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ABSTRACT

The magnitude of length dependent activation in striated muscle has been shown to vary with titin isoform.
Recently, a rat that harbors a homozygous autosomal mutation (HM) causing preferential expression of a lon-
ger, giant titin isoform was discovered (Greaser et al. 2005). Here, we investigated the impact of titin isoform
on myofilament force development and cross-bridge cycling kinetics as function of sarcomere length (SL) in
tibialis anterior skeletal muscle isolated from wild type (WT) and HM. Skeletal muscle bundles from HM rats
exhibited reductions in passive tension, maximal force development, myofilament calcium sensitivity, max-
imal ATP consumption, and tension cost at both short and long sarcomere length (SL=2.8 um and SL=
3.2 um, respectively). Moreover, the SL-dependent changes in these parameters were attenuated in HM
muscles. Additionally, myofilament Ca®* activation-relaxation properties were assessed in single isolated
myofibrils. Both the rate of tension generation upon Ca?* activation (kacr) as well as the rate of tension re-
development following a length perturbation (krg) were reduced in HM myofibrils compared to WT, while
relaxation kinetics were not affected. We conclude that presence of a long isoform of titin in the striated mus-
cle sarcomere is associated with reduced myofilament force development and cross-bridge cycling kinetics,
and a blunting of myofilament length dependent activation. This article is part of a Special Issue

entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Spanning each half sarcomere from the Z disk to the M band, titin
is the largest and third most abundant protein in mammalian striated
muscle [1-5]. Additionally, because adjacent filaments overlap in
both the Z disk and the M band, titin effectively forms a continuous
filament along an entire myofibril. The A-band region of titin is
inextensible and contains super-repeats of immunoglobulin (Ig) and
fibronectin type 3 (fn3) modules. The stretching of titin upon
increases in sarcomere length (SL) occurs in the I-band region that
includes extensible regions consisting of tandem arranged Ig-like
domains, PEVK segments (rich in proline [P], glutamate [E], valine
[V], and lysine [K]) and an N2 region (containing either N2B or N2A
unique amino acid sequences). While it is expressed from a single
gene, alternative splicing of titin mRNA in the I-band region allows
for expression of different titin isoforms of varying size. Therefore, it
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is by altering the length of the extensible I-band regions that titin
isoforms of varying stiffness are obtained.

The components, and therefore the length, of the middle Ig and
PEVK sequence, largely differentiate titin isoforms [1-5]. Since titin
acts as a “molecular spring” which provides a restoring force when
a muscle is stretched, the longer titin isoforms causes muscles to
have lower passive tension for a given change in SL than the shorter
ones. Compared to cardiac muscle, skeletal muscles I-band region of
titin is longer, causing it to produce much lower passive tension.

Due to the spanning the entire half sarcomere and having interac-
tions with both the thick and thin filaments, titin is thought to play a
role in myofilament length dependent activation. Length dependent
activation (LDA) is characterized by an increase in maximal Ca2™ ac-
tivated force and calcium sensitivity upon an increase in SL, which is
particularly important in the heart where the mechanism underlies
the Frank-Starling Law of the Heart [6]. While the precise mechanism
underlying LDA is unknown, many studies have shown that the
amount of passive stiffness in a specific muscle type or preparation
correlates to the amount of LDA exhibited [7-10]. This implicates
titin as playing a pivotal role in myofilament length dependent activa-
tion since in skeletal and cardiac muscle, titin bears nearly all of the
passive tension within physiological SL's [1-5]. Furthermore, reduc-
ing the amount of passive tension carried by titin, either by specific
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degradation using trypsin or by modifying the muscle's history de-
pendence of stretch, has shown to greatly reduce or eliminate LDA
[8,11].

To investigate the contribution of titin based passive stiffness in
LDA, here we utilized a rat that harbors a homozygous autosomal mu-
tation (HM) causing preferential expression of a giant N2BA-G titin
isoform. In the rat, titin undergoes developmental isoform changes;
the longest isoforms are expressed during the embryonic stages and
progressively get replaced by shorter isoforms [12,13]. A recent inves-
tigation on the length of the titin isoforms in various muscles during
development in both wild-type (WT) and HM rats showed that
among all of the skeletal muscle examined in WT rats, the tibialis an-
terior (TA) undergoes the greatest extent of developmental shorten-
ing [14]. The TA titin isoform starts out at 3.7 MDa after birth, and
by 180 days there are two shorter isoforms present, a 3.42 MDa
isoform and a more abundant 3.29 MDa isoform. Due to the lack of
normal developmental isoform shortening [13], HM rats maintain
the much longer N2BA-G titin isoform in both the TA (3.7 MDa) and
in the heart (3.8 MDa) [14,15]. Accordingly, we investigated the SL
dependence of Ca®™ activated force production and ATP consumption
in both WT and HM TA skeletal muscle bundles. Furthermore, to
examine the effect of titin isoform on cross-bridge cycling kinetics,
we measured the rates of maximal activation and relaxation in WT
and HM tibialis anterior myofibrils.

2. Materials and methods
2.1. Tissue procurement

All experiments were performed according to institutional guide-
lines concerning the care and use of experimental animals. The
wild-type (WT) and homozygous mutant (HM) rats used in this
study have been described previously [15-17]. Rats were anesthe-
tized with sodium pentobarbital (50 mg/kg i.p.) before removal of
the left and right tibialis anterior muscle (TA). After removal, the TA
was placed into a high potassium calcium free extra-cellular solution
at 4 °C and cut longitudinally into three or four smaller pieces
(~3 mm wide by ~20 mm strips). The strips were tied to small wood-
en sticks at physiological muscle length and placed in a 50% (v/v)
glycerol/rigor solution at —20 °C, which was replaced with fresh
solution after 24 h and stored at —20 °C for up to 6 months.

2.2. Preparation of tibialis anterior fiber bundles and single myofibrils

TA fiber bundles were prepared by teasing away small bundles
(0.1-0.25 mm wide by 1-2.5 mm long) from the larger aliquots
under a dissection microscope in ice cold relaxing solution. The
small bundles were stored for up to 3 days at 4 °C in relaxing solu-
tion. Immediately prior to an experiment, bundles were crimped in
aluminum T-clips in order to attach to hooks mounted on the force
transducer and motor arm.

To prepare TA myofibrils, small strips of muscle (1 mm wide by
10 mm long) were dissected from the larger aliquots and then ho-
mogenized (9 k rpm, 6 s) in ~1 mL of relaxing solution on ice before
being filtered (30 um nylon filter) to remove large aggregates and de-
bris. The HM tissue required slightly slower, but longer homogeniza-
tion speeds (6 k rpm, 12 s) to obtain good quality myofibrils, possibly
due to the tissue having less mechanical stiffness related to the longer
titin isoform. Myofibril preparations were then stored at 4 °C and
used for up to 4 days after preparation.

All solutions contained protease inhibitors (leupeptin, pepstatin,
and PMSF) as well as a reducing compound (DTT). Furthermore, no
differences in myofilament mechanical and energetic parameters
were observed during the time of storage at 4 °C.

2.3. Simultaneous measurement of isometric tension and ATPase activity

The ATPase apparatus has been described previously [18,19]. The
skinned skeletal bundles were attached via aluminum T-clips be-
tween an optical force transducer (World Precision Instruments
model KG4A; 0-20 mN range 4 pN resolution) and a high-speed
length controller (Aurora Scientific Inc. model 315C; 200 microsec-
ond step response time, 2.4 kHz frequency response). The force trans-
ducer and length controller were mounted on a horizontal sliding
arm that allowed for rapid translocation of the fiber between the dif-
ferent temperature controlled chambers on the apparatus. Isometric
tension and ATP consumption were measured over a range of free
Ca%* concentrations as previously described [18,19]. In addition,
high frequency muscle length perturbation (1%; 500 Hz) were ap-
plied continuously to measure high frequency stiffness, an index we
used to assess the relative number of attached actively cycling
cross-bridges during tension development; there were no differences
in stiffness relative to tension development under any condition or
fiber bundle type (WT or HM) in the present study. Accordingly, it
can be assumed that any differences in ATPase consumption rate
were not due to changes in force generation per cycling cross-
bridge [19]. ATP hydrolysis was stoichiometrically coupled to NADH
consumption. Because NADH absorbs UV light (340 nm) and NAD ™"
does not, ATP consumption can be determined by measurement of
NADH light absorption. The method is illustrated in Fig. 3; upon
activation of the muscle by increasing the [Ca® "] in the bathing solu-
tion, UV light absorbance (proportional to [NADH]) decreases con-
comitant with the development of muscle tension, reaching a steady
state NADH consumption rate when muscle tension development sta-
bilizes. Following removal of the muscle from the measurement
chamber into a chamber containing relaxing solution, tension devel-
opment relaxes and NADH consumption ceases. UV absorption is cal-
ibrated following each contraction by repeated injections of 500 pmol
ADP into the measurement chamber (50 nL; 10 mM). SL was set to
either 2.8 pm or 3.2 ym using laser diffraction; each fiber bundle
underwent a series of activations at varying levels of free Ca>* con-
centrations; the ATPase experiments were performed at 20 °C.

2.4. Measurement of activation and relaxation kinetics in single
myofibrils

The apparatus used for single myofibril activation-relaxation
kinetics measurements has been described previously [20,21]. Briefly,
an aliquot of either WT or HM myofibril suspension in relaxing solu-
tion was injected into a chamber filled with ~2.5 mL bath relaxing so-
lution that was mounted on the stage of an inverted microscope
(Olympus IX-70). Myofibrils that were selected for use were attached
horizontally between two glass tools, a custom-made black ink coated
cantilever of known stiffness (acting as a force probe) and a rigid pi-
pette attached to a piezo motor translation stage (Mad City Labs
model Nano-driveOP30). Force was determined by measurement of
the displacement of the force probe via edge detection, while SL
was measured via FFT analysis of the myofibril striation pattern
(IonOptix). Myofibrils were placed in one of the laminar solutions
emanating from a double-barreled perfusion pipette; rapid transla-
tion of this pipette allowed for rapid switching between the two solu-
tions. After a brief initial contraction to insure the myofibrils were
attached appropriately, each myofibril underwent a single maximal
saturated [Ca®™] activation-relaxation cycle that included a 20%
release-restretch maneuver during steady-state activation to deter-
mine kpg [19,22]. The rate of tension development following Ca?™ ac-
tivation (kact) and krg were determined by exponential fit; tension
relaxation, which is biphasic under these conditions, was determined
by both exponential and linear fits to the tension data [20,21]. Myofi-
brils were studied at SL=2.8 um and 15 °C.
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2.5. Titin isoform and myofilament protein expression

To determine titin isoform expression in both WT and HM TA
muscle, TA homogenate samples were suspended in SDS sample buff-
er and underwent electrophoresis using vertical SDS agarose gels
designed for high molecular weight protein separation as described
previously [23]. Additionally, to assess the lower molecular weight
myofilament protein isoform expression, homogenates samples
were separated using standard SDS-PAGE (12%) [24]; gels were
stained with Coomassie blue.

2.6. Solutions

The compositions of the activating and relaxing solutions were
calculated according to the procedures developed by Fabiato as
described previously [18]. Activating and relaxing solutions for myofibril
experiments contained (in mmol/L): EGTA (1), MgATP (5), free
Mg2 ™ (1), MOPS (10), Phosphocreatine (10). The pH was adjusted to
7.0 using KOH. Potassium Proprionate (Kprop) was added to adjust the
final ionic strength to 180 mM. Contaminant P; was reduced by adding
the enzyme purine nucleoside phosphorylase with the substrate 7-
methyl guanosine which acts as an P; scavenging system [25]. A range
of free [Ca®?*] was obtained by mixing activating solution (free
[Ca?*]=0.1 mM) and relaxing solution (free [Ca®>"]~1 nM). Bath solu-
tion was identical to relaxing solution except for the inclusion of 10 mM
EGTA and the absence of the P; scavenging system. All solutions
contained protease inhibitors: leupeptin (10 pM), pepstatin (5 pM),
phenylmethyl sulphonyl fluoride (200 pM), sodium azide (500 pM)
and dithiothreitol (10 mM). The activating solution for the ATPase ex-
periments contained (in mmol/L): CaCl, (10), EGTA (10), MgCl, (6.63),
Kprop (14.28), ATP (6.29); the pre-activating solution contained (in
mmol/L): EGTA (0.2), HDTA (9.8), MgCl, (6.69), Kprop (34.35), ATP
(6.2); the relaxing solution contained (in mmol/L): EGTA (10), MgCl,
(6.92), Kprop (33.99), ATP (6.2). In addition, all three solutions contained
(in mmol/L): BES (100), NaNs (5), PEP (10), DTT (1), NADH (0.9),
Pepstatin (1); and (in pmol/L): Leupeptin (10), PMSF (100), Oligomycin
(10), A2P5 (20), and the enzymes Pyruvate Kinase (4 mg/mL;500 U/mg)
and Lactate Dehydrogenase (0.24 mg/mL;870 U/mg). Solutions were
adjusted to pH 7.0 using KOH. Calcium free extra-cellular solution
contained (in mmol/L): TRIS (50), NaCl (100), KCI (2), MgCl, (2), EGTA
(1). The pH was adjusted to 7.0 using HCI. Rigor solution contained (in
mmol/L): TRIS (50), KCI (100), MgCl, (2), EGTA (1); pH was adjusted
to 7.0 using HCl.

2.7. Data processing and statistical analysis

Data were fit for each muscle or myofibril preparation individual-
ly; fit parameters were next used for calculation of average values and
statistics. Force development was normalized to cross-sectional area
and fit to a modified Hill equation: F/F.x=1410"[ny(pCasg—
pCa)] where Fp.x is the maximal Ca’™ saturated force, F is the
steady-state force, ny is the Hill coefficient, and pCa= —log[Ca®"];
pCasg is the pCa at which F is 50% of F,ax. ATP consumption was nor-
malized to muscle volume and plotted as function of normalized force
obtained at the various [Ca?™] and fit by linear regression to obtain
tension-cost, the amount of ATP consumed to maintain a certain
level of tension development. For the single myofibril experiments,
the rates of the tension increase following a step increase in [Ca®™]
(kacr) or following a rapid release-restretch maneuver (kg), as well
as the fast exponential phase of relaxation (kgxp), were estimated by
exponential fit to the data; the rate of the slow phase of relaxation
(kin) was estimated by linear regression. Data were analyzed using
two-way ANOVA. Significance was assumed at P<0.05; data are
presented as mean + S.E.M.

3. Results
3.1. Titin isoform and myofibrillar protein expression profile

Fig. 1 (top panel) shows a typical agarose SDS gel analysis of a rat
tibialis anterior muscle (TA). As has been reported previously,
wild-type (WT) TA expresses two titin isoforms at ~3.44 MDa and
~3.30 MDa, while homozygous (HM) muscles express the much larg-
er titin isoform at ~3.75 MDa [14]. As is illustrated by the SDS-PAGE
analysis of a TA muscle in Fig. 1 (bottom panel), overall myofilament
protein isoform expression was comparable between Wt and HM TA
muscles. Similar data were obtained in TA muscles from 4 separate
HM and WT animals. In addition, there were no significant differences
in the relative abundance (relative to actin) of the various contractile
proteins between the HM and WT groups (data not shown). This find-
ing is consistent with the observation that the stoichiometry of con-
tractile proteins in the striated muscle sarcomere is strictly
regulated [26].
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Fig. 1. Protein isoform composition SDS-PAGE analysis. Tibialis anterior skeletal muscle
(TA) was harvested from wild type (WT) and homozygous mutant (HM) rats. Top
panel: shows agarose gel electrophoresis images used to analyze to titin isoform pat-
terns. HM TA muscle expresses a single titin isoform that is significantly larger than
the two major isoforms expressed in wild type TA muscle. T2 is a titin breakdown prod-
uct which was similar in size between the WT and HM muscles. Bottom panel: myofil-
ament contractile proteins were analyzed by standard 12% SDS-PAGE. There were no
significant differences in contractile protein expression between WT and HM muscle.
T, titin; MHC, myosin heavy chain; o-A, alpha actinin; A, actin; TnT, troponin T; Tm,
tropomyosin; LC1, myosin light chain 1; Tnl, troponin I; TnC, troponin C; LC2, myosin
light chain 2; LC3, myosin light chain 3.
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Fig. 2. Passive tension. Panel A shows a single myofibril from a WT (top) and HM (bottom) TA muscle (SL=2.8 um). Myofibrils were attached to a stiff glass micropipette (left) and
a flexible thin glass micropipette (coated with blank ink to improve contrast; right); deflection of the black pipette was used to estimate myofibril force development. Passive ten-
sion measured as function of SL is shown for single myofibrils in panel B and fiber bundles in panel C. Passive muscle force was significantly higher in WT (solid lines and filled

symbols) compared to HM (dashed line and empty symbols) TA preparations.

3.2. Passive tension development

Fiber bundles and single myofibrils of both WT and HM mutant
muscles were stretched over a range of SLs (~2.5 ym to ~4 pm) and
passive tension was recorded several seconds following each SL
change, that is, at a time when a large component of immediate stress
relaxation had dissipated. Passive tension was recorded both in fiber
bundles, and in single myofibrils; panel A in Fig. 2 illustrates a single
myofibril from the WT (top) and HM (bottom), respectively (SL=
2.8 um). As illustrated in Fig. 2, passive tension was markedly reduced
at all sarcomere lengths in both TA bundles (panel B) and single

A

5 nmol/mm?®

100 mN/mm?

2 Seconds

Tension

pCa

myofibrils (panel C) in HM compared to WT preparations. This signif-
icant depression in the passive force-SL relationship in the HM group
is consistent with the longer titin isoform (N2BA-G) expressed in HM
muscles compared to the shorter N2B skeletal specific isoform
expressed in WT muscles (cf. Fig. 1).

3.3. Tension and ATPase activity in fiber bundles

Tension development and ATPase activity were measured in fiber
bundles of WT and HM TA muscles as illustrated in Fig. 3A for a

ATPase
(pmolls!mm’)
8

0 60 120
Tension (m Nlmmz)

Fig. 3. Tension development, ATPase activity, and tension-cost in fiber bundles. Multi-cellular skinned fiber bundles were prepared from WT (solid line and closed symbols) and HM
(dashed line and open symbols). Panel A shows typical recordings of [NADH] (top trace) and tension development (bottom trace). Upon activation of the fiber bundle, tension de-
velops concomitant with reduction of [NADH], indicative of increased ATPase activity by the muscle. Following removal of the fiber bundle from the measurement chamber, [NADH]
is calibrated by repeated injections of 500 pmol ADP (shown at the right for the WT trace only). Panel B shows average tension-Ca®* relationships (filled symbols are WT; empty
symbols are HM), while panel C shows average tension-ATPase relationships obtained in the WT and HM fiber bundles (filled symbols are WT; empty symbols are HM). HM fiber
bundles exhibited reduced tension development, myofilament Ca?* sensitivity, and tension-cost. Temperature, 20 °C; SL=2.8 um.
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contraction at maximum saturated [Ca®?™] and SL= 2.8 um. Upon ac-
tivation, tension development (bottom panel) increases toward
steady state concomitant with a reduction in [NADH] (top panel) in
the measurement chamber, indicative of ATP consumption by active
cycling cross-bridges. As this typical example illustrates, both steady
state tension and ATP consumption rates were significantly reduced
in the HM fiber bundle compared to the WT fiber bundle. That this
was the case at all [Ca®™] studied is shown by the force-Ca2™ rela-
tionships shown in panel B indicating, on average, maximum tension
development was ~25% lower in the HM fiber group. Moreover, the
entire force-Ca? ™ relationship was displaced to lower [Ca®™] (~0.06
pCa units) indicating decreased myofilament calcium sensitivity in
the HM fiber group. There were no differences in the level of
cooperativety, as indexed by the Hill coefficient, between the WT
and HM fiber groups.

Maximum ATPase activity was, on average, ~40% lower in the HM
fiber group (not shown). Tension-cost, the amount of ATP consumed
as a function of tension development over a range of [Ca®™], was on
average ~25% lower in the HM group as shown in panel C. This result
is consistent with the larger reduction in ATPase activity than tension
development indicating a reduction in cross-bridge cycle kinetics
[19,27,28] in myofilaments containing the larger mutant titin.

3.4. Impact of sarcomere length in fiber bundles

Increasing SL from 2.8 pm to 3.2 pm resulted in increased (~10%)
maximum tension development (Fig. 4A) and significantly increased
myofilament Ca?* sensitivity (+0.05 pCa units; Fig. 4B) in the WT
fiber bundles, consistent with robust myofilament length dependency
properties in WT muscles. In contrast, increased SL in HM fiber bun-
dles was associated with a reduced increase in maximum tension
(~7.5%) and lack of a significant change in myofilament Ca®™ sensi-
tivity (40.02 pCa units. SL did not affect maximum ATPase activity
(Fig. 4C) in either muscle group, while tension cost (Fig. 4D) was sig-
nificantly reduced upon an increase in SL only in the WT muscle
group to approach values recorded for the HM muscle at either SL.
Thus, myofilament length dependent activation properties were ob-
served in WT fiber bundles, and these properties were significantly
blunted in the HM fiber bundles.
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Fig. 4. Impact of sarcomere length. Tension-Ca?* and tension-ATPase relationships
were measured in WT (light bars) and HM (dark gray bars) fiber bundles at short
(S, SL=2.8 um) and long (L, SL=3.2 pm) sarcomere length. Maximum tension
(panel A), calcium sensitivity (panel B), maximum ATPase (panel C) and tension-cost
(panel D) were reduced in HM compared to WT fiber bundles at short and long SL.
Presence of the shorter isoform in the WT fiber bundles was associated with robust
myofilament length dependent activation of maximum tension, calcium sensitivity,
and tension-cost that was blunted in the HM fiber bundles.

3.5. Activation and relaxation kinetics in myofibrils

Activation-relaxation force kinetics were studied in single myofi-
brils to further assess cross-bridge cycle kinetics. The method is illus-
trated in Fig. 5. Upon a rapid solution switch to the activating
solution, myofibril tension increases exponentially to reach steady
state, at which time a rapid release-restretch maneuver is used to
measure tension redevelopment rate, krg. Upon a rapid solution
switch back to the relaxation solution, tension relaxes in a biphasic
fashion, as has been reported previously [29,30]. First following a
close to linear trajectory at a relatively slow rate, followed by a faster
exponential phase. This portion of the activation-relaxation cycle is
shown more clearly by the expanded traces shown in panel B. Activa-
tion kinetics (kacr), ktr, and the rapid relaxation phase (kgxp) kinetics
were estimated by exponential fits to the tension data, while the slow
linear relaxation kinetics were estimated by linear regression fit of
the tension data. The average fit parameters are summarized in
Table 1. As was the case in the multicellular fiber bundles (cf.
Fig. 4A), maximum tension development was significantly reduced
(~25%) in HM compared to WT myofibrils. Moreover, tension devel-
opment kinetics, for both Ca®™ activation (kacr) and tension redevel-
opment (krg), were reduced by ~20% in the HM myofibrils, consistent
with the 25% reduction in tension-cost measured in multicellular
fiber bundles (cf. Fig. 4D). On the other hand, there were no differ-
ences in rate parameters between the WT and HM myofibrils for
both the slow linear phase and the faster exponential phase of relax-
ation. There was a small (~8%), albeit non-significant, decrease in the
duration of the linear relaxation phase in the HM myofibrils.

4. Discussion

The purpose of this study was to investigate the consequences of
expressing a longer titin isoform on the SL dependence of force pro-
duction and ATP consumption in rat tibialis anterior (TA) muscle. Pre-
viously, to study the effect of titin isoform on striated muscle
mechanics it was necessary to use different tissues expressing differ-
ent titin isoforms. One caveat to this approach, however, is that

>

W 20%I, 150 nN

150 nN

100 ms

Fig. 5. Activation-relaxation kinetics by fast solution switch in single myofibrils.
Panel A shows typical tension recordings from an activation/relaxation cycle in wild
type (solid line) or homozygote mutant (dashed line) TA single myofibrils. Upon
Ca?™ activation, tension increased exponentially toward steady state, at which time
aquick release-restretch protocol (20% muscle length) was employed to assess expo-
nential tension redevelopment rate. Upon rapid removal of activating Ca*, tension
relaxation follows a biphasic pattern as illustrated by the expanded traces in panel
B. HM myofibrils displayed reduced maximum tension and reduced activation kinet-
ics. Calibration as indicated; see text for details. Temperature 15 °C; SL=2.8 pm.
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Table 1
Average single myofibril parameters.
Maximum tension kacr kerg kun tun kexp
(mN/mm?) (s7h (s7h (s7h (ms) (s7h)
WT 110410 3.26+0.16 4.07+0.16 2.44+0.18 130410 31420
HM 80+10" 2.64+024" 3.30+£0.27" 2.40+0.14 120410 34447

Activation/relaxation tension kinetic parameters were obtained in wild type (WT) and homozygous mutant (HM) single myofibril preparations by rapid solution switching. Ca?*
activation was mono-exponential (kact), while relaxation was biphasic characterized by a slow linear relaxation phase (rate, ky; duration, t;;y) followed by rapid exponential ten-
sion decline (kgxp) toward baseline. When tension development had reached steady state (cf. Fig. 5), a rapid release-restretch maneuver was employed to measure exponential
tension redevelopment (kg). HM myofibrils displayed reduced maximum tension development and reduced activation kinetics.

Values are expressed as means + S.E.M.
* P<0.05.

tissues that naturally express alternative native titin isoforms also
contain differences in other major contractile proteins. For instance,
in both skeletal and cardiac muscle there is a positive correlation be-
tween the MHC isoform expression, the rate of ATP hydrolysis and the
length of the titin molecule. This introduces ambiguity in assigning
the impact of each individual contractile component on biophysical
parameters such as myofilament length dependent activation
[31,32]. Here, we were able to circumvent such confounding factors
by using a rat that has an autosomal mutation causing it to differen-
tially express the giant N2BA-G titin isoform. Moreover, the lack of
major isoform differences in other contractile proteins between WT
and HM in the tibialis anterior muscle (TA; Fig. 1) raises confidence
that chemo-mechanical differences between WT and HM muscle
preparations was indeed due to the presence of the longer titin iso-
form. Nearly all of the passive tension in skeletal muscle is carried
by titin. Indeed, the inclusion of the longer titin isoform in HM prep-
arations resulted in much lower passive forces as compared to WT
preparations, and is consistent with previously published results
(Fig. 2B& C) [15,17].

Considering that many studies have found correlations between
titin isoform length and length dependent activation, a major purpose
here was to determine whether muscles harboring a longer titin
maintain a similar level of regulation by sarcomere length as muscles
from WT rats [6-10]. WT TA tissue displayed length dependency in
terms of maximum tension development and Ca?™ sensitivity,
which was blunted in HM tissue (cf. Fig. 4). This result indicates
that expression of a longer titin isoform does not eliminate, but rather
attenuates LDA. Moreover, HM tissue also exhibited a blunted length
dependency of tension cost compared to WT tissue. However, pres-
ence of a longer titin isoform did not appear to alter either
cooperativity or the force per cross-bridge as indexed by the Hill co-
efficient and high-frequency muscle stiffness, respectively. Therefore,
titin must alter contraction through mechanisms other than
cooperativity or the force per cross-bridge.

Our results on isolated TA skeletal muscle are consistent with a re-
cent study on isolated cardiac muscle, where expression of the larger
titin molecule in the HM mutant resulted in reduced maximum ten-
sion development and cross-bridge cycling rate (indexed by the ki,
parameter), and a virtual elimination of myofilament length depen-
dent activation [17]. Preliminary results from our laboratory have
confirmed these mechanical observations (data not shown). What
may be the mechanisms that result in blunted length dependency?
Several potential mechanisms have been proposed to underlie this
phenomenon (reviewed in [6]), including modulation of troponin
Ca?™ affinity, alterations of myosin structure, a modulation of the
feedback between attached cross-bridges and thin filament activation
status, and spread of cooperative activation [33]. Another mechanism
that has been proposed is a direct modulation of myofilament calcium
responsiveness due to alterations in inter-filament spacing [34]. In-
deed, preliminary data shows an expanded myofilament lattice in iso-
lated HM skinned myocardium (data not shown). Hence, although we
did not measure inter filament spacing in TA muscles, a similar phe-
nomenon may be present in these muscles studied here. However,

accumulating evidence have shed doubt on the notion that inter-
filament spacing directly modulates myofilament calcium responsive-
ness (reviewed in [6]). Rather, an expanded myofilament lattice may
be caused by the reduction in titin strain, thereby allowing the fila-
ments to move further apart at any given sarcomere length, while at
the same time, a reduction in titin strain may also reduce the impact
of titin strain on contractile protein structure such as, for example, tro-
ponin and myosin [35,36].

It should be noted that the RBM20 deficiency that underlies the
HM mutation that we studied here affects a multitude of proteins be-
sides the alternative splicing of titin, including Ca?* handling pro-
teins, signal transduction proteins, as well as tropomyosin [16]. In
general, Ca®>™ handling proteins are not expected to affect myofila-
ment function in skinned muscle. Likewise, tropomyosin isoform ex-
pression, at least in myocardium, has not been shown to affect
maximum force development or tension-cost [37]. The signal trans-
duction protein affected by RBM20 (CamKD) operates mainly in the
nucleus, although translocation to the cytosol in HM could have
resulted in altered contractile protein phosphorylation, particularly
titin. A recent report demonstrates phosphorylation at PKC target
site S26 in pathological human skeletal muscle titin, resulting in in-
creased passive tension and myofilament Ca?™ responsiveness, but
reduced tension-cost and no impact on maximum force development
or titin isoform expression [38]. Of note, the changes in myofilament
mechanical and energetic parameters and titin isoform observed in
the current study are quite distinct, reducing the likelihood that con-
tractile protein phosphorylation changes played a large role in our
study. Moreover, no changes in contractile protein phosphorylation,
including titin, were noted in a previous study on HM skinned myo-
cardium [17]. Nevertheless, since we did not measure contractile pro-
tein phosphorylation in HM and WT TA myofilaments, a role for
altered post-translational modification cannot fully be ruled out.

In addition to blunting the influence of length on the regulation of
contraction, there was a reduction in overall maximal force, maximal
ATP consumption, and tension cost in TA fiber bundles from the HM
rats compared to WT. The greater reduction in maximum ATPase
(~40%) compared to the decrease in maximal force production
(~25%) is in agreement with the overall lower tension cost in the
HM tissue (cf Fig. 4). Tension cost is related to g, or the rate by
which cross-bridges detach and leave the strong binding state.
Based on the Huxley two state cross-bridge model, a reduction in
the rate of detachment shifts the equilibrium of cross-bridges from
the weakly bound state to the strongly bound state. Because the
amount of force a muscle can produce is directly related to the per-
centage of cross-bridges in the strongly bound, force producing
state, a decrease in g is expected to increase maximal force, opposite
from what we observed in the present study. Therefore, the effects of
a longer titin on cross-bridge kinetics cannot be explained by a simple
reduction in the rate of cross-bridge detachment.

To gain further insight into the effect of the titin mutant on force
production and cross-bridge kinetics, we additionally examined acti-
vation and relaxation kinetics in the single myofibril preparation.
Maximum tension developed by a multi-cellular muscle preparation
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is directly proportional to both cross-sectional area and the density of
myofibrils per unit of cross-sectional area [20]. Single myofibrils from
HM tissue exhibited a similar decrease in maximal tension production
compared to WT myofibrils (Table 1) as we observed in the
multi-cellular fiber bundles. Therefore, the reduction in tension de-
velopment in the HM muscles could not have been the result of a
loss of overall contractile machinery, but rather must have been the
result of altered contractile protein functional properties. Similar to
tension cost, the slope of the initial phase of relaxation in myofibrils
(ki) and the duration of this phase (tyy) are thought to reflect the
rate of cross-bridge detachment. While there was a trend for a reduc-
tion of ki in HM myofibrils, this was not statistically significant.
Thus, presence of the mutant titin in the HM myofibrils minimally im-
pacted relaxation kinetics. The rate of force development following
either a step-wise increase in [Ca® ] or following a release-restretch
maneuver is related to the combined rates of cross-bridge attachment
(f) and detachment (g). Single myofibrils from HM tissue showed a
reduction in force development compared to WT myofibrils,
suggesting an overall slowing of cross-bridge cycling kinetics. The
combination of a decrease in maximal force, a reduction in g
(measured through tension cost and suggested in single myofibrils)
and a reduction in f+ g (suggested from activation kinetics in single
myofibrils) suggests that presence of a longer titin isoform in the sar-
comere more strongly influences the apparent rate of cross-bridge
attachment (f) than it does the apparent rate of detachment (g).
One mechanism that might explain why tissue expressing a longer
titin isoform would display reduced maximum tension development,
calcium sensitivity, and cross-bridge cycling kinetics is related to lat-
tice spacing (reviewed in [39,40]). The muscle sarcomere maintains
nearly a constant volume. Therefore, upon an increase in sarcomere
length there is a reduction in muscle width as well as the spacing be-
tween the thick and thin filaments [41]. This reduction in sarcomere
lattice spacing may increase the probability of a myosin head
attaching to actin. Titin is thought to play a role in the reduction of
lattice spacing upon an increase in SL since it provides a radial force
on the thick and thin filament upon stretch, bringing them closer to-
gether. Therefore, a longer titin isoform would be expected to provide
less of a radial force, thereby reducing lattice spacing less and subse-
quently reducing the probability of actin and myosin interaction. This
is supported by the observation that specific degradation of titin with
trypsin causes a reduction in length dependency concomitant with an
increase in lattice spacing [8]. Previous data published from our labo-
ratory, however, have shed doubt on the influence of lattice spacing
in LDA, suggesting other mechanisms might be responsible. For in-
stance, rather than only pulling the thick and thin filaments together,
the strain produced by titin with an increase in SL is also transmitted
lengthwise along the thick and thin filaments, and has been shown to
induce geometric rearrangements that favor actin-myosin interac-
tion [35,42], and that possibly also affects cross-bridge cycle kinetics.
Presumably, a longer titin transmits less strain along the thick and
thin filaments for a given change in SL and therefore would be
expected to have an attenuated response to changes in length, as
seen here. Our data showing a reduction in cross-bridge kinetics
and length dependency are in agreement with the hypothesis that
the presence of a longer titin isoform reduces maximal force, calcium
sensitivity and cross-bridge cycling kinetics by reducing the amount
of longitudinal strain transmitted along the thick and thin filaments.

4.1. Limitations

We studied tension and ATPase activity at short (SL=2.8 um) and
long (SL=3.2 um). However, single myofibrils were only studied at
the short SL (2.8 pm) because large sarcomere inhomogeneity upon
rapid activation was observed at the longer SL, precluding assessment
of length dependent activation at the single myofibril data. Moreover
it should be noted that the fiber bundle experiments were performed

at a different temperature than the single myofibril experiments. That
is, the ATPase activity of the TA muscle was too slow to be reliably
measured at 15 °C, prompting measurement of those data at 20 °C.
Single myofibril experiments, on the other hand, could not be
conducted at 20 °C due to preparation run-down.

4.2. Conclusions

We studied the impact of titin isoform expression on myofilament
function in tibialis anterior muscle of the rat. Presence of a longer titin
isoform reduced tension development, calcium sensitivity, cross-
bridge cycle kinetics, and length dependent activation properties.
We propose that strain transmitted by titin to the contractile appara-
tus affects cross-bridge cycle kinetics and that this mechanism may
underlie length dependent properties of striated muscle.
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