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Skin is equipped with a barrier function, in particular, to prevent invasion of pathogens. Skin barrier is
composed of a mechanical barrier, a permeability barrier, and innate and adaptive immunity barriers.
Psoriasis is an inflammatory skin disease, which develops through the interaction of epidermal kerati-
nocytes and immune cells, although its pathoetiology has not been fully understood. Recent studies
revealed that defects in epidermal barrier-related genes were associated with a risk of psoriasis. Indeed,
psoriasis is characterized by compromised barrier function, similar to atopic dermatitis (AD), in which
mutations of the filaggrin gene play a role. However, it remains to be determined whether epidermal
barrier disruption leads to an altered inflammatory/immunological response in psoriasis. In this review, I
demonstrate evidence, in human psoriasis as well as mouse models, showing that barrier insult con-
tributes to psoriasis development through alteration of the innate and adaptive immunity.

Copyright © 2015, Taiwanese Dermatological Association.
Published by Elsevier Taiwan LLC. All rights reserved.
Epidermal barrier function in stratum corneum

One of the major functions of the epidermis is as a permeability
barrier to prevent the inward or outward passage of water and
small molecules. The permeability barrier of the skin resides largely
in the stratum corneum (SC), and it depends upon a two-
compartment system, that is, corneocytes (cellular) and lipid-rich
matrix (intercellular). SC lipids are derived from the content of
lamellar bodies in granular cells and comprise a mixture of
sphingolipids, cholesterol, and fatty acids, arranged as intercellular
membrane bilayers that are required for the epidermal perme-
ability barrier.1 Sphingolipids, particularly ceramides, representing
approximately 50% of SC lipid content by weight, play an essential
role for the permeability barrier in the intercellular space and for
the water retention of SC.1 De novo synthesis of sphingolipids starts
with condensation of serine and palmitoyl-CoA (Coenzyme A), and
this reaction is catalyzed by serine palmitoyl transferase (SPT), the
rate-limiting enzyme, which is ubiquitously found in various tis-
sues, particularly in epidermal keratinocytes.2 Previous studies
have demonstrated that de novo synthesis of SC lipids was
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stimulated by barrier perturbations, including extraction of lipids
from SC with organic solvents, removal of SC layer by tape strip-
ping, and dietary restriction of an essential fatty acid.3 Barrier
disruption induces biosynthesis of epidermal ceramides, choles-
terol, and fatty acids, through an increase in the activities of
respective rate limiting enzymes, SPT, 3-hydroxy-3-methylglutaryl
CoA reductase (HMG CoA reductase), acetyl-CoA carboxylase, and
fatty acid synthase.3e8 By contrast, the topical application of in-
hibitors of either HMG CoA reductase9 or SPT5 immediately after
barrier disruption resulted in reduction of cholesterol or sphingo-
lipid synthesis, respectively, thereby demonstrating delayed barrier
repair. Thus, epidermal lipid synthesis is tightly regulated by the
barrier condition to maintain epidermal integrity.

Inflammatory skin diseases and barrier disruption

Inflammatory skin diseases are often associated with barrier de-
fects, although the cause and effect relationship is complex. The
discovery of loss-of-functionmutations in the filaggrin (FLG) gene in
patients with atopic dermatitis (AD) revealed that disruption of the
skin barrier is the primary cause of the disease.10 Skin barrier
dysfunction in AD contributes to an increase of allergic risk due to
increased sensitization to environmental antigens.

Psoriasis is also a common inflammatory skin disease that de-
velops through genetic and epigenetic factors. Until 30 years ago,
psoriasis was considered to be a keratinocyte disease, but the
intervention by use of cyclosporine A with a successful efficacy has
ier Taiwan LLC. All rights reserved.
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Figure 1 Crosstalk between permeability barrier abnormality, cutaneous, and systemic
inflammation for development of inflammatory skin diseases. Arrows indicate soluble
mediators including growth factors, cytokines, and chemokines.
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disclosed that an immune-mediated mechanism contributes to the
development of psoriasis. Genetic studies and further evidence
from animal models, in which xenotransplant of skins from psori-
asis patients converted to psoriatic lesions by the injection of pe-
ripheral blood T cells taken from the patients.11 also supported the
immune-mediated mechanism for psoriasis. However, the
pendulum has begun to swing back lately.12 Previous studies have
demonstrated skin barrier abnormality in psoriasis,13 and recently,
some epidermal genes have been documented as susceptibility
genes for psoriasis.14e16 To date, approximately 40 genes have been
considered to be psoriasis susceptibility genes. GWAS (genome-
wide association study) of psoriasis were summarized in detail by
Zhang.17 Representative genes and their potential functions are
listed in Table 1. Candidate genes specific for epidermal cells, not for
immune cells, involve b-defensin cluster genes, late cornified en-
velope (LCE) 3B and 3C genes, and corneodesmosin genes. The
functions of these genes are antimicrobial protection, innate im-
munity of the epidermis, barrier function, and keratinocyte differ-
entiation, respectively. A very recent study demonstrated that
barrier discovery was compromised in uninvolved skin of psoriasis
patients, supporting that barrier abnormality is the underlying
pathogenesis of psoriasis.18 Given that AD and psoriasis share many
features regarding epidermal gene abnormalities, barrier defect,
and involvement of immune cells, there is a difference in the bal-
ance of immune cell subsets that could cause the phenotypes that
distinguish these diseases.19 Previous studies revealed that
epidermal barrier function directly regulates the cutaneous and/or
systemic immune system20,21 (Figure 1).
Psoriasis and permeability barrier

SPT-KO (knockout) mice as a model of psoriasis

It has been known that psoriatic epidermis showed decreased
ceramide levels compared to normal epidermis by immunostaining
(Figure 2A). Correspondingly, the water holding capacity and bar-
rier function of the epidermis were impaired in psoriatic lesions
compared to the uninvolved skin of psoriatic patients and control
healthy skin (Figure 2B). Since a previous study demonstrated that
SPT is decreased in psoriatic lesions,22 the decrease in ceramides
may be, at least in part, due to an SPT insufficiency in the epidermis.

To explore the role for SPT in the epidermis, we generated
keratinocyte-specific SPT-deficient mice (SPT-cKO mice) using the
Cre/Lox system under the keratin 5 promoter.23 They were born in
accordance with the Mendelian law, but their skin was heavily
xerotic, with a marked decrease of water holding capacity in the
cornified layer (Figure 3). Immunostaining and image mass spec-
trometric analyses revealed a deficiency of epidermal ceramides in
SPT-cKO mice. Although a barrier defect was not observed in
newborn SPT-cKO mice, barrier recovery following tape stripping
was heavily delayed compared with wild-type mice, indicating that
recovery of acute barrier defects depended on the de novo ceramide
synthesis, which requires SPT enzymatic activity. As they reached 2
weeks of age, they developed a barrier defect and psoriasis-like
skin inflammation in the clinical appearance and pathology at the
Table 1 Representative psoriasis susceptibility genes and t

Susceptibility genes

HLA-Cw6 (MHC region; PSORS1)ERAP1
IL12B, IL23R, IL23A
TNFAIP3, TNIP1
LCE3C, LCE3B(LCE gene cluster), CDN
DEFB4
same time (Figure 4). Their skin inflammation involved activation
of the interleukin-23 (IL-23)/IL-17 pathway, and exhibited an
increased number of gd-T cells that produced IL-17, so called gd-17
cells, in the lesional skins and draining lymph nodes. Diseased
epidermis exhibited psoriasis-like changes, acanthosis, hyperkera-
tosis, parakeratosis, neutrophilic microabscesses, and upregulation
of various molecules, including keratin 6, S100A8/9, and b-defen-
sins, The skin lesions were attenuated by systemic administration
of anti-IL-23p40 antibody. Collectively, SPT deficiency resulted in
barrier disruption, leading to the generation of psoriasis-like le-
sions, which recapitulated human psoriasis regarding clinical
appearance and histopathology, as well as expressions of psoriasis-
associated molecules.
K5.signal transducer and activator of transcription 3 C
transgenic mouse and barrier function

Signal transducer and activator of transcription 3 (Stat3) is a cyto-
plasmic protein, and Stat3 dimer translocates in the nucleus upon
activation through phosphorylation at a tyrosine residue, so that it
activates gene expression of downstream molecules, including
cyclinD1, c-myc, bcl-x families of antiapoptosis, vascular endothelial
growth factor, andmanyothers. Thus, Stat3 plays critical roles in cell
proliferation, cell survival, and angiogenesis of a variety of cells as
well as including cancer cells.24 Since psoriatic epidermis showed
Stat3 activation, we generated keratinocyte-specific Stat3C trans-
genic mice, termed K5.Stat3C mice, in which the epidermis exhibi-
ted activation-prone Stat3.25 K5.Stat3C mice spontaneously
developed psoriasis-like skin lesions in the tails and limbs, where
mechanical stress was frequently given. Stat3Cmice also developed
psoriasis-like lesions following wounding stimuli, tape stripping or
topical treatment with phorbol ester, TPA (12-Ote-
tradecanoylphorbol-13-acetate). The skin lesions well mimicked
humanpsoriasis not only in clinical appearance and histopathology,
heir functions.

Expected roles

Antigen presenting cells, CD8 cells, NK cells
Th1,Th17 pathway
NF-kB signals
Epidermal barrier function
Antimicrobial defence
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Figure 2 (A) Deficiency of epidermal ceramides in psoriasis. Staining of normal healthy control skin and psoriatic lesions with anticeramide antibody. (B) Abnormalities of water
holding capacity and barrier function in psoriatic lesions. Comparison of skin water holding capacity (mS) and transepidermal water loss (TEWL, g/m2h) between normal healthy
skin, uninvolved, and lesional skin from psoriasis patients. Note. From “Contrasting pathogenesis of atopic dermatitis and psoriasisepart I: clinical and pathologic concepts,” by
K. Nakajima, M. Terao, M. Takaishi, S. Kataoka, N. Goto-Inoue, M. Setou, K. Horie, F. Sakamoto, M. Ito, H. Azukizawa, S. Kitaba, H. Murota, S. Itami, I. Katayama, J. Takeda, S. Sano, 2013,
J Invest Dermatol, 133, p. 2555e65. Copyright 2013. Society of Investigative Dermatology. Adapted with permission

Figure 3 Gross appearance of newborn serine palmitoyl transferase (SPT)-cKO mouse. Note. From “Contrasting pathogenesis of atopic dermatitis and psoriasisepart I: clinical and
pathologic concepts,” by K. Nakajima, M. Terao, M. Takaishi, S. Kataoka, N. Goto-Inoue, M. Setou, K. Horie, F. Sakamoto, M. Ito, H. Azukizawa, S. Kitaba, H. Murota, S. Itami,
I. Katayama, J. Takeda, S. Sano, 2013, J Invest Dermatol, 133, p. 2555e65. Copyright 2013. Society of Investigative Dermatology. Adapted with permission.

S. Sano / Dermatologica Sinica 33 (2015) 64e6966



0

4

**
8

TE
W

L 
(g

•h
-1

m
-2

)
+/+

-/-

1 2 3 (wk)0

12

A B

C WT control SPT-cKO

Figure 4 Barrier defect and simultaneous skin disease in serine palmitoyl transferase (SPT)-cKO mice. (A) Transepidermal water loss (TEWL) over time. (B) Scaly erythematous
lesion over entire body in SPT-cKO at 21 days of age. (C) Hematoxylin and eosin staining. Note. From “Contrasting pathogenesis of atopic dermatitis and psoriasisepart I: clinical and
pathologic concepts,” by K. Nakajima, M. Terao, M. Takaishi, S. Kataoka, N. Goto-Inoue, M. Setou, K. Horie, F. Sakamoto, M. Ito, H. Azukizawa, S. Kitaba, H. Murota, S. Itami,
I. Katayama, J. Takeda, S. Sano, 2013, J Invest Dermatol, 133, p. 2555e65. Copyright 2013. Society of Investigative Dermatology. Adapted with permission.
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but also in gene profiles26 and sensitivity to biologic agents used in
psoriasis patients, such as anti-IL-17, anti-IL-12/IL-23p40, and anti-
IL-23p19 antibodies.27

Knowing that psoriasis patients tend to have new lesions after
wounding or mechanical stress, so called Koebner phenomenon,
K5.Stat3C mice harbored a similar epidermal condition, where the
barrier perturbation led to psoriasiform inflammation. We
observed that, like SPT-cKOmice, K5.Stat3C showed delayed barrier
recovery after tape stripping compared with wild-type mice
(Figure 5). Meanwhile, they developed a psoriasis-like phenotype,
whereas no such change occurred in nontransgenic control mice
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Figure 5 Delayed barrier recovery following tape stripping in K5.Stat3C mice. Blue and
red bars indicate control wild-type and K5.Stat3C mice, respectively. Note. From
“Contrasting pathogenesis of atopic dermatitis and psoriasisepart I: clinical and
pathologic concepts,” by K. Nakajima, M. Terao, M. Takaishi, S. Kataoka, N. Goto-Inoue,
M. Setou, K. Horie, F. Sakamoto, M. Ito, H. Azukizawa, S. Kitaba, H. Murota, S. Itami,
I. Katayama, J. Takeda, S. Sano, 2013, J Invest Dermatol, 133, p. 2555e65. Copyright 2013.
Society of Investigative Dermatology. Adapted with permission
(Figure 6). This strongly suggests that keratinocyte Stat3 activation
provides susceptibility to barrier defects, which results in psoriasis-
like changes, including epidermal hyperplasia, neutrophilic accu-
mulation in the epidermis, and dermal cell infiltrates. It is
intriguing that the Stat3 gene was recently found to be one of the
psoriasis susceptibility genes.28

Conclusion

The skin is positioned at the interface of internal milieu and the
external environment, and is equippedwith physical, chemical, and
immunological barriers against pathogen invasion. Perturbation in
SC intercellular lipids following UV irradiation or physical injury to
the skin promptly initiates the de novo synthesis of them, and DNA
synthesis of epidermal keratinocytes, to restore the breached skin
barrier and reestablish homeostasis as soon as possible.3e8 Anti-
microbial peptides (AMPs) are also barrier components of the
innate immunity defense during infection and injury. AMPs can
recruit leukocytes to skin and stimulate them to release cytokines
and chemokines. Psoriatic lesions are abundant in AMPs, including
LL37, hBD-2, hBD-3, and S100A7/8/9.29 By contrast, AMPs are all
downregulated in AD, being susceptible to infection.30 Although
these two diseases share some features of epidermal abnormality,
such as barrier defects, the difference of immunological polarity
may stem from the innate immunity associated with AMPs in the
epidermis. In conclusion, we hypothesize that psoriasis develops
through the excessive response to a barrier defect that finally leads
to Th17-skewed adaptive immunity (Figure 7). This involves: (1)
barrier insults by trauma, infection, and others; (2) abnormal
response of barrier recovery, which may be due to intercellular
lipids deficiency, LCE gene defects, or abnormality in the intracel-
lular signaling such as Stat3 activation; (3) resulting excessive
AMPs, and abnormalities of epidermal differentiation and



Figure 6 Development of psoriasis-like lesions in K5.Stat3C mice. Three days after tape stripping. Upper panels, hematoxylin and eosin H&E staining. Scale bars ¼ 100 mm. Bottom
panel, elevated erythematous lesion in the back of K5.Stat3C mouse. Note. From “Contrasting pathogenesis of atopic dermatitis and psoriasisepart I: clinical and pathologic
concepts,” by E. Guttman-Yassky, K.E. Nograles, J.G. Krueger, 2011, J Allergy Clin Immunol, 127, p. 1110e8. Copyright 2011. American Academy of Allergy, Asthma & Immunology. Adapted
with permission.
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Figure 7 Summary illustrating the vicious cycle of barrier defect, innate immunity, and adaptive immunity for psoriasis development.
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proliferation; and (4) all of which may lead to excessive, uncon-
trolled immune deviation toward Th17, for example. Thus, psoriasis
pathogenesis represents a complicated vicious cycle composed of a
barrier defect, innate immune activation, and skewed adaptive
immunity, each step of which may be associated with genetic
predisposition.
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