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O B J E C T I V E S We sought to determine whether contrast-enhanced ultrasound (CEU) microangiog-

raphy with maximum intensity projection (MIP) processing could temporally evaluate proliferation of the

vasa vasorum (VV) in a model of mural hemorrhage.

B A C K G R O U N D Expansion of the VV and plaque neovascularization contributes to plaque growth

and instability and may be triggered by a variety of stimuli, including vascular hemorrhage. However,

quantitative in vivo methods for temporal assessment of VV remodeling are lacking.

M E T H O D S In 24 rabbits fed a high-fat diet, either autologous whole blood or saline was

percutaneously injected into the media-adventitia of the femoral artery using ultrahigh-frequency

ultrasound guidance. Functional VV density at the injection site and contralateral control artery was

assessed 1, 2, and 6 weeks after injection with CEU imaging with MIP processing. In vitro studies with

renathane microtubes were also performed to validate linear density measurement with CEU and MIP

processing.

R E S U L T S In vitro studies demonstrated that MIP processing of CEU data reflected the relative linear

density of vessels in a manner that was relatively independent of contrast concentration or microtube

flow rate. On CEU with MIP, there was a 3-fold increase in femoral artery VV microvascular density at 1

and 2 weeks after blood injection (p � 0.01 vs. contralateral control), whereas VV density increased

minimally after saline injection. At 6 weeks, VV vascular density decreased in blood-treated vessels and

was not different from saline-injected or contralateral control vessels.

C O N C L U S I O N S CEU with MIP processing can provide quantitative data on temporal changes in

the functional density of the VV. This method may be useful for evaluating high-risk features of plaque

neovascularization or response to therapies aimed at plaque neovessels. (J Am Coll Cardiol Img 2010;

3:1265–72) © 2010 by the American College of Cardiology Foundation

From the *Divisions of Cardiovascular Medicine, Oregon Health & Science University, Portland, Oregon; and †Sungkyunkwan
University School of Medicine, Seoul, South Korea. Supported by grants R01-DK063508, R01-HL078610, and R01-
HL074443 from the National Institutes of Health (NIH), Bethesda, Maryland (to Dr. Lindner) and a grant from Genentech
Inc., South San Francisco, California. Dr. Carr is supported by a post-doctoral fellowship grant from the American Heart
Association. Dr. Davidson is supported by an NIH training grant (T32-HL094294). Dr. Lindner is a past member of the
Scientific Advisory Board for VisualSonics, Inc. All other authors report that they have no relationships to disclose.
Manuscript received March 28, 2010; revised manuscript received August 4, 2010, accepted August 6, 2010.



I
e
t
p
f
t
fl

V
c
t
r
r
m
a
t
i

a
t
p
m
c
f

M
e
c
b
m

M

A
p
C
s
t
p
r
i
(
m
p
w
g
w
h

Z
o
p
d
i
v
i
i
a
m
h
u
T

A

A

C

u

M

p

VV � vasa vasorum

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 3 , N O . 1 2 , 2 0 1 0

D E C E M B E R 2 0 1 0 : 1 2 6 5 – 7 2

Lee et al.

Contrast Ultrasound Imaging of V V

1266
n atherosclerotic disease, expansion of the vasa
vasorum (VV) and development of plaque neoves-
sels that penetrate the tunica media and neointima
have been causatively linked with lesion growth,
xpansion of the necrotic core, and plaque rup-
ure (1– 4). Plaque neovessels may promote
laque instability by serving as a portal of entry
or immune cells, lipoproteins, and erythrocytes
hat contribute to the cholesterol pool and in-
ammatory milieu (1– 4). The factors that initiate

See page 1273

V remodeling include hypoxia and proangiogenic
ytokines and growth factors produced as part of
he inflammatory response (2–5). Plaque hemor-
hage can also potentiate angiogenesis either di-
ectly or secondarily from stimulation of an inflam-
atory response (3,6), which could explain the

ssociation between occult plaque hemorrhage de-
ected by angioscopy or magnetic resonance imag-
ng with a future increase in lesion size and lipid

content (7–9).
Noninvasive detection of the presence

or therapeutic regression of VV or plaque
neovessels relies on the ability to image
mural microvascular density with high res-
olution and high sensitivity. Contrast-
enhanced ultrasound (CEU) was used pre-
viously to detect plaque neovascularization
in the carotid artery (10–13), although

nalysis methods have been qualitative and subject
o influence by contrast concentration in the blood
ool. In this study, we hypothesized that CEU with
aximum intensity projection (MIP) processing

ould be used to temporally quantify changes in the
unctional VV density caused by mural hemorrhage.

Figure 1. Percutaneous Intramural Microinjection of the Femora

(A, B) Images illustrating advancement of the short-bevel needle (b
guidance to the near-wall of the femoral artery (FA). (C) Post-injecti
See Online Videos 1 and 2 for illustrations of the positioning of the
IP processing was used to optimize sensitivity for
valuating the VV under baseline and stimulated
onditions and to provide a method for evaluating
lood volume that is relatively independent of
icrobubble dose or concentration.

E T H O D S

nimal models of intramural hemorrhage. The study
rotocol was approved by the Animal Care and Use
ommittee at Oregon Health & Science Univer-

ity. Pilot experiments were performed to confirm
hat exposure to whole blood could stimulate VV
roliferation in the femoral artery. Sprague-Dawley
ats (250 to 300 g) were anesthetized with an
ntraperitoneal injection of ketamine hydrochloride
40 mg/kg), xylazine (8 mg/kg), and atropine (0.02
g/kg). A sterile latex pouch 1 cm in length was

laced around a femoral artery and its open edges
ere sealed with cyanoacrylate glue. Either autolo-
ous blood or sterile saline (100 �l, n � 3 for each)
as injected into the cuff. Vessels were harvested for
istology 10 days later.
For in vivo imaging of VV proliferation, 24 New

ealand white rabbits 3 to 4 months old were placed
n a high-fat diet consisting of 1% cholesterol and 6%
eanut oil. Two weeks after initiation of the high-fat
iet, rabbits were randomized to receive femoral artery

ntramural injections (30 �l) of either autologous
enous blood in sodium citrate or control saline
njection. Animals were anesthetized and injections,
nto the adventitia and media of the near wall through

short-bevel 35-gauge needle were guided by a
icromanipulation-microinjection system and ultra-

igh frequency (55 MHz; beam elevation �1 mm)
ltrasound imaging (Vevo 770, VisualSonics Inc.,
oronto, Ontario, Canada) (Fig. 1, Online Videos 1

tery

arrowheads) under ultrahigh frequency ultrasound (55 MHz)
mage showing injectate in the vessel wall (white arrowheads).
dle and real-time spatial distribution of the injectate.
l Ar

lack
on i
nee
B B R E V I A T I O N S

N D A C R O N YM S

EU � contrast-enhanced

ltrasound

IP � maximum intensity

rojection
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nd 2). Injections were made 5 mm proximal to the
ifurcation of superficial and deep femoral arteries to
rovide an anatomic landmark for follow-up studies.

5-mm longitudinal extension of the injectate typi-
ally occurred on either side of the injection site. A
EU study of the injected and contralateral control

emoral artery was performed 1, 2, and 6 weeks after
njection. An inflammatory response to hemorrhage in
he rabbit model was assessed by CEU molecular
maging for intercellular adhesion molecule
ICAM)-1 and histology 48 h after injection.
V imaging. Functional VV in the injected and the
ontralateral control femoral arteries was assessed
sing CEU and MIP processing (Aplio, Toshiba
edical Systems, Tohigi, Japan), which displays

ixel intensity according to the maximum
chieved after a destructive pulse sequence so that
icrobubbles leave a “trail of enhancement” dur-

ng their transit (14). This method has been
reviously used to image functional microvascular
ensity in angiogenic beds (14). Imaging (me-
hanical index 0.1) was performed in the longi-
udinal axis with a linear-array transducer. Imag-
ng was performed at 7 MHz with a contrast-
pecific, low-power pulse-subtraction imaging.

Lipid-shelled decafluorobutane microbubbles
ere prepared by sonication of a gas-saturated

queous suspension of 2 mg·ml�1 distearoylphos-
hatidylcholine and 1 mg·ml�1 polyoxyethylene-
0-stearate. Microbubbles (5 � 107) were intrave-
ously injected for 2 s. On full opacification of the
ascular lumen (5 to 10 s after injection), MIP
mage sets were acquired after a 3-frame high-

echanical index destructive pulse sequence. Ac-
uisitions were performed in triplicate for each
rtery. Mural microvascular density in the femoral
rtery was measured using quantitative pixel inten-
ity threshold analysis, which determines the num-
er or percentage of pixels in a region of interest
hat exceeds 10% of the average background (pre-
ontrast) videointensity, which generally represents
3 SD above mean background (15). Data were

nalyzed from frames obtained 2 s after the destruc-
ive pulse sequence using regions of interest placed
ver the femoral artery wall that extended 2 mm
way from the lumen and that spanned 10 mm on
ither side of the injection site.
valuation of beam volume. The power spectrum of
he acoustic beam from the transducer used for VV
maging was characterized to determine the volume
f tissue imaged. A polyvinylidene fluoride needle
ydrophone (Precision Acoustics, Dorchester,

nited Kingdom) was placed in a degassed water p
ath in line with the ultrasound transducer at a
-cm separating distance. The hydrophone was
nterfaced with a pre-amplifier (HP1, Precision
coustics) and oscilloscope (WaveRunner 44MXi-A,
eCroy Corp., Chestnut Ridge, New York). A total
f 100 acoustic pressure waveforms were averaged
rom each position, which was adjusted in 50-�m
djustments in position in the elevational direction
sing an automated stepping motor controller (VXM,
elmex, Bloomfield, New York).
olecular imaging. For molecular imaging of the

nflammatory response, biotinylated hamster
onoclonal IgG1 against ICAM-1 (3E2, BD Phar-
ingen, San Diego, California) or control nonspe-

ific IgG1 were conjugated to the surface of micro-
ubbles that contain a bifunctional molecule with a
embrane anchoring domain and streptavidin at

he end of a molecular spacer (MicroMarker-3,
isualSonics Inc.). CEU molecular imaging of the

emoral artery in long-axis was performed in anes-
hetized rabbits with a linear-array probe (Sequoia,
iemens Medical Systems, Mountain View, Cali-
ornia). The nonlinear fundamental signal compo-
ent for microbubbles was detected with a multipulse
rotocol at a frequency of 7 MHz and a mechanical
ndex of 1.0. Protocols were performed as previously
escribed to detect the signal only from retained agent
16). Intensity was measured from a region of interest
laced on the near wall of the artery extending 1.0 cm
n either side of the injection site.
istology. For immunohistology, perfusion fixation
as performed by cannulation of the descending

orta. The femoral artery was removed together with
urrounding connective tissue. Immunohistochemis-
ry in the rat femoral artery was performed with a
rimary antibody against CD31 (3A12) and second-
ry antibody detection with 3,3=-diaminobenzidine
hromagen. VV density was assessed by counting the
umber of CD31-positive vessels in the adventitia
xtending up to 200 �m from the media border.
ematoxylin and eosin staining was used to evaluate

he inflammatory response 48 h after blood injection
n rabbits. Immunostaining of CD31 in rabbits was
nsuccessful despite attempts with several different
rimary antibodies.
n vitro validation of vascular density measurement.

coustically transparent microrenathane tubes
ith an inner diameter of 120 mm (BrainTree
cientific Inc., Braintree, Massachusetts) were
laced at a 30° incident angle to the ultrasound
ector. Microbubble suspensions were infused
hrough the tubing at a constant rate. Imaging

arameters were identical to those of in vivo

http://jaccimage.cardiosource.com/vol3/issue12/0162_VID2-vol3iss12.avi
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tudies and CEU data with MIP processing were
ollected for 2 s after a destructive pulse se-
uence. The following interacting variables were
tudied: 1) number of microvessels placed in the
eam (n � 1 to 4); 2) microbubble concentration
range 1 � 105 to 5 � 106 ml�1); and 3) flow rate
hrough each tube (10 to 15 �l/s). Data were
xpressed as the number of pixels enhancing �3
D beyond mean background signal.
tatistical analysis. Data were analyzed using RS/1
version 6.0.1, Domain Manufacturing Corp., Bur-
ington, Massachusetts). Comparisons of groups
ith regard to VV density and molecular imaging
ata were made using the Mann-Whitney rank-
um test. A Bonferroni procedure was used to
orrect for multiple comparisons according to treat-
ent group. Changes in the same subject according

o post-injection interval were compared using either
ilcoxon signed-rank test or a paired t test depending

n whether data were distributed normally. Difference
as considered significant at a p � 0.05.

E S U L T S

n vitro experiments. In this study, MIP processing
as used to detect the presence of microvessels that
ay have infrequent flux of microbubble contrast

gent. In vitro flow studies with renathane micro-
ubes were performed to determine whether the
rea with enhancement on MIP accurately depicts
he linear density of microvessels. The sequential
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Figure 2. In Vitro Validation of Linear Density

(A) Area of enhancement on contrast-enhanced ultrasound with ma
of perfused microtubes (n � 1 to 4). Data are shown for microbubb
enhancement at baseline (1.0�) and after a 50% increase (1.5�) in

sent the full range of linear densities and microbubble concentrations.
ddition of microtubes in the ultrasound field re-
ulted in a proportional increase in the area of
nhancement across a clinically relevant range of
icrobubble concentrations (Fig. 2A). Despite a

0-fold increase from the lowest (1 � 105 ml�1) to
ighest (5 � 106 ml�1) microbubble concentration,
here was only a small (�2-fold) difference in the
rea of enhancement. Across the full range of linear
ensities, a 50% increase in flow rate through each
icrotube resulted in a minimal (8 � 2%) increase

n the area of enhancement (Fig. 2B). In aggregate,
hese data imply that MIP enhancement area accu-
ately depicts functional microvessel density in a
anner that is not substantially influenced by mi-

robubble concentration or flow rate.
haracterization of the ultrasound sector. The acous-
ic pressure profile in the ultrasound beam was char-
cterized to determine the volume of tissue imaged
hen assessing VV density (Fig. 3). Assuming a
00-kPa peak negative acoustic pressure threshold for
icrobubble signal detection at 7 MHz (17), the

ffective elevational dimension was determined to be
.8 mm. The rabbit femoral artery diameter was
pproximately the same (range 1.7 to 2.1 mm), indi-
ating that most of the near wall volume was averaged
nto the 2-dimensional ultrasound display.
lood-induced VV proliferation. Because of difficul-
ies with CD31 staining in rabbits, the rat femoral
rtery was used for immunohistology evaluation of
he VV response to blood exposure. Adventitial
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ascular density was almost 3-fold greater in blood-
xposed compared with saline-exposed vessels
201 � 11 vessels vs. 76 � 10 vessels per section,
� 0.05) (Fig. 4).
In the rabbit femoral artery, a mural inflamma-

ory response 48 h after blood injection was con-
rmed by both histology and molecular imaging of
CAM-1 (Fig. 5). On CEU with MIP processing
erformed 1 and 2 weeks after injection, VV func-
ional density was greater for blood-injected vessels
ompared with either saline-injected or untreated
ontralateral control arteries (Fig. 6). At these
ime intervals, there was also a trend toward
igher VV blood volume in saline-injected com-
ared with contralateral control vessels, although
his did not reach statistical significance after
orrection for multiple comparisons. Examples of
EU MIP imaging video clips are provided in
nline Videos 3 and 4. By 6 weeks, the VV blood

olume decreased to the level of control condi-
ions (Fig. 6).

I S C U S S I O N

he development of methods that can noninva-
ively quantify VV and plaque neovessels in vivo
ill have a positive impact on clinical research and
robably therapeutic decision making in patients.
EU is one technique that has been used to

valuate plaque neovessels. Most studies have sim-
ly used qualitative scoring of the presence of
arotid microvessels with microbubble flux (10–13).
uantitative assessment using traditional CEU per-

usion imaging methods is possible but may not be
ell suited for quantifying progression or regression
f the VV for several reasons. First, functional
ascular density rather than microvascular flow may
e a better measure of risk because the detrimental
ffects of plaque neovascularization are more likely
o depend simply on the density of functional
icrovessels rather than on the flow rate through

hem. An index of blood volume can be measured
ith CEU using the plateau value of post-
estruction refill kinetics (18). However, this value

s influenced by microbubble concentration in the
lood pool, which varies over time and between
ubjects. Absolute blood volume can be calculated
y normalization to blood pool, but for VV imag-
ng, this process is complicated because of the high
oncentrations of contrast required to detect VV
hat result in a blood pool signal above the satura-

ion point of the dynamic range.
Although the degree of plaque enhancement on
EU in previous studies has correlated with the

xtent of plaque neovascularization on histology,
he absolute degree of contrast enhancement can be
uite low compared with the morphologic vascular
ensity (10,11,13). In nonhuman primates with
therosclerosis, absolute blood flow in the coronary
rtery intima-media microcirculation is generally

Elevation Position (mm)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

1.8-2.1 m

PNAP >0.2
1.8 mm

Vesse
Diamet

E

Figure 3. Acoustic Pressure Profile of the Imaging Probe

The graph depicts the peak positive (blue circles) and negative (ye
pressure in the elevational (E) dimension. Schematically illustrated a
sion of the rabbit femoral artery in relation to the peak negative ac
(PNAP) for pressures greater than �0.2 MPa in the elevational dime
the vessel in the long axis.

Figure 4. Vasa Vasorum in Blood-Exposed Rat Femoral Artery

Immunohistochemistry for CD31 illustrating marked proliferation of
days after placement of a cuff containing autologous blood or salin
m

 MPa

l
er

llow circles) acoustic
t right is the dimen-
oustic pressure
nsion when imaging
the vasa vasorum 10
e (control subjects).
Images represent 2 separate animals from each exposure group. Scale bar � 100 �m.

http://jaccimage.cardiosource.com/vol3/issue12/0162_VID3-vol3iss12.avi
http://jaccimage.cardiosource.com/vol3/issue12/0162_VID4-vol3iss12.avi


J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 3 , N O . 1 2 , 2 0 1 0

D E C E M B E R 2 0 1 0 : 1 2 6 5 – 7 2

Lee et al.

Contrast Ultrasound Imaging of V V

1270
Figure 5. Mural Inflammatory Response at 48 Hours

(A) Contrast-enhanced ultrasound molecular imaging data of the near wall of the rabbit femoral artery with either intercellular adhesion
molecule-1 (ICAM-1)–targeted or control microbubbles. *p � 0.05 versus saline injected. (B) Histology (hematoxylin and eosin) of a
blood-injected (top) and control (bottom) femoral artery demonstrating an adventitial cellular inflammatory response in the region of

blood injection (10� scale bar � 50 �m; 100� for inset).
Figure 6. Vasa Vasorum Blood Volume on Contrast-Enhanced Ultrasound Imaging

Examples of maximum intensity projection images 2 s after the destructive pulse sequence are shown for femoral arteries 2 weeks after
injection of either saline (A) or whole blood (B), illustrating a greater vasa vasorum (VV) density (arrows) in the latter. (C) Example of
pixel intensity threshold analysis for the blood-injected vessel whereby pixels within the region of interest that enhance beyond thresh-
old intensity are displayed in red-orange color scale and those that do not are displayed in blue. (D) Mean (� standard error of the
mean) area of enhancement on pixel intensity threshold analysis, an index of functional VV blood density. Data for contralateral nonin-
jected control vessels were similar between treatment cohorts and are grouped. *p � 0.05 versus control contralateral artery; †p � 0.05
versus both contralateral and saline-injected arteries (corrected for multiple comparisons).
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0.2 ml/min/g (19). Hence, plaque neovessels in
therosclerosis are similar to neovessels in certain
umors where the proportion of vessels that have
ctive flow at any time is low.

Because of these issues, we used MIP processing
f CEU data to enhance sensitivity for detecting
icrovessels that may have a low functional pro-

ortion. MIP detects microvascular linear density
y tracking the entire course of microbubble transit
hrough a microvessel and provides a sum of all
essels with any flux during the acquisition period.
his technique has an advantage over conventional
ethods of normalizing vessel wall signal to blood

ool signal because 1) it provides higher average
ntensities that are less affected by noise; 2) data are
ess influenced by microbubble concentration,
hereby obviating the need to normalize to blood
ool; and 3) the calculation of the number of pixels
hat enhance on MIP is less dependent on the size
f the region of interest than the measurement of
ean contrast intensity.
In this study, simulated vessel “hemorrhage” was

sed to promote VV proliferation. Our molecular
maging and histology data at 48 h confirmed an
nflammatory response in the adventitia that is
hought to be one of the primary factors responsible
or VV remodeling (3,6). Although a rat model was
equired to confidently identify blood-induced neo-
ascularization by immunohistology, we could still
etect the presence of vessels on histology in the rabbit
transcription factor, and macrophages et al. Arterial remo
etected a marked increase in VV functional density
or several weeks after hemorrhage. The increase in
V was transient, probably because of an insufficient

nvironment to maintain neovascularization (possibly
rom lack of tissue hypoxia in the absence of lesion
ormation).
tudy limitations. There are several other limitations
f this study. We created a hyperlipidemic milieu,
hich is important for promoting a proangiogenic

tate. However, we did not create focal atherosclerotic
laque per se. We did not correlate CEU MIP with
istology data in the rabbit, not only because of

imitations in immunohistochemistry but also because
f the marked spatial heterogeneity of VV on CEU
IP, which precluded accurate registration to histology.

t should also be noted that we relied on volume
veraging into a 2-dimensional sector, whereas future use
f 3-dimensional imaging could provide more accurate
ata.

O N C L U S I O N S

EU with MIP processing is a robust method for
valuating VV functional density that is relatively
ndependent of contrast dose. This technique is able
o detect temporal changes in VV density in models
f mural inflammation.

eprint requests and correspondence: Dr. Jonathan R. Lind-
er, Cardiovascular Division, UHN-62, Oregon Health &
cience University, 3181 SW Sam Jackson Park Road,
emoral artery adventitia at 2 weeks. On CEU we Portland, Oregon 97239. E-mail: lindnerj@ohsu.edu.
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