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Cyclic nucleotide-gated ion channels in sensory transduction
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Abstract Cyclic nucleotide-gated (CNG) channels, directly
activated by the binding of cyclic nucleotides, were first discov-
ered in retinal rods, cones and olfactory sensory neurons. In
the visual and olfactory systems, CNG channels mediate sensory
transduction by conducting cationic currents carried primarily by
sodium and calcium ions. In olfactory transduction, calcium in
combination with calmodulin exerts a negative feedback on
CNG channels that is the main molecular mechanism responsible
for fast adaptation in olfactory sensory neurons. Six mammalian
CNG channel genes are known and some human visual disorders
are caused by mutations in retinal rod or cone CNG genes.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Ion channels directly gated by cGMP in retinal rods were

first discovered 21 years ago [1]. Fesenko and collaborators

[1] showed that cGMP directly activates a current in isolated

patches of outer segment membrane of retinal rods. The cur-

rent was activated by cGMP alone, without the presence of

other factors such as ATP or kinases. Moreover, the cGMP-

gated current could not be activated by AMP, GMP, ATP

or GTP. The cGMP-gated current was shown to be cationic,

and the dependence of current activation from cGMP concen-

tration was well described by a Hill function with a coefficient

of 1.8 [1]. The discovery of ion channels directly gated by

cGMP occurred while studying the molecular mechanisms of

phototransduction. Both Ca2+ and cGMP were considered as

possible second messengers mediating the electrical response

to light. However, the action of cGMP was at first believed

to be indirect, because in those years the dogma that cyclic

nucleotides acted on proteins only by phosphorylation medi-

ated by a cyclic nucleotide-dependent kinase was still standing.

Fesenko et al. [1] contributed to unravelling the molecular

mechanisms of phototransduction showing that cGMP can di-

rectly activate ion channels. Similar channels were also found
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in cone photoreceptors [2]. Indeed in photoreceptors cGMP

keeps ion channels open in the dark, allowing a continuous in-

flux of Na+ and Ca2+ (dark current), and Ca2+ is in turn ex-

truded by a Na+–Ca2+–K+ exchanger. Light absorption by

rhodopsin triggers an enzymatic cascade that leads to the acti-

vation of a phosphodiesterase that hydrolyses cGMP to GMP

and therefore produces a decrease in the cGMP-gated current.

As a consequence photoreceptors hyperpolarize in response to

light with a subsequent decrease in glutamate synaptic release

(reviewed in [3,4]).

In 1987, Nakamura and Gold [5] detected a similar ionic

current directly activated by cGMP or cAMP in the cilia of

olfactory sensory neurons. Odorant molecules bind to odorant

receptors and activate an enzymatic cascade that leads to an

increase in the concentration of cAMP in the cilia, as will be

described later in more detail (Fig. 1). Cyclic nucleotide-gated

(CNG) channels have also been described in other neuronal

and non-neuronal cells (reviewed in [6]).
2. CNG channel subunits

Kaupp et al. [7] first cloned the gene encoding for the CNG

channel in bovine retinal rods beginning investigations at the

molecular level of the physiological and biophysical properties

of these ion channels. At present, six CNG channel genes have

been identified in mammalian genomes. These genes code for

four types of ‘‘A’’ subunits and two types of ‘‘B’’ subunits

[8]. CNG channels are composed of four subunits forming a

tetramer with a central pore. The topology of each subunit is

similar to that of the cationic voltage-activated channels with

six transmembrane spanning domains, a pore-loop domain be-

tween the fifth and sixth transmembrane domain, and intracel-

lular N- and C-terminal regions. CNG channels are activated

by the direct binding of cyclic nucleotides to a large C-terminal

cyclic nucleotide-binding domain and are only weakly sensitive

to membrane voltage (Fig. 3E).

Unfortunately, different nomenclatures for the CNG sub-

units have been used for several years in different laboratories,

and therefore the reading of most of the previous papers may

result confusing. We will use the most recent commonly agreed

nomenclature for CNG channels [8] and indicate previous

names in parenthesis.

Native retinal rod channels are composed of two types of sub-

units: CNGA1 (a1, CNG1, RCNC1) and CNGB1 (b1, CNG4,

RCNC2) [7,9] with a stoichiometry of three CNGA1 and one

CNGB1a (a B1 splice variant) subunits [10,11]. Retinal cone

channels are also composed of two types of subunits: CNGA3
blished by Elsevier B.V. All rights reserved.

mailto:menini@sissa.it 


Fig. 1. Olfactory transduction in the cilia of olfactory sensory neurons. Odorant molecules bind to odorant receptors (OR) in the ciliary membrane
activating a G-protein (G) that, in turn, stimulates an adenylate cyclase (AC). cAMP directly gates CNG channels causing an odorant-induced
inward current carried by Na+ and Ca2+ ions. The increased Ca2+ concentration in the cilia causes the opening of Ca2+-activated Cl� channels and
the subsequent Cl� efflux which further depolarizes the cell. Intracellular Ca2+ also binds to calmodulin (CaM) lowering the ligand sensitivity of the
cAMP-gated channels. Ca2+–calmodulin also stimulates the activity of a phosphodiesterase (PDE). Ca2+ is extruded by a Na+/Ca2+ exchanger.
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(a2, CNG3, CCNC1) and CNGB3 (b2, CNG6, CCNC2) [12,13]

with a stoichiometry of two CNGA3 and two CNGB3 subunits

[14]. Native channels of olfactory sensory neurons are instead

composed of three types of subunits: CNGA2 (a3, CNG2,

OCNC1), CNGA4 (a4, CNG5, OCNC2, CNGB2) and CNGB1

(b1, CNG4, RCNC2) [15–19] with a stoichiometry of two

CNGA2, one CNGA4 and one CNGB1b (a B1 splice variant)

[20] (Fig. 3E). The subunits CNGA1, CNGA2, and CNGA3

when expressed alone in heterologous systems can form a func-

tional channel activated by cyclic nucleotides, whereas the other

subunits cannot form functional channels but have a physiolog-

ically relevant modulatory role. Indeed, electrophysiological

studies measuring the functional properties of the heterolo-

gously expressed principal subunits showed several differences

with the respective native channels such as activation by cyclic

nucleotides, ion permeation, sensitivity to blockers, and regula-

tion by the complex Ca2+–calmodulin, suggesting that addi-

tional subunits and/or modulatory components were still to be

discovered [6,21,22]. Cloning of the genes of additional subunits

allowed the study of the influence of the subunit composition on

the channel properties [6,23–25]. As an example, Fig. 3C shows

the comparison between currents activated by cAMP in homo-

meric CNGA2 channels expressed in HEK293 cells and native

olfactory channels. The concentration of cAMP necessary to ob-

tain 50% of the maximal current activation of homomeric

CNGA2 channels was about 30 lM, while in heteromeric native

channels was about 3 lM, corresponding to a 10-fold higher sen-

sitivity for cAMP of native channels compared with homomeric

CNGA2 channels.

The CNG subunit composition of retinal rods, cones or

olfactory sensory neurons is tuned to a specific physiological

role in sensory transduction. In this review, we will primarily

focus on the olfactory CNG channel.
3. Olfactory transduction and adaptation

In vertebrates, volatile odorant molecules reach the olfac-

tory epithelium in the nasal cavity and interact with odorant

receptors located in the cilia of olfactory sensory neurons,

where olfactory transduction occurs. Olfactory sensory neu-

rons are bipolar neurons with a single dendrite that reaches

the surface of the epithelium and terminates with a knob from

which several cilia protrude. The binding of odorant molecules

to odorant receptors [26] in the cilia triggers an enzymatic cas-

cade that leads to an increase in the intraciliary concentration

of cAMP (Fig. 1). cAMP causes the opening of the ciliary

CNG channels that allow an influx of Na+ and Ca2+ inside

the cilia. Ca2+-activated Cl� channels are then activated in

turn and, due to the unusually high intracellular Cl� concen-

tration, produce the outflow of Cl�, contributing to the inward

current [27]. As a result of the odorant binding the olfactory

sensory neuron depolarizes. The depolarization spreads pas-

sively to the dendrite and soma of the neuron, triggering action

potentials that are conducted along the axon to the olfactory

bulb [28–30]. The olfactory CNG channel allows Ca2+ entry

not only for excitatory but also for inhibitory effects [31].

The complex Ca2+–calmodulin activates a phosphodiesterase

(PDE1C2) that hydrolyzes cAMP [32,33], and also produces

a negative feedback effect on the CNG channel itself, that

has been shown to mediate olfactory adaptation [34]. Indeed,

during short repetitive exposures to odorants, olfactory sen-

sory neurons rapidly adapt to the stimulus by decreasing their

responsiveness in a Ca2+-dependent manner [35]. Kurahashi

and Menini [36] investigated the localization of the principal

molecular mechanism for adaptation in the olfactory transduc-

tion process. To determine whether the response reduction in

the adapted state was attributable to a reduction in the cAMP



Fig. 2. Odorant adaptation in an isolated mouse olfactory sensory neuron. (A) Patch-clamp in the voltage-clamp whole-cell configuration was used
to record currents from isolated mouse olfactory sensory neurons. Caged cAMP was included in the intracellular solution filling the patch pipette.
Within a few minutes after rupture of the patch to establish the whole-cell configuration, the caged cAMP diffused into the cilia. Ultraviolet light
flashes were applied to release the physiologically active cAMP into the ciliary region. (B) and (C) Responses at �50 mV to two identical ultraviolet
light flashes releasing the same concentration of cAMP were recorded in the same neuron in a Ringer or in a nominally 0 Ca2+ solution (10 mM
EGTA) in the same neuron. In Ringer (B), adaptation was observed, as the peak amplitude of the response to the second flash (�489 pA) was about
58% of the response to the first flash (�842 pA). In a nominally 0 Ca2+ solution (C) adaptation was abolished (unpublished results from Boccaccio
et al. [38]).
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production or was instead due to other processes occurring

after the production of cAMP, CNG channels in intact neu-

rons were directly activated by flash photolysis of caged cAMP

(Fig. 2). The ciliary cytoplasm was loaded with caged cAMP

through diffusion from a patch pipette. Application of ultravi-

olet light flashes to the ciliary region caused the photolysis of

caged cAMP, thereby producing rapid and repeatable incre-

ments in cAMP concentration. Therefore, cAMP-gated chan-

nels could be directly activated, bypassing the early stages of

odorant transduction (i.e. odorant receptor activation and

G-protein and adenylate cyclase signalling, Fig. 1). Fig. 2

shows the results of an experiment illustrating that adaptation

was measured with repetitive caged cAMP photolysis and that

extracellular Ca2+ was necessary for adaptation. In physiolog-

ical Ringer solution the peak of the current response to the sec-

ond flash was reduced to about 58% of the control response

(Fig. 2B), whereas in a nominally 0 Ca2+ solution the current

responses to repetitive flashes were almost identical. Kurahashi

and Menini [36] showed that cAMP- and odorant-induced re-

sponses had similar adaptation properties, indicating that the

entire adaptation process takes place after the production of

cAMP and might be mediated by Ca2+–calmodulin-dependent

inhibition of the olfactory CNG channel. Experiments on

olfactory adaptation performed in knock-out mice of the

CNGA4 subunit confirmed that the molecular mechanism

for adaptation is localized at the channel level, most likely

through CNG channel inhibition by Ca2+–calmodulin [37].

Recent experiments were also performed to investigate if the

Ca2+–calmodulin-induced activity of the PDE (Fig. 1) is re-

quired for olfactory adaptation. Using the poorly hydrolysable

caged 8-Br-cAMP and the PDE inhibitor IBMX it has been

shown that an increase in PDE activity is not necessary for

adaptation [38], furtherly supporting the notion that the

Ca2+-mediated negative feedback on the olfactory CNG chan-

nel is the main molecular mechanism responsible for fast adap-

tation. At present the overall molecular picture of how Ca2+

causes adaptation is the following: Ca2+ enters the cilia

through the CNG channels and the channel sensitivity to

cAMP is significantly reduced by Ca2+–calmodulin modula-

tion. As a consequence, CNG channel open probability could
be significantly reduced. Thus, in the adapted state, the same

cyclic nucleotide concentration as in the control state produces

a lower CNG channel open probability and therefore a smaller

current (Fig. 2). A recent mathematical model of adaptation

based on direct negative regulation of CNG channels by

Ca2+–calmodulin in olfactory cilia well reproduces the experi-

mental data [39].
4. Modulation of CNG channels by Ca2+–calmodulin

Studies of native CNG channels have shown that the addi-

tion of micromolar concentrations of intracellular Ca2+ was

able to decrease the channel sensitivity to cGMP or cAMP,

probably by activating a Ca2+-responsive endogenous factor

already pre-associated with the channel [40–46]. Bradley

et al. [44] have recently shown that Ca2+-free calmodulin,

called apocalmodulin, is able to bind to the heterologously ex-

pressed heteromeric olfactory CNG channels even in the ab-

sence of Ca2+. Moreover, when Ca2+ concentration rises

above 100 nM, Ca2+ can rapidly modulate the CNG channel

sensitivity by directly binding to the pre-associated calmodu-

lin. Furthermore, it was suggested [44] that also in native chan-

nels the pre-associated endogenous factor could be

apocalmodulin, although a demonstration is still missing.

Since Ca2+ enters into the olfactory cilia through the CNG

channel itself, the pre-associated Ca2+-responsive factor could

provide a very fast feedback modulation at the channel level.

Early works [47–51] have identified in the N-terminus of

CNGA2 a classic basic amphiphilic a-helix (Baa) motif with

high affinity for Ca2+–calmodulin and have shown that the

sensitivity to cAMP of heterologously expressed homomeric

CNGA2 channels was decreased by the binding of Ca2+–cal-

modulin to the Baa motif. However, in recent years, there

has been a considerable progress in elucidating the molecular

events producing modulation of the native channels and it

has been shown that the Baa motif of CNGA2 does not play

any role in Ca2+–calmodulin modulation of heteromeric

channels. Instead, by comparing properties of native channels

with heterologously expressed heteromeric channels, the
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modulatory subunits CNGA4 and CNGB1b have been shown

to be responsible for the physiological modulation of Ca2+–

calmodulin. Bradley et al. [44,52] and Munger et al. [37] mea-

sured, in excised patches containing native heteromeric olfac-

tory CNG channels, a fast current inhibition upon addition

of Ca2+–calmodulin that persisted for several seconds also

after calmodulin was removed in Ca2+-free solution. Fig. 3D

illustrates the rapid Ca2+–calmodulin inhibition and slower

recovery when native olfactory CNG channels were activated

by 10 lM cAMP in an excised inside-out patch from the

knob/cilia of a mouse olfactory sensory neuron.

The modulatory subunits CNGA4 and CNGB1b are neces-

sary for the rapid inhibitory effect of Ca2+–calmodulin and for

maintaining the inhibitory action for several seconds, even

after Ca2+–calmodulin removal [37,44,52]. Instead, modula-

tion of the rod and cone channels by Ca2+–calmodulin requires

only the CNGB1a and CNGB3 subunits, respectively [53,54].

In rods, the mechanism of Ca2+–calmodulin inhibition of the
Fig. 3. CNG channels in olfactory sensory neurons. (A) A membrane patch w
of an isolated mouse olfactory sensory neuron and exposed to different sol
Native olfactory CNG channels were activated in the same patch by the indi
inside-out excised patch from the knob/cilia. Holding potential was �50 mV. (
activated by cAMP (h) or by the hydrolysis resistant analogue 8-Br-cAMP (n
cells expressing homomeric CNGA2 channels activated by cAMP (�
I=Imax ¼ cn=ðcn þ Kn

1=2Þ to the data with the following values at �50 mV for
cAMP) = 0.7 lM, n(8-Br-cAMP) = 1.6. For homomeric CNGA2 channels (�)
for native channels at +50 mV gave: K1/2(cAMP) = 1.6 lM, n(cAMP) = 1.4,
CNG channels are inhibited by Ca2+–calmodulin in excised inside-out patc
nominally 0 Ca2+. Then the same patch was exposed to a solution containing,
presence of 1 mM NFA to block native Ca2+-activated Cl current). The addit
slowly recovered to its initial value after removal of Ca2+–calmodulin (Pifferi,
the olfactory CNG channel. Each transmembrane domain is indicated by a n
binding site (brown) is located in the C-terminal domain. Calmodulin bindi
whereas the calcium independent ‘IQ-type’ are in blue.
CNG channel seems to be quite well understood: Ca2+–cal-

modulin binds to a IQ-type calmodulin binding site in the

N-terminal region of the CNGB1a subunit that is also neces-

sary for the interaction with the CNGA1 subunit, thus pre-

venting the direct interaction between the C-terminal region

of CNGA1 with the N-terminal region of CNGB1a. Since

the interaction between these intracellular channel domains is

responsible for a higher ligand sensitivity of the rod channel,

the binding of Ca2+–calmodulin decreases the ligand sensitivity

causing an inhibitory effect on the rod channel [53,54]. Also the

olfactory modulatory subunits have calmodulin binding sites:

CNGA4 has a IQ-type calmodulin binding site located at the

C-terminal region, while CNGB1b has a similar IQ-type site

located at the N-terminal region and a Baa motif in the C-ter-

minal region. It has been shown that the IQ-type sites are nec-

essary and sufficient for Ca2+–calmodulin channel inhibition,

whereas the Baa-type site is not necessary [44,55]. However,

at present, the molecular mechanism by which the binding of
as excised in the inside-out configuration from the dendritic knob/cilia
utions containing cyclic nucleotides to activate the CNG channel. (B)
cated concentrations of cAMP in the absence of Ca2+ and Mg2+, in an
C) Dose–responses from membrane patches containing native channels
). Dose–response from patches excised from the membrane of HEK293
). The continuous lines are the best fit of the Hill equation:
the native channel: K1/2(cAMP) = 2.7 lM, n(cAMP) = 1.5, K1/2(8-Br-
K1/2(cAMP) = 33 lM, n(cAMP) = 1.2. Fits of the Hill equation to data
K1/2(8-Br-cAMP) = 0.4 lM, n(8-Br-cAMP) = 1.5. (D) Native olfactory
hes. A patch was exposed to 10 lM cAMP in a solution containing
in addition to 10 lM cAMP, 1 lM calmodulin and 67 lM Ca2+ (in the

ion of Ca2+–calmodulin quickly inhibited the cAMP-gated current that
unpublished data). (E) Topological model and assembly of subunits of
umber, the pore loop is located between 5 and 6. The cyclic nucleotide
ng sites of the calcium-dependent ‘Baa type’ are represented in black,
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Ca2+–calmodulin decreases the ligand sensitivity of the olfac-

tory channel is not yet understood.
5. Channelopathies

Some mutations in the genes encoding CNG subunits have

been shown to produce visual disorders in human patients.

Some forms of retinitis pigmentosa, an eye disease characterized

by a progressive degeneration of the retina which affects night

vision and peripheral vision, possibly leading to blindness, are

caused by mutations in the CNGA1 or CNGB1 genes of the

rod photoreceptors [56]. Achromatopsia, a retinal disorder

characterized by the loss of color discrimination and by photo-

phobia, is caused by mutations in the CNGA3 and CNGB3

genes of the cone photoreceptors [57,58]. More than 40 muta-

tions in the CNGA3 channel gene, giving rise to various forms

of achromatopsia, have been identified [59]. Peng et al. [60]

functionally characterized some mutations in the human

CNGB3 subunit and reported alterations in cyclic nucleotide

sensitivity, ion selectivity, single channel properties, and plasma

membrane targeting of the heteromeric CNG cone channel.

The function of CNG channel subunits has been also inves-

tigated by targeted disruption of genes encoding the CNGA2,

A3, A4 or B1 subunits [37,60–64]. Deletion of the CNGA3

subunit produced mice lacking cone responses to light,

whereas the rod pathway was completely intact [63]. Knock-

out of the CNGB1 gene in mice caused the alteration in target-

ing of the CNGA1 subunit in rod outer segment, abolished the

response to light and caused retinal degeneration, similarly to

human retinitis pigmentosa [61]. Knock-out of the olfactory

CNGA2 gene caused the absence of any detectable response

to odorants in mice, that therefore had a general anosmia,

and demonstrated that the cAMP-mediated pathway is the

only trasduction mechanism that mediates odorant detection

[64]. Knock-out of the olfactory CNGA4 gene caused altera-

tions in odorant adaptation, furtherly demonstrating the fun-

damental role of modulatory subunits in the physiological

function of CNG channels [37].
6. Conclusions

The recent progress in our knowledge of the biophysical and

physiological properties of CNG channels allows a better

understanding of sensory transduction. However, up to today,

a few questions are still open. It has been shown that the Ca2+-

dependent regulation of CNG channels in olfactory sensory is

responsible for adaptation and that the ligand sensitivity is re-

duced when Ca2+–calmodulin interacts with both modulatory

subunits [37,44,52,55], but the nature of this interaction is not

yet understood.

On the contrary, in the retinal rod channel, it has been

shown that the binding of Ca2+–calmodulin to the CNGB1a

N-terminus decreases the ligand sensitivity by interfering with

the direct interaction with the CNGA1 C-terminus, an inter-

domain interaction, essential to have high ligand sensitivity

[51]. However, the physiological role of Ca2+–calmodulin reg-

ulation in retinal rods is unclear and it does not seem to be in-

volved in adaptation [65,66].

It has been proposed that the endogenous factor co-assem-

bled with the native olfactory channel is calmodulin, although
a conclusive demonstration is still lacking. Moreover, some

experimental evidence argues against this hypothesis, in partic-

ular the endogenous factor appears to bind the CNG channels

in a very stable manner, being washed away only after intense

rinsing in Ca2+-free solution [40,43,44]. However, it is also pos-

sible to speculate that the binding of ‘‘native’’ calmodulin is

more stable because the channel or the calmodulin itself under-

goes post-transductional modifications that change the proper-

ties of the interaction. On the other hand, it cannot be

excluded that also other proteins, in addition to calmodulin,

contribute to the Ca2+-mediated modulation of olfactory

CNG channels.
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