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ow  many  neurons  can  we  see  with  current  spike  sorting  algorithms?
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 i g  h  l  i  g  h  t  s

Spike  sorting  algorithms  are  limited  in  the  number  of  single  units  they  can detect.
The  maximum  number  of correctly  identified  neurons  stands  between  8 and  10.
Sparse  neurons  are  strongly  affected  by  this  limitation.
Further development  of algorithms  is  needed  to address  sparse  neurons  detection.
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a  b  s  t  r  a  c  t

Recent  studies  highlighted  the  disagreement  between  the  typical  number  of  neurons  observed  with
extracellular  recordings  and  the  ones  to be expected  based  on  anatomical  and  physiological  considera-
tions.  This  disagreement  has been  mainly  attributed  to the  presence  of sparsely  firing  neurons.  However,
it  is  also  possible  that  this  is due  to limitations  of the  spike  sorting  algorithms  used  to process  the  data.
To  address  this  issue,  we  used  realistic  simulations  of extracellular  recordings  and  found  a relatively  poor
spike  sorting  performance  for  simulations  containing  a large  number  of  neurons.  In fact,  the  number  of
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correctly  identified  neurons  for single-channel  recordings  showed  an  asymptotic  behavior  saturating  at
about  8–10  units,  when  up  to 20  units  were  present  in  the  data.  This  performance  was  significantly  poorer
for  neurons  with  low  firing  rates, as  these  units  were  twice  more  likely  to  be missed  than  the  ones  with
high  firing  rates  in  simulations  containing  many  neurons.  These  results  uncover  one  of the  main  reasons
for  the  relatively  low  number  of neurons  found  in  extracellular  recording  and  also  stress  the  importance
of  further  developments  of  spike  sorting  algorithms.
. Introduction

Complex brain processes are encoded by the activity of relatively
arge neural networks and, consequently, the study of these pro-
esses can benefit from the simultaneous recording and analysis of
he firing patterns from large populations of neurons (Douglas and

artin, 1991; Brown et al., 2004; Harris et al., 2003; Buzsaki, 2004;
uian Quiroga and Panzeri, 2009). In addition, applications using
rain Machine Interfaces and neural prostheses could significantly
rofit from the possibility of recording large numbers of neurons, as
his allows the decoding of more complex and precise motor actions
Donoghue, 2002; Carmena et al., 2003; Chapin, 2004; Musallam
t al., 2004; Velliste et al., 2008; Nicolelis and Lebedev, 2009).
he development of multiple electrode recording probes (Maynard

t al., 1997; Blanche et al., 2005; Keefer et al., 2008) and spike sort-
ng algorithms (Letelier and Weber, 2000; Pouzat et al., 2002; Quian
uiroga et al., 2004; Zhang et al., 2004; Rutishauser et al., 2006;
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Vargas-Irwin and Donoghue, 2007) have provided an increasing
number of identified neurons from multiple-site recordings, reach-
ing values of dozens or even hundreds of simultaneously recorded
neurons over long periods of time (Carmena et al., 2003; Buzsaki,
2004; Blanche et al., 2005; Jackson and Fetz, 2007; Tolias et al.,
2007). In the case of single channel recordings, improvements of
spike sorting algorithms have allowed identifying up to half a dozen
neurons, as it is the case with data from the human medial temporal
lobe (Quian Quiroga et al., 2005, 2007).

In spite of these advances, based on the effective radius seen
by an electrode and the density of neurons, it has been estimated
that the number of identified neurons per channel should be one or
two orders of magnitude higher (Henze et al., 2000; Buzsaki, 2004).
Different factors have been proposed to account for the relatively
low number of identified neurons. In particular, it was suggested
that this could be due to tissue damage caused by the insertion of
the electrodes in the recording area (Claverol-Tinture and Nadasdy,

Open access under CC BY license.
2004), or the electrical insulation caused by the substrate of the
probe (Moffitt and McIntyre, 2005). Another possible reason for
this mismatch is the presence of sparsely firing neurons, which are
unlikely to be detected because they are silent most of the time
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Fig. 1. Extracellular recordings. Spikes in the area close to the electrode tip (region A)
are considerably higher than the background noise, and are therefore easily detected
and sorted. The neurons in red, green and cyan represent 3 active neurons recorded
by the electrode and sorted by the algorithm. The neurons in gray represent those
that fire very sparsely and are not detected. Neurons in the light gray area (B) pro-
C. Pedreira et al. / Journal of Ne

Buzsaki, 2004; Shoham et al., 2006). Nonetheless, even the combi-
ation of these effects can hardly account for the large gap between
he expected number of units and the ones obtained in real data. In
his study we evaluate yet another possibility, namely, that the rel-
tively low number of detected neurons could be due to limitations
f the spike sorting algorithms.

Let us illustrate this issue with a simple calculation. Approx-
mating the neuron by a dipole source, following Coulomb’s law
he amplitude decays as v ∼ 1/r2, as a function of the distance. We
an also consider that spikes of about 60 �V are produced by neu-
ons at a distance of about 50 �m – the maximum distance (and
inimum amplitude) at which single units are identified (Buzsaki,

004). Taking a density of 300,000 neurons/mm3 (as in the rat hip-
ocampus; Henze et al., 2000), it immediately follows that there
hould be more than 30 neurons firing spikes with an amplitude
etween 60 and 70 �V, at the threshold of single unit detection,
nd about 10 neurons firing (relatively large) spikes, within 100
nd 110 �V. So, within a small amplitude range of 10 �V there
re several neurons whose spikes could hardly be separated by
heir amplitudes (i.e. using a spike sorter based on amplitude dis-
rimination) given the background noise. It is also likely that more
ophisticated spike sorters that extract features of the spike shapes
beyond their amplitude) will also miss at least some of these neu-
ons, as we report below.

With  some notable exceptions (see Harris et al., 2000 and Wehr
t al., 1999 for examples of simultaneous extra- and intra-cellular
ecordings), a major limitation in the evaluation of spike sort-
ng algorithms with real data is that there is no ‘ground truth’ to
nivocally obtain a measure of an algorithm’s performance. Conse-
uently, the quantification of spike sorting results requires the use
f synthetic datasets, which also offer the possibility of control-
ing parameters such as the signal to noise ratio, the firing rate of
he units and the characteristics of the different spike shapes, thus
llowing a reliable measure of the algorithm performance under
ifferent recording conditions. In line, synthetic datasets were used

n several previous works (Letelier and Weber, 2000; Quian Quiroga
t al., 2004; Zhang et al., 2004; Vargas-Irwin and Donoghue, 2007).
owever, these spike sorting outcomes were tested with simu-

ations containing only a few single-units. Therefore, it remains
nknown how these algorithms would perform on datasets with

arger number of neurons, as it can be expected from the con-
iderations discussed above. To address this issue, in this study
e systematically evaluated the spike sorting performance using

imulations of extracellular recordings with increasing number of
eurons, also focusing on the detection of sparsely firing neurons.

.  Materials and methods

Neurons  contributing to the extracellular recording can be seen
s generators of electric signals that are captured by the electrode
laced in the brain tissue. When activated, each of these generators
roduce action potentials (or spikes) with a particular amplitude
nd shape (Gold et al., 2006). A simplified scheme of the recording
ith an electrode implanted in neural tissue is shown in Fig. 1. In

he area surrounding the tip of the electrode (region A, with white
ackground) the magnitude of the spikes is considerably higher
han the background noise and it is therefore possible to detect and
dentify the firing of the neurons with high accuracy. The neurons
n red, green and cyan represent active neurons in this area – up
o 50 �m from the electrode tip (Buzsaki, 2004) – recorded by the
lectrode and sorted according to their shapes. The remaining neu-

ons in this area (in gray) represent neurons whose activity is not
etected due to their very low firing rate (see Shoham et al., 2006).
he area in light gray (region B) contains neurons close enough to
he tip of the electrode to produce spikes larger than the overall
duce spikes that are larger than the background activity, but not large enough to be
individually sorted. The spikes fired by these neurons are usually grouped together
in a multiunit cluster. Neurons outside this area contribute to the background noise.

noise level, but too small to be individually sorted. The spikes fired
by these neurons are usually grouped together and are considered
to be a ‘multiunit cluster’. Neurons further away from the electrode
tip – outside area B, i.e. more than 140 �m from the electrode tip
(Buzsaki, 2004) – produce spikes that are too small to be detected
and they only contribute to the background noise.

To evaluate the spike sorting performance with different num-
bers of neurons, we  created a total of 95 simulations of 10 min  of
extracellular recordings. Each of these simulations contained back-
ground noise, multiunit activity and between 2 and 20 neurons
(5 simulations for each case). Following previous studies from our
group (Quian Quiroga et al., 2004; Martinez et al., 2009), the noise,
multiunit and single unit activities were generated using a database
of 594 different average spikes compiled from recordings of mon-
key basal ganglia and neocortex, as detailed below. In the simulated
data, the spike times and labels of the multiunit and the single unit
spikes were stored for subsequent analyses.

The data was  first generated with a sample rate of 96,000 Hz and
it was then decimated by a factor of 4, thus giving a sampling rate
of 24,000 Hz. This replicated the fact that in real recording con-
ditions spikes occur at continuous time points, thus introducing
misalignments and making spike sorting more challenging.

2.1.  Simulation of the background noise

For each simulation, the first step was to generate the back-
ground noise by modeling the overall contribution of distant
neurons (neurons at a distance larger than 140 �m from the elec-
trode tip; area outside the circle shown in Fig. 1). To do this, we
superimposed at random times a large number of spikes selected
randomly from the average spike shapes in the database. As in pre-
vious works (Quian Quiroga et al., 2004; Martinez et al., 2009), the

total number of spikes used to build the noise was half the number
of samples during the generation of the signal, prior to the down-
sampling process, i.e. each second of simulation was generated by
the superimposition of 48,000 spikes. The amplitude of each of
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hese spikes was scaled by a value randomly selected from a nor-
al distribution (� = 1, � = 0.2). After superposition of all the spikes,

he mean of the resulting signal was then subtracted and scaled to
 standard deviation of 0.1.

.2. Simulation of multiunit activity

The simulated signals also included multiunit activity, gener-
ted by the spikes fired by neurons in region B of Fig. 1. Although
he aim of our study was to analyze the clustering performance
or the single units, the multiunit activity was introduced in
rder to replicate a more realistic scenario where the presence
f large multiunit clusters increased the complexity of the sorting
rocess.

To simulate the multiunit activity we added the contribution of
0 different spike shapes randomly selected from the database to
he background noise. The amplitude of the spikes used to construct
he multiunit activity was fixed to 0.5, a value close to the detection
hreshold (see below). As typically found in the experimental data,
he firing rate of the multiunit was set to 5 Hz, i.e., each of the 20
eurons generating the multiunit followed an independent Poisson
istribution with a mean firing rate of 0.25 Hz.

.3.  Simulation of single unit activity

Single unit activity is given by the firing of neurons close-by the
lectrode tip (region A in Fig. 1). The time of firing of the single
nits was modeled following a Poisson distribution with a mean
ring rate randomly selected between 0.1 and 2 Hz (uniform prob-
bility). The amplitude of each unit was randomly selected from a
ormal distribution (� = 1.1, � = 0.5), capped to values within the
ange 0.9–2 to resemble the amplitude distribution (referred to the
oise level) found in real data (Quian Quiroga et al., 2007). For the
ake of clarity we did not to include overlapping spikes in our simu-
ations (i.e. spikes had to be more than 3 ms  apart from each other).
t is likely that the limitation of spike sorting algorithms described
n our results will be even larger when considering overlapping
pikes.

.4. Performance evaluation

Three  expert operators performed an independent (and blind)
pike sorting of the 95 simulations – each with 2–20 neurons –
sing Wave clus (Quian Quiroga et al., 2004). This software offers

 combination of properties specially suited for our study: (i) the
etection threshold is based on the median of the absolute value of
he signal, thus offering a robust estimation of the background noise
nd reducing the dependence on the amount (and amplitude) of the
pikes present in the signal; (ii) the number of clusters obtained
s determined automatically; (iii) the algorithm does not make a
riori assumptions about the shape of the clusters; and (iv) it is
ble to identify clusters with very different sizes, which is well-
uited for clustering sparsely firing neurons. The sorting process
or each simulation was performed automatically using the default
arameters of Wave clus (Quian Quiroga et al., 2004). When the
utomatic clustering was not satisfactory, the operators optimized
he results using the Wave clus GUI (by changing the clustering
emperature, merging or rejecting clusters).

For each spike sorting outcome, we quantified the number of
orrectly and incorrectly identified neurons using the following
riteria. Hits referred to correctly identified clusters fulfilling two
onditions: (1) at least 50% of the spikes corresponded to the same

euron; and (2) the number of detected spikes were, at least, 50%
f the number of generated spikes for this particular neuron. As
hown in Fig. S1, other choices gave similar results. The number
f misses was quantified as the total number of generated neurons
nce Methods 211 (2012) 58– 65

minus  the number of hits. In addition, the clusters identified by the
user that did not fulfill condition (1) or (2) were considered to be
false positives, and they corresponded to spurious subdivisions of
the units present in the simulation.

Given the previously reported problems in separating clusters
with relatively large size differences (Ott et al., 2005), we also
divided our units into low-firing and high-firing neurons for addi-
tional analysis. We  defined low-firing neurons as those with a
firing rate below 0.5 Hz (less than 300 spikes in the 10 min  of sim-
ulated data) and high-firing neurons as the rest, and evaluated
the performance for both populations separately. Due to the ran-
dom mean firing rate assigned to each unit, for each on of the
simulations with a certain number of units we obtained different
number of low-firing and high-firing neurons. Therefore, to com-
pare both populations we  defined the performance ratio as the
number of hits with high- (low-) firing neurons, divided by the
total number of high- (low-) firing neurons present in the simula-
tion. Ratios for misses and false positives were defined in a similar
way.

2.5. Statistical analysis

The  spike sorting performance for the low- and high-firing neu-
rons was compared using a two-way ANOVA (Test 1). The two
independent variables were the number of neurons in each sim-
ulation (from 2 to 20) and the neuron type (i.e. low-firing or
high-firing). The repeated measures were the corresponding per-
formance ratios (hits, misses or false positives).

To ensure that there was no statistical difference between
results obtained by the three experts we  tested for inter-rater relia-
bility using a Fleiss’ kappa coefficient for hits-false positives results
as well as for the hits for the low-firing and high-firing units (Test
2).

3. Results

3.1. Single case examples

An  example of the simulated data and the spike sorting per-
formed by one of the experts is shown in Fig. 2. The top plot shows
60 s of raw signal and the bottom plots show the (correctly) sorted
units: 3 single units (clusters 2, 3 and 4) and 1 multiunit (clus-
ter 1). The simulation contained background noise, a multiunit
activity cluster 2916 spikes, and 3 single units (classes 1, 2 and
3) with amplitudes 1.38, 1.69 and 1.22 and firing rates 1.91, 0.52
and 0.35 Hz, which gave 1063, 317 and 194 spikes, respectively. For
the multiunit, only 1338 out of 2916 spikes were correctly identi-
fied by the user. The multiunit cluster contained 50 false detections
and the remaining 1522 spikes did not cross the detection thresh-
old. The detection and sorting performance of single units was, as
expected, much more accurate than the one of multiunit. For clus-
ter 2 the operator detected 1062 of the 1063 spikes generated for
this unit plus a single spike from another unit. For cluster 3 the
operator detected 316 of the 317 generated spikes. For cluster 4
the operator detected all the 194 spikes, plus 3 extra spikes from
other units.

Fig.  3 shows a more complex simulation with 1 multiunit and
6 single units. In this case, the simulation was originally gener-
ated with a multiunit containing a total of 2870 spikes and the
single units (classes 1–6) had amplitudes 1.95, 1.35, 1.19, 1.08,
1.57 and 1.3, and firing rates 0.24, 0.85, 1.54, 1.02, 0.43 and

1.19 Hz, respectively. The operator clustered a multiunit (cluster
2) and 4 single units (clusters 1, 3, 4 and 5). For clusters 3 and
4 the operator correctly identified 676 and 508 spikes, respec-
tively. For cluster 5 the operator detected all the 134 spikes and
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Fig. 2. Example of spike sorting. The top plot shows 60 s of simulated data. The bottom plots show the superposition of all the spike clusters (left) and each of the sorted
clusters, corresponding to one multiunit (cluster 1) and 3 single units (clusters 2, 3 and 4). The number on top of each plot indicates the number of spikes generated (in
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rackets) and detected by the user.

 more spikes from another neuron. In contrast, cluster 1 was
ncorrectly identified as a single unit. In fact, this cluster con-
ained the activity of 3 different neurons (shown in the inset of
he figure) with quite overlapping shapes that appeared as a sin-
le cluster to the operator. This error was partially due to the
resence of other neurons in the simulation. The clustering of
nly these 3 spike shapes indeed gave the correct result (see Fig.
2).

.2. User’s performance

Three  different operators blindly sorted the 95 simulations
enerated for this study (see Section 2). Table 1 shows the
umber of hits for all simulations, for each operator separately.
espite some individual differences, all users had a similar overall
erformance, significantly different from coincidental agreement
Test 2 for hits minus false positives, kappa = 0.33, z = 16.67,

 < 10−5), reaching a similar asymptotic average number of hits

n their sorting results. This suggests that the results obtained
or the different number of neurons were related to the inher-
nt characteristics of the spike sorting process and were not
ignificantly influenced by the subjectivity and potential biases
of  each operator. Similar results were found when dividing the
results by firing rates, with significant coincidences for both high-
firing and low-firing units (Test 2, high-firing hits: kappa = 0.55,
z = 25.87, p < 10−5 low-firing hits: kappa = 0.56, z = 15.09, p < 10−5).
Table 2 presents the number of false positives. Altogether,
the number of false positives was relatively low, thus indi-
cating that overclustering (i.e. splitting the activity of a single
source – simulated neuron – into 2 or more clusters) was
rare.

3.3. Number of identified neurons

Fig. 4a shows the average number of hits as a function of the
number of generated neurons. For simulations with a few neu-
rons the number of detected clusters was  nearly perfect (the ideal
performance marked by the dashed line). For simulations with
more neurons the performance decayed compared to the ideal per-
formance, reaching an asymptotic value at about 8–10 correctly

identified neurons. Fig. 4b displays the number of misses and false
positives for the different number of generated neurons. The curve
with the misses shows a complementary behavior to the one of the
number of hits. It is negligible for low number of units and it rises as
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ig. 3. Spike sorting with a large number of units. For this simulation, the operator
owever, cluster 1 was formed by 3 different neurons (inset).

he number of generated neurons increase. In fact, the dotted line
n Fig. 4b (y = x − 8) fits closely the number of misses in agreement

ith the asymptotic behavior showed by the hits. Meanwhile, the
umber of false positives also increased with the number of units

resent in the simulation, but it remained below 3. These results

ndicate that the decrease in detection performance was  due to the
rouping two or more neurons into single clusters, as exemplified
n Fig. 3.

able 1
orrect detections (Hits). Minimum, maximum and average number of hits for the 3 ex
imulation. Performances for the 3 experts were very similar. The last three columns disp

Neurons Operator 1 Operator 2 

Mean Min  Max  Mean Min  Max

2 1.8 1 2 1.8 1 2 

3  2.8 2 3 2.8 2 3 

4  3.8 3 4 3.6 3 4 

5  4.2 3 5 3.8 2 5 

6  5.2 4 6 5.2 5 6 

7 5 3 7  4.6 2 6 

8  6.8 6 7 6.6 6 7 

9  7.2 5 8 6.8 5 8 

10  6.4 3 9 6.2 4 9 

11  8 6 9 7.8 6 10 

12  8.4 7 11 7.2 6 9 

13  8.6 5 11 8.2 3 11 

14  7 5 11 7.2 4 11 

15  8.2 6 11 7.8 5 10 

16  10.6 10 11 9.6 8 11 

17 7.4  5 9 5.8 5 7 

18 9.2  6 12 9.2 6 13 

19  8.4 6 11 8.2 5 11 

20 9.4  7 12 7.8 5 11 
rectly identified one multiunit (cluster 2) and 4 single units (clusters 1, 3, 4 and 5).

3.4. Sparse neurons

To  quantify the spike sorting performance for different types
of neurons, we divided our data into low- and high-firing neurons

(see Section 2). Fig. 5a shows the hit ratio for both types of neu-
rons and Fig. 5b and c the number of misses and false positives
respectively. It can be seen that the performance for high-firing
neurons was  better than for the low-firing ones. For the cases with

perts. The left column indexes the results by the number of units present in the
lay the global statistics, averaging across the 3 subjects.

Operator 3 Total

 Mean Min  Max  Mean Min  Max

1.8 1 2 1.8 1 2
2.8 2 3 2.8 2 3
3.6 3 4 3.67 3 4
4.4 3 5 4.13 2 5
5.2 5 6 5.2 4 6
4.8 2 7 4.8 2 7
6.2 6 7 6.53 6 7
7 4 9 7 4 9
6.6 5 8 6.4 3 9
7.6 6 9 7.8 6 10
7.2 6 9 7.6 6 11
7 3 9 7.93 3 11
6.6 4 11 6.93 4 11
7.8 5 10 7.93 5 11

10.8 9 12 10.33 8 12
6.4 4 8 6.53 4 9
7.4 4 12 8.6 4 13
6.4 5 8 7.66 5 11
7.8 5 11 8.33 5 12
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Table 2
False  positives. Minimum, maximum and average false positives for the 3 experts. The left column indexes the results by the number of units present in the simulation. As
in  Table 1 results for different experts were very similar. The last three columns display the global statistics, averaging across the 3 subjects.

Neurons Operator 1 Operator 2 Operator 3 Total

Mean Min  Max  Mean Min Max Mean Min  Max  Mean Min Max

2 0.2 0 1 0 0 0 0.2 0 1 0.13 0 1
3 0 0 0 0  0 0 0.2 0 1 0.07 0 1
4  0 0 0 0 0 0 0 0 0 0 0 0
5 0.4  0 1 0.4 0 1 0.2 0 1 0.33 0 1
6  0 0 0 0 0 0 0.2 0 1 0.07 0 1
7  0.6 0 2 0.6 0 2 0.6 0 2 0.6 0 2
8  0.4 0 1 0.2 0 1 0.6 0 1 0.4 0 1
9 0.4  0 1 0.6  0 1 0.8 0 1 0.6 0 1

10 0.6  0 1 0.4  0 1 0.4 0 1 0.47 0 1
11  0.4 0 2 0.2 0 1 0.2 0 1 0.27 0 1
12  0.8 0 1 1.2 1 2 1.4 1 2 1.13 0 2
13  0.8 0 2 1 0 3 1.2 0 3 1 0 3
14  1.8 1 3 1.8 0 3 2.4 0 4 2 0 4
15  1.6 0 3 1.4 0 2 1.2 0 2 1.4 0 3
16  0.8 0 1 1.2 1 2 0.4 0 1 0.8 0 2
17  2.6 2 4 3.4 2 4 2.8 2 4 2.93 2 4
18  2.4 2 3 1.6 0 2 2.2 2 3 2.07 0 3
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19 2.4  1 3 2  1 

20  2.2 1 3 2.6 1 

 large number of neurons, the ratio of misses for the low-firing neu-
ons was around 80%, while for the high-firing neurons it reached
alues around 50%. These differences were statistically significant
F(1,511) = 104.08, p < 10−15, F(1,511) = 129.76, p < 10−15, Test 1, for
its and false positives, respectively). These results show the ten-
ency of sparse neurons to be masked by multiunit activity or by
ells with high firing rates.

.  Discussion

Recent studies have drawn attention to the apparent discrep-
ncy between the number of neurons one expects to see following
natomical and physiological considerations – in the order of few
undred – and the number of neurons typically detected in experi-
ental conditions with single electrodes – up to 6 – (Buzsaki, 2004;

hoham et al., 2006). This difference has been commonly attributed

o the sparseness of neural firing (Henze et al., 2000; Olshausen
nd Field, 2004; Shoham et al., 2006; Fujisawa et al., 2008) and the
amage of the neurological tissue around the electrode (Claverol-
inture and Nadasdy, 2004). In addition to these factors, here we

ig. 4. Spike sorting performance with increasing number of neurons. The mean detectio
imulation. (A) Average number of hits. (B) Average number of misses (black) and false 

unction y = x − 8; i.e. a line parallel to the diagonal but displaced 8, the maximum numbe
2.8 2 4 2.4 1 4
2.8 2 4 2.53 1 4

showed that limitations of spike sorting algorithms also contribute
to the relative low number of detected neurons.

4.1. Limitations of spike sorting algorithms

Previous studies have analyzed and characterized the perfor-
mance of several spike sorting methods (Letelier and Weber, 2000;
Pouzat et al., 2002; Quian Quiroga et al., 2004; Zhang et al., 2004;
Rutishauser et al., 2006; Vargas-Irwin and Donoghue, 2007). All
these studies have, however, used relatively few neurons, thus not
exploring the limits of spike sorting algorithms. Here we showed
that the number of identified neurons reached a maximum of about
8–10, even when up to 20 neurons were present in the signal. Inter-
estingly, there were relatively few false positives. Hence, the sorting
mistakes were mainly produced by grouping 2 or more neurons into
a single cluster, an effect also observed in previous studies but with

a lower number of units (Blanche et al., 2005; Kwon et al., 2012). In
addition, to show that this limitation of spike sorting is not exclu-
sive of our own  algorithm (Wave clus), we  analyzed the same set
of simulations using a completely different and well-known algo-

n performance is shown as a function of the number of single units present in the
positives (dashed gray). For the misses, the dotted gray line in B shows the linear
r of neurons detected. Bars denote s.e.m.
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ig. 5. Hits and false positive ratios for the sparse and non-sparse neurons. (A) Num-
er of hits for sparse (dark gray) and non-sparse neurons (light gray), Number of
isses (B) and false positives (C) for the same groups. Bars denote s.e.m.

ithm, KlustaKwik (Harris et al., 2000), and obtained very similar
esults to the ones presented here.

.2. Sparsely firing neurons
Our  simulations included single units with a wide range of fir-
ng rates, as reported in experimental recordings (Musallam et al.,
004; Quian Quiroga et al., 2005; Fujisawa et al., 2008). The sorting
nce Methods 211 (2012) 58– 65

results  for low- and high-firing neurons were significantly different
and showed a better performance for the latter (see Fig. 5), despite
the reported ability of the used algorithm to identify sparsely firing
neurons in real recordings (Quian Quiroga et al., 2005, 2007, 2008).
This is due to the fact that the activity of sparsely firing units is
typically masked by the activity of neurons with higher firing rates
recorded from the same channel. In other words, sparsely firing
neurons show clusters with relatively few spikes which are typi-
cally merged with larger close-by clusters. A possible improvement
could be to implement an iterative procedure to sort the remain-
ing spikes after eliminating already identified (and large) clusters
(Ott et al., 2005). However, the success of this approach is not guar-
anteed because the eliminated clusters could already include the
activity of the sparsely firing neurons.

It has been reported that firing rates can be even lower
(<0.05 spikes/s) than the ones we used in our simulations
(Olshausen and Field, 2004; Shoham et al., 2006). Given the prob-
lem in detecting sparsely firing neurons described above, the
presence of neurons with such low probability of firing would likely
exacerbate even further the limitation of spike sorting algorithms,
thus highlighting the difficulty of detecting this type of neurons,
in line with previous studies (Henze et al., 2000; Buzsaki, 2004;
Shoham et al., 2006; Fujisawa et al., 2008). This limitation is impor-
tant because sparsely firing neurons have been related to high level
cognitive processes (Quian Quiroga et al., 2008; Quian Quiroga,
2012), processing of sensory inputs (Olshausen and Field, 2004)
and have been found all over the neocortex (Kerr et al., 2005;
Shoham et al., 2006). Moreover, sparsely firing neurons usually
carry high amounts of information per spike (Quian Quiroga et al.,
2007; Quian Quiroga and Panzeri, 2009) and their responses can
be strikingly selective (Quian Quiroga et al., 2007), show invari-
ance (Quian Quiroga et al., 2005) and multimodality (Quian Quiroga
et al., 2009). Furthermore, it has been shown that the bursting of
a single neuron can modify the global brain state (Li et al., 2009)
or even the behavior of an animal (Brecht et al., 2004; Houweling
and Brecht, 2008). Altogether, these results highlight the need for
further improvements of the spike sorting methods presently avail-
able, paying special attention to their performance with sparsely
firing neurons.

4.3.  Tetrodes and stereotrodes

To  improve the number of recorded units, a series of studies have
proposed the transition from single electrode recordings to the use
of tetrodes or stereotrodes (Gray et al., 1995; Harris et al., 2000;
Blanche et al., 2005). These probes provide additional information
by recording the firing of the neurons from different points (Harris
et al., 2000) and they have been shown to provide better clustering
outcomes (Gray et al., 1995; Harris et al., 2000). In our simulations
we have only explored spike sorting limitations for single channel
recordings. It is likely that with tetrodes the spike sorting algo-
rithms would still identify a much lower number of neurons than
the ones actually present in the recording, especially considering
that with a tetrode it is possible to identify up to about 20 neu-
rons in an area enclosing over 100 (Buzsaki, 2004). Interestingly,
in a recording of cortical neurons in vivo using a 54 contact probe
(Blanche et al., 2005), a comparison between sorting performances
for a virtual tetrode (using only 4 adjacent contacts of the probe)
and using a larger number of contacts showed that, in the case of
the tetrode, 8 single units were identified, whereas when using the
signal from all channels, 10 units were found: 7 corresponding to
the ones found using the tetrode configuration and another 3 that

were considered only one in the previous case. Interestingly, this
particular error with the tetrode data – merging different single
units into a same cluster – resembles  the error described in Fig. 3
of our study.
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recordings  for evaluating the performance of spike sorting algorithms. Neuro-
C. Pedreira et al. / Journal of Ne

The spike sorting process is determined by the shape and vari-
nce of the spikes, particularly the ones of neurons with the highest
ring rates (contributing most of the spikes in a recording). This is
elated to the feature extraction phase of the algorithms, when the
pikes are characterized in a feature space for posterior classifica-
ion. The selected features reflect the main differences, which are
etermined by the large bulk of spikes of the high-firing neurons,
nd in turn, the features representing the spikes of the low-firing
eurons tend to be underrepresented. In general, and beyond the
articular issue of spike sorting, the clustering of groups with very
ifferent sizes is a known clustering problem (Ott et al., 2005).

The  development of new recording probes that, for example,
mprove the quality of the signal transference from the tissue to the
lectrode and reduce the noise present in the signal (Keefer et al.,
008), opens the opportunity to dramatically increase the number
f identified neurons from extracellular recordings. These develop-
ents should, however, be matched by advances in the methods

sed to process the recorded data. In this respect, the results pre-
ented here uncover the necessity of further improvement of spike
orting algorithms, particularly for the detection of sparsely firing
eurons, as they are easily masked by neurons.
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