*A* a finite set in [-1,1]). The notion of spherical design was motivated by numerical integration: a spherical *t*-design is a finite subset *X* of a sphere S^{d-1} , such that the integral over S^{d-1} of a polynomial function up to degree *t* coincides with its average value at the points of *X*. It is thus important, for instance for applications, to find designs with

0012-365X/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0012-365X(03)00151-1

E-mail addresses: bachoc@math.u-bordeaux.fr (C. Bachoc), bannai@math.kyushu-u.ac.jp (E. Bannai), coulange@math.u-bordeaux.fr (R. Coulangeon).

URLs: http://www.math.u-bordeaux.fr/bachoc/, http://www.math.u-bordeaux.fr/coulange/

smallest possible cardinality. So the question of finding a *lower* bound for the size of a spherical design is central. As for *A*-codes, it is natural conversely to ask for an *upper* bound of their size: an *A*-code is a finite set in a sphere S^{d-1} such that the scalar products of pairwise distinct elements belong to a fixed set $A \subset [-1, 1]$. When A = [-1, 1/2], finding an upper bound is equivalent to the kissing number problem, known as the problem of the thirteen spheres when n=3. In their landmark paper [6], Delsarte, Goethals and Seidel proposed a general method, based on harmonic analysis on the orthogonal group, to study both questions.

The problem of packings, and related combinatorial questions, in the Grassmanian spaces $\mathscr{G}_{m,n}$ of *m*-dimensional subspaces of \mathbb{R}^n have been investigated in a series of recent papers (see [4,3]). In [1], a theory of designs was developed in that framework. One task of the present paper is to define a notion of *f*-code in Grassmannian spaces, which reduces to *A*-code when m = 1 (the codes in the first Grassmannian $\mathscr{G}_{1,n}$ are in one-to-one correspondence with the antipodal codes of the unit sphere). Then, inspired by Delsarte, Goethals and Seidel's works, we establish lower/upper bounds for the size of such designs/codes, which involve the dimensions of some irreducible representations of O(n).

2. Zonal functions on Grassmannian spaces

Let $\mathscr{G}_{m,n} \simeq O(n)/O(m) \times O(n-m)$ be the Grassmannian space of *m*-dimensional subspaces of \mathbb{R}^n . Recall (see [1,9]), that the orbits under O(n) of pairs $(p,q) \in \mathscr{G}_{m,n} \times \mathscr{G}_{m,n}$ are parametrized by the *m*-tuples

$$1 \ge t_1 \ge t_2 \ge \cdots \ge t_m \ge 0.$$

Namely, to a couple (p,q) of *m*-dimensional subspaces, one associates the *m*-tuple $t_1 = \cos \theta_1, \ldots, t_m = \cos \theta_m$, where $0 \le \theta_1 \le \cdots \le \theta_m \le \pi/2$ are the *principal angles* between *p* and *q*. One way to compute the t_i , is as follows: denoting by p_0 the subspace generated by the first *m* vectors of the canonical basis of \mathbb{R}^n , and writing $p = g \cdot p_0, q = h \cdot p_0$, with suitable *g*, *h* in O(n), then the $y_i := t_i^2$ are the eigenvalues of the *m* × *m* symmetric matrix AA^t , where *A* is the *m*-size block appearing in the block-decomposition

$$hg^{-1} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$
 (1)

Moreover, g and h are defined up to multiplication by an element in $\text{Stab}(p_0) \simeq O(m) \times O(n-m)$, and may be chosen so that

,

$$A = \begin{pmatrix} \cos \theta_1 & 0 & \dots & 0 \\ 0 & \cos \theta_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \cos \theta_m \end{pmatrix}$$

$$C = \begin{pmatrix} \sin \theta_1 & 0 & \dots & 0 \\ 0 & \sin \theta_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \sin \theta_m \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$
 (2)

Besides $\mathscr{G}_{m,n}$, we have to consider the set $\mathscr{G}_{m,n}^{\circ}$ of *oriented m*-dimensional subspaces of \mathbb{R}^n . We may view the elements of $\mathscr{G}_{m,n}^{\circ}$ as couples $\tilde{p} = (p,s)$, with *p* an *m*-dimensional subspace, and *s* an element in $\bigwedge^m p$. The action of O(n) on these couples is given by

$$g.(p,s) := (gp,gs),$$

so that if we fix an orientation s_0 on p_0 , the stabilizer of $\tilde{p_0} = (p_0, s_0)$ identifies with $SO(m) \times O(n-m)$. Consequently

$$\mathscr{G}_{m,n}^{\circ} \simeq SO(n)/SO(m) \times SO(n-m)) \simeq O(n)/SO(m) \times O(n-m),$$

which is a 2 to 1 covering of $\mathscr{G}_{m,n}$. The orbits under O(n) of pairs $(\tilde{p}, \tilde{q}) \in \mathscr{G}_{m,n}^{\circ} \times \mathscr{G}_{m,n}^{\circ}$ can be likewise parametrized by (m+1)-tuples $(\varepsilon, t_1, \ldots, t_m)$, where t_1, \ldots, t_m are defined as above, in terms of the principal angles between p and q, regardless to the orientation, and $\varepsilon \in \{\pm 1\}$ is defined as follows: if the block A in (1) is non-singular, we set $\varepsilon = \det A/|\det A|$, otherwise we set $\varepsilon = +1$. We still have a canonical block-decomposition like (2), but with top-left block

$$A = \begin{pmatrix} \varepsilon \cos \theta_1 & 0 & \dots & 0 \\ 0 & \cos \theta_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \cos \theta_m \end{pmatrix}.$$
 (2')

Both $\mathscr{G}_{m,n}$ and $\mathscr{G}_{m,n}^{\circ}$ inherit from the Haar measure of O(n), a measure denoted dp and $d\tilde{p}$ respectively. Since we will be mainly interested in non-oriented Grassmanians, we normalize it so as $\int_{\mathscr{G}_{m,n}} dp = 1$ (whence $\int_{\mathscr{G}_{m,n}^{\circ}} d\tilde{p} = 2$). Accordingly, the space $L^{2}(\mathscr{G}_{m,n}^{\circ})$ of square integrable functions on $\mathscr{G}_{m,n}^{\circ}$ is endowed with the scalar product

$$\langle f,g\rangle = \frac{1}{2} \int_{\mathscr{G}_{m,n}^{\circ}} f(\tilde{p}) \overline{g(\tilde{p})} \,\mathrm{d}\tilde{p},$$

so that its restriction to $L^2(\mathscr{G}_{m,n})$ satisfies

$$\langle f,g\rangle = \int_{\mathscr{G}_{m,n}} f(p)\overline{g(p)} \,\mathrm{d} p, \quad f \in L^2(\mathscr{G}_{m,n}), \ g \in L^2(\mathscr{G}_{m,n}).$$

The group O(n) acts isometrically on $L^2(\mathscr{G}_{m,n}^{\circ})$ by

$$\sigma \cdot f(\tilde{p}) = f(\sigma^{-1}\tilde{p}).$$

The structure of $L^2(\mathscr{G}_{m,n}^{\circ})$ as an O(n)-module is well-known, and is given for instance in [8, p. 546]. To be precise, if we consider the subset $\mathscr{R}(\mathscr{G}_{m,n}^{\circ})$ of regular functions on $\mathscr{G}_{m,n}^{\circ}$ (i.e. the set of functions induced by regular functions on O(n)) which is a dense subset of $L^2(\mathscr{G}_{m,n}^{\circ})$, we have the following decomposition:

$$\mathscr{R}(\mathscr{G}_{m,n}^{\circ}) = \oplus H_{m,n}^{\mu}$$

into pairwise orthogonal nonisomorphic irreducible O(n)-submodules $H_{m,n}^{\mu}$, the sum being over partitions $\mu = \mu_1 \ge \mu_2 \ge \cdots \ge \mu_m \ge 0$, of depth at most *m*, with $\mu_i \equiv \mu_j \mod 2$ for all (i, j). We call these partitions *m*-admissible, or admissible for short. They split into odd and even, according to the parity of the μ_i .

Remark 1. For a given even partition μ , the admissibility does not depend on *m*, as long as depth(μ) $\leq m \leq n/2$, whereas for μ odd it does, since in that case the μ_i have to be nonzero for all $1 \leq i \leq m$.

It turns out that the O(n)-isomorphism class of $H_{m,n}^{\mu}$ is independent of m, provided that depth(μ) $\leq m \leq n/2$ and μ is *m*-admissible (see [1] for a more detailed description of $H_{m,n}^{\mu}$). The space $H_{m,n}^{\mu}$ is isomorphic to the irreducible representation of O(n) canonically associated to the partition μ , and denoted V_n^{μ} in [8]. We shall denote the dimension of this space d_{μ} .

The sum over *even*, resp. *odd*, partitions corresponds respectively to $\mathscr{R}(\mathscr{G}_{m,n})$ and its orthogonal complement $\mathscr{R}(\mathscr{G}_{m,n})^{\perp}$. This also corresponds to the eigenspace decomposition of $\mathscr{R}(\mathscr{G}_{m,n}^{\circ})$ with respect to the canonical involution σ^* induced by orientation changing, namely

$$\mathscr{R}(\mathscr{G}_{m,n}) = \mathscr{R}(\mathscr{G}_{m,n}^{\circ})^{+} := \{ f \in \mathscr{R}(\mathscr{G}_{m,n}^{\circ}) \, | \, \sigma^{*}(f) = f \},\$$

and

$$\mathscr{R}(\mathscr{G}_{m,n})^{\perp} = \mathscr{R}(\mathscr{G}_{m,n}^{\circ})^{-} := \{ f \in \mathscr{R}(\mathscr{G}_{m,n}^{\circ}) \mid \sigma^{*}(f) = -f \}.$$

Let \mathscr{Z}° (resp. \mathscr{Z}) be the set of O(n)-invariant functions F on $\mathscr{G}^{\circ}_{m,n} \times \mathscr{G}^{\circ}_{m,n}$ (resp. $\mathscr{G}_{m,n} \times \mathscr{G}_{m,n}$), such that

$$F(\tilde{p},.) \in \mathscr{R}(\mathscr{G}_{m,n}^{\circ}), F(.,\tilde{q}) \in \mathscr{R}(\mathscr{G}_{m,n}^{\circ}) \quad \text{for all } (\tilde{p},\tilde{q}) \in \mathscr{G}_{m,n}^{\circ} \times \mathscr{G}_{m,n}^{\circ}, \tag{3}$$

resp.

$$F(p,.) \in \mathscr{R}(\mathscr{G}_{m,n}), F(.,q) \in \mathscr{R}(\mathscr{G}_{m,n}) \quad \text{for all } (p,q) \in \mathscr{G}_{m,n} \times \mathscr{G}_{m,n}.$$
(3')

As usual, we call such functions *zonal*. Alternatively, if a base point \tilde{p} is fixed, one can identify \mathscr{Z}^o with $\mathscr{R}(\mathscr{G}_{m,n}^o)^{\operatorname{Stab}(\tilde{p})}$, mapping $F \in \mathscr{Z}^o$ on $F(\tilde{p}, .) \in \mathscr{R}(\mathscr{G}_{m,n}^o)^{\operatorname{Stab}(\tilde{p})}$, and similarly \mathscr{Z} identifies with $\mathscr{R}(\mathscr{G}_{m,n})^{\operatorname{Stab}(p)}$.

As explained in [1,9], it follows from the Frobenius reciprocity theorem that $H_{m,n}^{\mu \operatorname{Stab}(\tilde{p})}$ is one-dimensional for any μ (if μ is even, then $H_{m,n}^{\mu} \subset \mathscr{R}(\mathscr{G}_{m,n}) = \mathscr{R}(\mathscr{G}_{m,n}^{\circ})^+$, so that $H_{m,n}^{\mu \operatorname{Stab}(\tilde{p})} = H_{m,n}^{\mu \operatorname{Stab}(p)}$). Consequently, to each summand $H_{m,n}^{\mu}$ is attached a

unique (up to scaling) *zonal function* P_{μ} , which can be computed in the following way: denoting by d_{μ} the dimension of $H_{m,n}^{\mu}$, and $\{e_{\mu,i}\}_{1 \leq i \leq d_{\mu}}$ an orthonormal basis of it, one has

$$P_{\mu}(\tilde{p}, \tilde{p}') := \frac{1}{d_{\mu}} \sum_{i=1}^{d_{\mu}} e_{\mu,i}(\tilde{p}) \overline{e_{\mu,i}(\tilde{p}')}.$$
(4)

The results of the next section rely on the following properties of the P_{μ} :

Lemma 2. (i) $P_{\mu}(\tilde{p}, \tilde{p}) = 1$, for any μ and \tilde{p} . (ii) For any λ , μ and \tilde{p} , \tilde{p}' , one has

$$\langle P_{\mu}(\tilde{p},.), P_{\lambda}(\tilde{p}',.) \rangle = \frac{\delta_{\lambda,\mu}}{d_{\mu}} P_{\mu}(\tilde{p},\tilde{p}'),$$
(5)

if, for fixed \tilde{p} , we view the map $\tilde{q} \mapsto P_{\mu}(\tilde{p}, \tilde{q})$ as a function in $L^{2}(\mathscr{G}_{m,n}^{\circ})$. In particular, for any finite set $X \subset \mathscr{G}_{m,n}^{\circ}$, the matrix $(P_{\mu}(\tilde{p}, \tilde{p}'))_{\tilde{p}, \tilde{p}' \in X^{2}}$ is positive semidefinite. (iii) For any λ , we are has

(111) For any
$$\lambda$$
, μ , one has

$$P_{\lambda}P_{\mu} = \sum_{\tau} c_{\lambda,\mu}(\tau)P_{\tau},\tag{6}$$

with non-negative coefficients $c_{\lambda,\mu}(\tau)$. In particular, $c_{\lambda,\mu}(0) = \delta_{\lambda,\mu}/d_{\mu}$.

Proof. Since $P_{\mu}(\tilde{p}, \tilde{p})$ does not depend on \tilde{p} , one has

$$\begin{split} P_{\mu}(\tilde{p}, \tilde{p}) &= \frac{1}{2} \int_{\mathscr{G}_{m,n}^{\circ}} P_{\mu}(\tilde{p}, \tilde{p}) \,\mathrm{d}\, \tilde{p} = \frac{1}{2d_{\mu}} \sum_{i=1}^{d_{\mu}} \int_{\mathscr{G}_{m,n}^{\circ}} |e_{\mu,i}(\tilde{p})|^2 \,\mathrm{d}\, \tilde{p} \\ &= \frac{1}{d_{\mu}} \sum_{i=1}^{d_{\mu}} \langle e_{\mu,i}, e_{\mu,i} \rangle = 1, \end{split}$$

which proves (i). As for (ii), this is clear using (4) and the orthogonality relations between the $e_{\mu,i}$. Finally, assertion (iii) is classical, see [10, Theorem 3.1]. \Box

The algebraic structure of \mathscr{Z} and \mathscr{Z}^o can be easily deduced from [8]. For lack of reference, we state it in the next proposition.

Proposition 3. (i) There is an isomorphism

$$\mathscr{Z}\simeq\mathbb{C}[Y_1,\ldots,Y_m]^{S_m}$$

the ring of symmetric polynomials in m variables, mapping Y_i to $y_i = y_i(p,q)$. Similarly, one has

$$\mathscr{Z}^{o} \simeq \mathbb{C}[Y_1, \dots, Y_m]^{S_m}[\theta], \quad with \ \theta^2 = Y_1 \cdots Y_m,$$

by mapping θ to $\varepsilon t_1 \cdots t_m$, where $\varepsilon = \varepsilon(\tilde{p}, \tilde{q})$, $t_i = t_i(\tilde{p}, \tilde{q})$. Moreover, the eigenspace decomposition of \mathscr{Z}^o with respect to the involution σ^* is given by

 $\mathscr{Z}^{o+} = \mathscr{Z} \quad and \quad \mathscr{Z}^{o-} = \varepsilon t_1 \cdots t_m \mathscr{Z} \simeq \theta \mathbb{C}[Y_1, \dots, Y_m]^{S_m}.$

(ii) The P_{μ} corresponding to even partitions may be expressed as

$$P_{\mu}(p,q) = p_{\mu}(y_1(p,q),...,y_m(p,q))$$

with $p_{\mu}(Y_1,...,Y_m)$ a symmetric polynomial of total degree $|\mu|/2$, and those corresponding to odd partitions as

$$P_{\mu}(\tilde{p},\tilde{q}) = (\varepsilon t_1,\ldots,t_m)p_{\mu}(y_1,\ldots,y_m),$$

with $p_{\mu}(Y_1,...,Y_m)$ a symmetric polynomial of degree $|\mu| - m/2$.

Proof. (i) As explained above, we can identify \mathscr{Z} with $\mathscr{R}(\mathscr{G}_{m,n})^{\operatorname{Stab}(p)}$ (resp. \mathscr{Z}^{o} with $\mathscr{R}(\mathscr{G}_{m,n})^{\operatorname{Stab}(\tilde{p})}$), p (resp. \tilde{p}) being any fixed base point. From the isomorphism $\operatorname{Stab}(p) \simeq O(m) \times O(n-m)$, it is easily seen, using (2), that an element $F = F(p, \cdot) \in \mathscr{R}(\mathscr{G}_{m,n})^{\operatorname{Stab}(p)}$ is of the form

 $F = P(\cos \theta_1, \ldots, \cos \theta_m, \sin \theta_1, \ldots, \sin \theta_m),$

where $P(T_1, ..., T_m, Z_1, ..., Z_m)$ is a polynomial, symmetric in $T_1, ..., T_m$ and $Z_1, ..., Z_m$ respectively. Now the Stab(*p*)-invariance also implies that all the exponents are even, so that *F* is indeed a symmetric polynomial in $Y_1 = T_1^2, ..., Y_m = T_m^2$, which is the first part of assertion (i). As for the second part of the assertion, one first shows in the same way that a Stab(\tilde{p})-invariant element in $\Re(\mathscr{G}_{m,n}^{\circ})$ is of the form

$$F = F(\tilde{p}, \cdot) = P(\varepsilon \cos \theta_1, \dots, \cos \theta_m, \sin \theta_1, \dots, \sin \theta_m),$$

where $P(T_1, ..., T_m, Z_1, ..., Z_m)$ is a polynomial, symmetric in $T_1, ..., T_m$ and $Z_1, ..., Z_m$ respectively. Since $\text{Stab}(\tilde{p}) \simeq SO_m \times O_{n-m}$, the $\text{Stab}(\tilde{p})$ -invariance also implies that the exponents in the last *m* variables are even, whereas the exponents in the first *m* ones are only restricted to have the same parity. Consequently, *P* is the sum of a polynomial in $Y_1 = T_1^2, ..., Y_m = T_m^2$ plus $T_1 \cdots T_m$ times a polynomial in $Y_1, ..., Y_m$, as asserted. The eigenspace decomposition is clear.

As for assertion (ii), we only need to observe that the P_{μ} belong to \mathscr{Z}^{o+} or \mathscr{Z}^{o-} according to as μ is even or odd, and that the p_{μ} have total degree $|\mu|$ in T_1, \ldots, T_m . \Box

3. Bounds on codes and designs

Among the various equivalent definitions of a t-design given in [1] we recall the following one (see [1, Proposition 4.2])

Definition 4. A finite subset \mathscr{D} of $\mathscr{G}_{m,n}$ is a 2k-design if

$$\forall \varphi \in H_{2k}^+, \quad \langle \varphi, 1 \rangle = \frac{1}{|\mathcal{D}|} \sum_{p \in \mathcal{D}} \varphi(p).$$
(7)

As for spherical codes, the natural generalization to our context is as follows:

Definition 5. Let $f(Y_1, ..., Y_m)$ be a symmetric polynomial, normalized so as f(1, ..., 1) = 1. A finite subset \mathscr{D} of the Grassmannian space $\mathscr{G}_{m,n}$ is a *f*-code, if for any pair (p,q) of distinct elements in \mathscr{D} one has

$$f(y_1(p,q),...,y_m(p,q)) = 0.$$

On the other hand, one can associate canonically to a symmetric polynomial $f(Y_1, \ldots, Y_m)$ as above, an O(n)-invariant function F on $\mathscr{G}_{m,n} \times \mathscr{G}_{m,n}$, satisfying F(p, p) = 1, by the formula:

$$F(p,q) := f(y_1(p,q), \dots, y_m(p,q)),$$

and the definition of an f-code now reads

$$F(p,q) = \delta_{p,q}, \quad (p,q) \in \mathcal{D}^2.$$
(8)

The following notion of *type* is consistent with [5, Definition 5.4.]:

Definition 6. The type of an f-code is 1 if Y_1, \ldots, Y_m divides the polynomial $f(Y_1, \ldots, Y_m)$, and 0 otherwise.

For any integer k, we define

$$H_k = \bigoplus_{\substack{|\mu| \leqslant k \\ \mu \text{ admissible}}} H_{m,n}^{\mu}$$

It decomposes under σ^* as $H_k = H_k^+ \oplus H_k^-$, and we have, for the respective dimensions d_k^{\pm} of H_k^{\pm} ,

$$d_k^+ := \sum_{\substack{|\mu| \leqslant k \\ \mu \text{ even, admissible}}} d_\mu, \quad ext{resp. } d_k^- := \sum_{\substack{|\mu| \leqslant k \\ \mu \text{ odd, admissible}}} d_\mu$$

It's worth noticing, from Remark 1, that for fixed k, and big enough m (namely, $m \ge \lfloor k/2 \rfloor$), d_k^+ does not depend on m, while d_k^- does. The next two theorems establish bounds for t-designs and f-codes in terms of these numbers. Some explicit values of d_k^+ and d_k^- are collected in the appendix (the d_μ are computed from the formulas in [7, Section 24.2, pp. 407–410]):

Remark 7. In [1], we considered only non-oriented Grassmanians, and what was denoted H_k there, corresponds to what is denoted H_k^+ here.

Theorem 8. Let $\mathscr{D} \subset \mathscr{G}_{m,n}$ be a 2k-design. Then

$$|\mathscr{D}| \ge \max\{d_k^+, d_k^-\}. \tag{9}$$

If equality holds in (9), then \mathscr{D} is an f-code for $f = 1/d_k^+ \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} d_\mu p_\mu$ or $f = (Y_1, \ldots, Y_m)/d_k^- \sum_{\substack{|\mu| \leq k \\ \mu \text{ odd}}} d_\mu p_\mu$, depending on whether $d_k^+ \ge d_k^-$ or not.

Proof. Let *s* be a section of the canonical surjection $\mathscr{G}_{m,n}^{\circ} \to \mathscr{G}_{m,n}$, and $\tilde{\mathscr{D}} = s(\mathscr{D})$. Fix \tilde{p} and \tilde{q} in $\mathscr{G}_{m,n}^{\circ}$. If μ and λ are two partitions of degree $\leq k$, the formula

$$\varphi(\tilde{p}') = P_{\mu}(\tilde{p}, \tilde{p}')P_{\lambda}(\tilde{q}, \tilde{p}')$$

defines an element in H_{2k} . If moreover μ and λ are both *even* (resp. *odd*), then φ is σ^* -invariant, so it belongs to H_{2k}^+ . Consequently (7) applies in both cases and reads:

$$\begin{split} \frac{1}{|\mathscr{D}|} \sum_{\tilde{p}' \in \tilde{\mathscr{D}}} \varphi(\tilde{p}') &= \frac{1}{|\mathscr{D}|} \sum_{p' \in \mathscr{D}} \varphi(p') \\ &= \langle \varphi, 1 \rangle_{L^2(\mathscr{G}_{m,n})} \\ &= \langle P_\mu(p, .) P_\lambda(q, .), 1 \rangle_{L^2(\mathscr{G}_{m,n})} \\ &= \langle P_\mu(\tilde{p}, .), P_\lambda(\tilde{q}, .) \rangle_{L^2(\mathscr{G}_{m,n})} \\ &= \frac{\delta_{\lambda,\mu}}{d_\mu} P_\mu(\tilde{p}, \tilde{q}). \end{split}$$

In other words, the matrices $S_{\mu} := (d_{\mu}P_{\mu}(\tilde{p}, \tilde{p}'))_{\tilde{p}, \tilde{p}' \text{ in } \tilde{\mathscr{D}}}, |\mu| \leq k$, satisfy the relations

$$S_{\mu}S_{\lambda} = \delta_{\lambda,\mu}|\tilde{\mathscr{D}}|S_{\mu} = \delta_{\lambda,\mu}|\mathscr{D}|S_{\mu},$$

as long as μ and λ are both *even* (resp. *odd*). Setting $S^+ := \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} S_{\mu}$, resp. $S^- := \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} S_{\mu}$, it follows that

$$S^{\pm 2} = |\mathscr{D}|S^{\pm}.$$
(10)

On the other hand, one has $\operatorname{Tr} S_{\mu} = d_{\mu} |\mathscr{D}|$, from Lemma 2, so that $\operatorname{Tr} S^+ = \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} \operatorname{Tr} S_{\mu} = d_k^+ |\mathscr{D}|$, and likewise $\operatorname{Tr} S^- = d_k^- |\mathscr{D}|$. Therefore,

$$d_k^{\pm} = \frac{\operatorname{Tr} S^{\pm}}{|\mathcal{D}|} = \operatorname{rank} S^{\pm} \leqslant |\mathcal{D}|,$$

whence the conclusion.

When equality holds, then (10) implies that $S^+ = |\mathscr{D}|I_{|\mathscr{D}|} = d_k^+ I_{|\mathscr{D}|}$ resp. $S^- = d_k^- I_{|\mathscr{D}|}$, depending on whether $d_k^+ \ge d_k^-$ or not, where $I_{|\mathscr{D}|}$ stands for the identity matrix in dimension $|\mathscr{D}|$. This means that $F(p,q) = \delta_{p,q}$, for all $(p,q) \in \mathscr{D}^2$, where $F = 1/d_k^+ \sum_{\substack{\mu \text{ even} \\ \mu \text{ even}}} |\mu| \le k \ d_\mu P_\mu$, resp. $F = 1/d_k^- \sum_{\substack{\mu \mid \mu \mid \le k \\ \mu \text{ odd}}} d_\mu P_\mu$. In the first case, this is clearly equivalent to the assertion that \mathscr{D} be an f-code, according to (8) and the definition

of f. This is also true in the second case, since each P_{μ} , μ odd, is divisible by the product $t_1 \cdots t_m$, so that

$$\frac{1}{d_k^-} \sum_{\substack{|\mu| \leq k \\ \mu \text{ odd}}} d_\mu P_\mu(p,q) = \delta_{p,q} \iff \frac{1}{d_k^-} \sum_{\substack{|\mu| \leq k \\ \mu \text{ odd}}} (t_1 \cdots t_m) d_\mu P_\mu(p,q) = \delta_{p,q}. \qquad \Box$$

Theorem 9. Any f-code \mathcal{D} in $\mathcal{G}_{m,n}$ satisfies

$$|\mathcal{D}| \leqslant d_k^+ \tag{11}$$

where $k = 2 \deg f$. If moreover f is of type 1, then

$$\mathscr{D}|\leqslant d_k^-\tag{12}$$

where $k = 2 \deg f - m$. Whenever equality holds in (11), resp. (12), then

$$f = \frac{1}{d_k^+} \sum_{\substack{|\mu| \leqslant k \\ \mu \text{ even}}} d_\mu p_\mu,$$

resp.

$$f = \frac{Y_1 \cdots Y_m}{d_k^-} \sum_{\substack{|\mu| \le k \\ \mu \text{ odd}}} d_\mu p_\mu$$

and \mathcal{D} is a 2k-design.

Proof. Setting $k = 2 \deg f$, we first see that the functions F(p,.), $p \in \mathcal{D}$ are in H_k^+ . We claim that they form a linearly independent system. Indeed, if $\sum_{p \in \mathcal{D}} \lambda_p F(p,.) = 0$, then evaluating the left-hand side successively on each $p \in \mathcal{D}$, and using (8), we see that $\lambda_p = 0$ for all $p \in \mathcal{D}$. Hence $|\mathcal{D}| \leq \dim H_k^+ = d_k^+$, which is the first assertion. As for the second one, if f is divisible by $Y_1 \cdots Y_m$, we write it as $f(Y_1, \ldots, Y_m) = (Y_1 \cdots Y_m)g(Y_1, \ldots, Y_m)$. Then the functions $t_1(p,.) \cdots t_m(p,.)G(p,.)$, $p \in \mathcal{D}$ are linearly independent elements in H_k^- , with $k = 2 \deg f - m$, and the inequality $|\mathcal{D}| \leq d_k^-$ follows, as in the first case.

To see when equality is achieved, let us assume, for instance that $|\mathscr{D}| = d_k^+$, $k = 2 \deg f$ (the case $|\mathscr{D}| = d_k^-$, $k = 2 \deg f - m$ for \mathscr{D} of type 1 is dealt with similarly). Under this assumption, the family $\{F(p,.), p \in \mathscr{D}\}$ is now a basis of H_k^+ . Moreover, it is readily checked that the following formula holds for any φ in H_k^+ :

$$\varphi = \sum_{p \in \mathscr{D}} \varphi(p) F(p, .).$$
(13)

On the other hand, we know from Proposition 3 that F (resp. f) may be written as a linear combination of the P_{μ} (resp. p_{μ}),

$$F = \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} f_{\mu} P_{\mu} \left(\text{resp. } f = \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} f_{\mu} p_{\mu} \right).$$
(14)

Let $P := \sum_{\substack{|\mu| \leq k \\ \mu \text{ even}}} d_{\mu}P_{\mu}$. What we want to show is that $F = 1/d_k^+P$, or in other words that

$$f_{\mu} = \frac{d_{\mu}}{d_{k}^{+}} \quad \text{for } |\mu| \leqslant k, \ \mu \text{ even.}$$
(15)

To that end, it is sufficient to show that

$$0 \leqslant f_{\mu} \leqslant \frac{d_{\mu}}{d_{k}^{+}} \quad \text{for } |\mu| \leqslant k, \ \mu \text{ even.}$$

$$(16)$$

since applying (14) to any p in \mathcal{D} , we see that $1 = F(p, p) = \sum f_{\mu}P_{\mu}(p, p) = \sum f_{\mu}$, so the right inequality in (16) is an equality. First we note, using (5) and the above decomposition, that

$$\left\langle F(q,.), \sum_{|\mu| \leqslant k} d_{\mu} P_{\mu}(p,.) \right\rangle = F(p,q),$$

so that the condition $F(p,q) = \delta_{p,q}$, $(p,q) \in \mathscr{D}^2$ implies that the family $\{\sum_{|\mu| \leq k} d_{\mu}P_{\mu}(p,.), p \in \mathscr{D}\}$ is a basis, dual to $\{F(p,.), p \in \mathscr{D}\}$ with respect to the scalar product \langle, \rangle . Consequently, the matrix $S = (P(p,q))_{p,q \in \mathscr{D}^2} = (\langle P(p,.), P(q,.) \rangle)_{p,q \in \mathscr{D}^2}$ is invertible and its inverse is given by

$$S^{-1} = (\langle F(p,.), F(q,.) \rangle)_{p,q \in \mathscr{D}^2}.$$

One easily checks, using Lemma 2 that

$$\langle F(p,.), P_{\mu}(q,.) \rangle = \frac{f_{\mu}}{d_{\mu}} P_{\mu}(q,p),$$

for p,q in \mathscr{D}^2 , and $|\mu| \leq k$, μ even. But according to (13), this means that the functions $P_{\mu}(q,.), q \in \mathscr{D}, |\mu| \leq k, \mu$ even, are eigenfunctions of the matrix $(\langle F(p,.), F(q,.) \rangle)_{p,q \in \mathscr{D}^2} = S^{-1}$, with corresponding eigenvalue f_{μ}/d_{μ} . Thus the f_{μ}/d_{μ} are eigenvalues of the Gram matrix of a basis of H_k^+ , hence positive. Now, writing (14) for all $(p,q) \in \mathscr{D}^2$, and adding up we obtain

$$|\mathscr{D}| = \sum_{(p,q)\in\mathscr{D}^2} F(p,q) = \sum_{\substack{|\mu|\leqslant k\\ \mu \text{ even}}} f_{\mu} \sum_{(p,q)\in\mathscr{D}^2} P_{\mu}(p,q),$$

whence

$$|\mathscr{D}|(1-f_0|\mathscr{D}|) = \sum_{\substack{|\mu| \le k \\ \mu \text{ even}, \mu \neq 0}} f_{\mu} \sum_{\substack{(p,q) \in \mathscr{D}^2}} P_{\mu}(p,q) \ge 0,$$
(17)

because of the positivity of the matrix $(P_{\mu}(p, p'))_{p, p' \in \mathscr{D}^2}$ (Lemma 2)(ii)), so that $f_0 \leq 1/|\mathscr{D}| = 1/d_k^+$. If we now consider the annihilator polynomial

$$F_{\lambda} := P_{\lambda}F = \sum_{\substack{|\mu| \leqslant k \\ \mu \text{ even}}} g_{\lambda,\mu}P_{\mu},$$

we contend that the $g_{\lambda,\mu}$ are nonnegative and that $g_{\lambda,0} = f_{\lambda}/d_{\lambda}$: this is an easy consequence of Lemma 2 (6). Consequently, the argument used to get (17) still holds, and we obtain $g_{\lambda,0} = f_{\lambda}/d_{\lambda} \leq 1/d_{k}^{+}$, as desired.

It remains to prove that \mathcal{D} is a 2k-design. From [1, Proposition 4.2], it amounts to prove that

$$\forall \varphi \in H_{2k}^+, \quad \langle \varphi, 1 \rangle = \frac{1}{|\mathcal{D}|} \sum_{p \in \mathcal{D}} \varphi(p) = \frac{1}{d_k^+} \sum_{p \in \mathcal{D}} \varphi(p).$$

It's enough to check this for functions of the form gh, with g, h in H_k^+ , since they generate H_{2k}^+ . Using expansion (13) of g and h, we see that

$$\begin{split} \langle 1, gh \rangle &= \langle g, h \rangle \\ &= \sum_{p, q \in \mathscr{D}^2} g(p) h(q) \langle F(p, .), F(q, .) \rangle \\ &= \frac{1}{|\mathscr{D}|} \sum_{p \in \mathscr{D}} g(p) h(p), \end{split}$$

whence the conclusion. \Box

4. Examples

4.1. The case m = 1

This is the case of the projective space over the real numbers, the codes of which are studied in [5]. The 2k-designs in the real projective space can be viewed as antipodal (2k + 1)-designs on the unit sphere of the Euclidean space for which absolute bounds are given in [6]. We recover here these bounds, since for $\mu = \mu_1 \ge 0$ the space $H_{1,n}^{\mu}$ is isomorphic to the space of harmonic polynomials in *n* variables of degree μ_1 . One has $d_k^+ = \binom{n+k-1}{n-1}$ and $d_k^- = \binom{n+k-2}{n-1}$ if *k* is even, and vice versa if *k* is odd. A *t*-design is called tight if its cardinality attains this lower bound. Tight *t*-designs

A *t*-design is called tight if its cardinality attains this lower bound. Tight *t*-designs are only known for (n, t) = (7, 4), (8, 6), (23, 4), (23, 6), (24, 10). Moreover, it is known that tight *t*-designs cannot exist when $t \ge 8$, apart from the (24, 10) given by the lines supporting the minimal vectors of the Leech lattice (see [2]).

4.2. The case k = 2

In [4,3], packings in the Grassmannian spaces are considered, with respect to the so-called *chordal distance*, given in our notations by

$$d^2(p,q) = m - \sum_{i=1}^m y_i.$$

In [4], a *simplex bound* is settled for the sets \mathscr{D} for which $d(p,q) \ge d$ (using an isometric embedding into the Euclidean sphere of $\mathbb{R}^{(n-1)(n+2)/2}$). Equality holds if and only if $|\mathscr{D}| = n(n+1)/2$ and d(p,q) is constant.

In [3, Section 5], an infinite family of packings in $\mathscr{G}_{(p-1)/2,p}$ meeting this bound, is constructed. Here p is a prime, which is either equal to 3 or congruent to -1 modulo 8. Let us denote it by \mathscr{D}_p . Then one has:

Proposition 10. \mathcal{D}_p is a tight 4-design in $\mathcal{G}_{(p-1)/2,p}$.

Proof. According to [3, Theorem 3], \mathscr{D}_p consists on $p(p+1)/2 = d_{[0,...,0]} + d_{[2,0,...,0]} = d_2^+$ subspaces with same pairwise chordal distance $d^2 = (p+1)^2/4(p+2)$. Since $d^2 = \sum \sin^2 \theta_i = (p-1)/2 - \sum y_i$, the conclusion follows, applying Theorem 9 to the polynomial $f = 4(p+2)(\sum Y_i) - (p^2 - 5)/p^2 - 5$. \Box

4.3. The case k = 3

From the definitions, one has $d_3^+ = d_2^+ = (n(n+1))/2$, and d_3^- equals 0 unless m = 1 in which case $d_3^- = \binom{n+2}{3}$, or m = 3 in which case $d_3^- = d_{(1,1,1)} = \binom{n}{3}$. Therefore, it is very unlikely that tight 6-designs exist for $m \neq 1, 3$.

A family of packings in the Grassmannian $\mathscr{G}_{2^k,2^m}$ is constructed in [3, Theorem 1], each of them are orbits under the Clifford group \mathscr{C}_m . We have checked that, for m=2,3,4, and for (m,k)=(5,4), these packings are 6-designs. For each *m*, the smallest of these sets corresponds to k=m-1 and its cardinality equals $2^{2m}+2^m-2=2(d_2^+-1)$.

Remark 11. It is known that the orbits of the Clifford group on the first Grassmannian provide 6-designs, because the first nontrivial invariant polynomial of this group has degree 8 (and corresponds to the Hamming code, see [11] and the earlier work of B. Runge). We conjecture that the orbits of the Clifford group on all the Grassmannians provide 6-designs. This, according to [1, Theorem 4.5, Remark 4.6], is equivalent to the fact that the \mathscr{C}_m -invariants of the $(n = 2^m)$ Gl_n -irreducible modules canonically associated to the partitions (4,2) and (2,2,2) (denoted F_n^{μ} in [8]) have dimension 1.

Appendix A.

We list in Table 1 some values of d_k^+ and d_k^- for m = 2, 3 and 4.

26

- T - 1	1 1		4
1.3	hl	e	
1 4	U.		

m = 2			<i>m</i> = 3			m = 4					
n	k	d_k^+	d_k^-	n	k	d_k^+	d_k^-	n	k	d_k^+	d_k^-
4	1	1	0	6	1	1	0	8	1	1	0
4	2	10	3	6	2	21	0	8	2	36	0
4	3	10	3	6	3	21	10	8	3	36	0
4	4	40	18	6	4	210	10	8	4	630	35
4	5	40	18	6	5	210	136	8	5	630	35
5	1	1	0	7	1	1	0	9	1	1	0
5	2	15	10	7	2	28	0	9	2	45	0
5	3	15	10	7	3	28	35	9	3	45	0
5	4	105	91	7	4	378	35	9	4	990	126
5	5	105	91	7	5	378	651	9	5	990	126
6	1	1	0	8	1	1	0	10	1	1	0
6	2	21	15	8	2	36	0	10	2	55	0
6	3	21	15	8	3	36	56	10	3	55	0
6	4	210	190	8	4	630	56	10	4	1485	210
6	5	210	190	8	5	630	1352	10	5	1485	210
7	1	1	0	9	1	1	0	11	1	1	0
7	2	28	21	9	2	45	0	11	2	66	0
7	3	28	21	9	3	45	84	11	3	66	0
7	4	378	351	9	4	990	84	11	4	2145	330
7	5	378	351	9	5	990	2541	11	5	2145	330
8	1	1	0	10	1	1	0	12	1	1	0
8	2	36	28	10	2	55	0	12	2	78	0
8	3	36	28	10	3	55	120	12	3	78	0
8	4	630	595	10	4	1485	120	12	4	3003	495
8	5	630	595	10	5	1485	4432	12	5	3003	495
9	1	1	0	11	1	1	0	13	1	1	0
9	2	45	36	11	2	66	0	13	2	91	0
9	3	45	36	11	3	66	165	13	3	91	0
9	4	990	946	11	4	2145	165	13	4	4095	715
9	5	990	946	11	5	2145	7293	13	5	4095	715

References

- [1] C. Bachoc, R. Coulangeon, G. Nebe, Designs in Grassmanian spaces and lattices, J. Algebraic Combin. 16 (1) (2002) 5–19.
- [2] E. Bannai, R.M. Damerell, Tight spherical designs II, J. London Math. Soc. 21 (3) (1980) 13-30.
- [3] A.R. Calderbank, R.H. Hardin, E.M. Rains, P.W. Shor, N.J.A. Sloane, A group-theoretic framework for the construction of packings in Grassmannian spaces, J. Algebraic Combin. 9 (2) (1999) 129–140.
- [4] J.H. Conway, R.H. Hardin, N.J.A. Sloane, Packing lines, planes, etc., packings in Grassmannian spaces, Exper. Math. 5 (1996) 139–159.

- [5] Ph. Delsarte, J.M. Goethals, J.J. Seidel, Bounds for systems of lines, and Jacobi polynomials, Philips Res. Rep. 30 (1975) 91*–105* (Bouwkamp volume).
- [6] Ph. Delsarte, J.M. Goethals, J.J. Seidel, Spherical codes and designs, Geom. Dedicata (6) (1977) 363– 388.
- [7] W. Fulton, J. Harris, Representation Theory, a first course, in: GTM, Vol. 129, Springer, Berlin, 1991.
- [8] R. Goodman, N.R. Wallach, Representations and invariants of the classical groups, in: Encyclopedia of Mathematics and its Applications, Vol. 68, Cambridge University Press, Cambridge, 1998.
- [9] A.T. James, A.G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold, Proc. London Math. Soc. 29 (3) (1974) 174–192.
- [10] T. Koornwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. 18 (2) (1978) 101–114.
- [11] G. Nebe, E. Rains, N.J.A. Sloane, The invariants of the Clifford groups, Des. Codes Cryptogr. 24 (1) (2001) 99–122.