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The linearized massive gravity in three dimensions, over any maximally symmetric background, is known
to be presented in a self-dual form as a first order equation which encodes not only the massive Klein–
Gordon type field equation but also the supplementary transverse-traceless conditions. We generalize
this construction to higher dimensions. The appropriate dual description in d dimensions, additionally
to a (non-symmetric) tensor field hμν , involves an extra rank-(d − 1) field equivalently represented
by the torsion rank-3 tensor. The symmetry condition for hμν arises on-shell as a consequence of the
field equations. The action principle of the dual theory is formulated. The focus has been made on four
dimensions. Solving one of the fields in terms of the other and putting back in the action one obtains
two other equivalent formulations of the theory in which the action is quadratic in derivatives. In one of
these representations the theory is formulated entirely in terms of a rank-2 non-symmetric tensor hμν .
This quadratic theory is not identical to the Fierz–Pauli theory and contains the coupling between the
symmetric and antisymmetric parts of hμν . Nevertheless, the only singularity in the propagator is the
same as in the Fierz–Pauli theory so that only the massive spin-2 particle is propagating. In the other
representation, the theory is formulated in terms of the torsion rank-3 tensor only. We analyze the
conditions which follow from the field equations and show that they restrict to 5 degrees of freedom thus
producing an alternative description to the massive spin-2 particle. A generalization to higher dimensions
is suggested.

© 2012 Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

Massive gravity is one of the interesting directions of current
research actively discussed in the literature. The on-going research
appears to converge towards a formulation of a consistent non-
linear theory (for a review of the current status and for the recent
developments see [1]). Nevertheless, it is always desirable to de-
velop alternative ways to approach the problem. In the present
Letter we develop one such approach, at the present stage still
at the linearized level, based on the use of first order field equa-
tions.

The starting point for the present work is the observation [2,3]
that in three space–time dimensions, on the background of a max-
imally symmetric metric, the wave equation for a massive graviton
together with the supplementary (gauge) conditions can be writ-
ten as a single first order equation

εμ
αβ∇αhβν = mhμν, (1.1)
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where ∇α is a covariant derivative with respect to a maximally
symmetric metric gαβ . Indeed, provided the tensor field hμν is
symmetric and satisfies this equation, then it is automatically
traceless and transverse,

gμνhμν = 0, ∇μhμν = 0, (1.2)

and, squaring Eq. (1.1), we produce the second order equation

(
� − 1

2
R + (−1)sm2

)
hμν = 0, (1.3)

where � = ∇α∇α and s is the signature of space–time. Eq. (1.1) ap-
pears in the linearized gravitational equations (see for instance [4])
obtained by varying the gravitational action which is the sum of
the Ricci scalar and the gravitational Chern–Simons term, a model
of massive gravity first proposed in [5].

In a generalization of Eq. (1.1) to higher dimensions, assuming
that in the right hand side there still should stand the rank-2 ten-
sor hμν , we find that the left hand side should contain a tensor of
rank-(d − 1),

εμ
βα1..αd−2∇β Bα1..α ,ν = m1hμν. (1.4)
d−2
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Thus, in higher dimensions we would need two independent fields
hμν and Bα1..αd−1,μ and hence Eq. (1.4) should be accompanied by
a second equation

εα1..αd−2
ρσ ∇ρhσμ = m2 Bα1..αd−2,μ. (1.5)

Eqs. (1.4) and (1.5) demonstrate a certain duality between fields
hμν and Bα1..αd−1,μ . Only in three dimensions, d = 3, the tensor B
has two indexes and can be identified with the tensor hμν so that
in this case we have a self-dual description (1.1) of a massive gravi-
ton.

In the present Letter we mostly focus on the four-dimensional
case, d = 4, and study how the equations of the type (1.4) and
(1.5) can be obtained from an action principle. Since the pecu-
liarities of the appropriate action principle can already be seen in
three dimensions we start by reviewing the known results in d = 3.
Throughout the Letter the background metric gμν is considered to
be a maximally symmetric metric, so that one has for the Riemann
tensor in d dimensions

Rαβ
μν = R

d(d − 1)

(
δα
μδ

β
ν − δα

ν δ
β
μ

)
, (1.6)

where the Ricci scalar is a constant of any type (R > 0, R = 0,
R < 0). We also quote the contraction formula for the product of
two ε-tensors in d dimensions

εμ1..μpα1..αd−p εμ1..μpβ1..βd−p = (−1)s p!(d − p)!δ[α1
β1

..δ
αd−p]
βd−p

,

(1.7)

where s is the signature of the space–time, which will be often
used in the Letter.

2. Self-dual massive gravity in three dimensions

A curious fact about Eq. (1.1) is that it cannot be obtained from
an action written in terms of a symmetric tensor hμν . So that in
the action one has to consider a non-symmetric tensor field hμν .
The symmetry condition then arises as a consequence of the field
equations. The action then takes the form [2]

W [h] =
∫

M3

1

2

(
hαβεαμν∇μhν

β − m
(
hμνhνμ − h2)), (2.8)

where h = gμνhμν is the trace. Variation with respect to hμν gives
the equation [2]

εμ
αβ∇αhβν = m(hνμ − gμνh). (2.9)

Eq. (1.1) is a consequence of this equation that can be shown in
few steps.

First, let us take the covariant divergence of (2.9). Then, com-
muting the covariant derivatives and using that for a maximally
symmetric metric the Riemann tensor takes the form (1.6), we ob-
tain that

m∇μ(hνμ − gμνh) = − R

6
εν

αβhαβ. (2.10)

On the other hand, the contraction of (2.9) with the ε-tensor gives

∇β(hνβ − gνβh) = (−1)smεν
αβhαβ, (2.11)

where an identity εαβμεμσρ = (−1)s(δα
σ δ

β
ρ − δα

ρ δ
β
σ ) (see (1.7)) is

used. Combining these two equations and assuming that the cur-
vature R is generic so that R �= (−1)s6m2, we obtain that hμν

satisfies equations

∇μ(hνμ − gμνh) = 0, εν
αβhαβ = 0. (2.12)
The second equation in (2.12) means that the antisymmetric part
of hμν is zero, i.e. h[μν] = 0. Hence, the tensor field hμν is sym-
metric. Moreover, the trace of hμν vanishes, h = 0, as follows from
the trace of (2.9) provided the second equation in (2.12) is used.
Thus, we see that the tensor field hμν satisfying Eq. (2.9) is indeed
a symmetric, traceless and transverse tensor (1.2) and Eq. (2.9) re-
duces to Eq. (1.1) in the Introduction.

3. The linearized massive gravity in four dimensions

Our goal in this section is to find a generalization of the first
order theory in three dimensions to the four-dimensional case. As
we discussed in the Introduction the theory in this case should
contain an additional rank-3 tensor field Bαβ,μ = −Bβα,μ so that
one should have two independent equations sufficient to prescribe
the dynamics for all fields in question. The field equations are of
the type (1.4) and (1.5). We start our analysis with derivation of
the action.

3.1. The action and the field equations

As in three dimensions, in the action we have to assume that
the tensor field hμν is not symmetric,

W [h, B] =
∫

M4

(
m1

2

(
hμνhνμ − h2) + m2

2

(
Bαβ,σ Bαβ,σ

− 2Bα
β,α Bσβ

,σ

) + Bαβ,
μ∇ρhμσ εσραβ

)
. (3.13)

The equations of motion for the fields hμν and Bμν,α take the form

m1(hμν − hgμν) = εμσ
αβ∇σ Bαβ,ν, (3.14)

m2(Bμν,α − Bμgαν + Bν gαμ) = εμν
ρσ ∇ρhασ , (3.15)

where we introduced Bμ = Bμσ,
σ . These equations describe a

massive spin-2 particle as we now show.

3.2. Constraints1

The covariant divergence of Eq. (3.14), taking into account that
the background metric is maximally symmetric and hence the re-
lation (1.6) should be used, produces

m1∇μ(hμν − gμνh) = R

12
εν

αβσ Bαβ,σ (3.16)

while the contraction of Eq. (3.15) with ε-tensor gives

m2εν
αβσ Bαβ,σ = −(−1)s2∇μ(hμν − gμνh). (3.17)

Provided the background curvature R �= −6(−1)sm1m2 these two
equations produce the constraints

∇μ(hμν − gμνh) = 0, εν
αβσ Bαβ,σ = 0. (3.18)

The second constraint in (3.18) implies that the tensor field hμν is
traceless, h = 0, that can be seen by taking trace of Eq. (3.14).

More constraints can be found by playing with Eqs. (3.14) and
(3.15). Contracting Eq. (3.14) with ε-tensor we obtain

m1εαβ
μνhμν = 2(−1)s(∇α Bβ − ∇β Bα + ∇σ Bαβ,σ

)
(3.19)

1 In this Letter we call “constraint” a relation, at most of the first order in deriva-
tive, which involves only one field, either hμν or Bμν,α , but not both.
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while taking the divergence with respect to the third index of
Bμν,α in (3.15) we find

m2
(∇σ Bαβ,σ − ∇β Bα + ∇α Bβ

) = R

6
εαβ

ρσ hρσ . (3.20)

Combining these two equations we obtain the constraints

εαβ
μνhμν = 0, ∇σ Bαβ,σ − ∇β Bα + ∇α Bβ = 0. (3.21)

The first constraint implies that the tensor field hμν is symmet-
ric, h[μν] = 0. Then, contracting any two indexes in Eq. (3.15) we
conclude that Bα = 0 and, as follows from (3.21), ∇σ Bμν,σ = 0.
One obtains one more constraint by taking the divergence with re-
spect to the first index in (3.15). By using the relation (1.6) for the
Riemann curvature one then finds that ∇μBμν,α = 0.

3.3. Number of degrees of freedom

Let us list all the constraints we have found. The field hμν sat-
isfies conditions

hμν = hνμ, h = 0, ∇μhμν = 0, (3.22)

which indicate that hμν is a symmetric transverse-traceless ten-
sor. In four dimensions this tensor has 5 independent components,
the number of degrees of freedom of a spin-2 particle. The rank-3
tensor field Bμν,α a priori has 24 components. The constraints

Bμν,
μ = 0, εμναβ Bνα,β = 0,

∇α Bμν,α = 0, ∇μBμν,α = 0 (3.23)

impose 19 conditions2 on the components thus leaving us with
5 independent degrees of freedom, same number as for the ten-
sor field hμν . Let us note that in the theory with action (3.13) the
fields hμν and Bμν,α are not independent variables, they are ex-
pressed one through the other. Provided hμν is considered as the
primary field then the tensor Bμν,α is uniquely determined by hμν

or vice versa.

3.4. Klein–Gordon type massive field equations

With all these constraints Eqs. (3.14) and (3.15) take the form

m1hμν = εμσ
αβ∇σ Bαβ,ν,

m2 Bμν,α = εμν
ρσ ∇ρhασ , (3.24)

as announced in Eqs. (1.4) and (1.5) in the Introduction. By squar-
ing Eqs. (3.24) we arrive at the field equations quadratic in deriva-
tives(

� − R

3
− m2

)
hμν = 0,

(
� − 5R

12
− m2

)
Bμν,α = 0, (3.25)

where � = ∇α∇α , m2 = −(−1)sm1m2/2 and we used the con-
straints (3.22), (3.23).

2 This can be easily seen in flat Minkowski space–time by first representing the

components in the form Bμν,α(k)eikσ xσ
. In the rest frame one has k0 �= 0 and ki = 0,

i = 1,2,3. So that Eqs. (3.23) reduce to conditions: B0i,0 = 0 (3 conditions), Bij,0 = 0
(3 conditions), B0i, j = 0 (9 conditions), Bij,

i = 0 (3 conditions), B[i j,k] = 0 (1 condi-
tion).
3.5. Coupling to matter sources and relation to the torsion

Let us consider the coupling of the fields hμν and Bμν,α with
matter sources tμν and Sμν,α respectively, where tμν represents
a canonical stress-energy tensor of the source and Sμν,α is the
spin tensor of the matter source. The spin tensor is antisymmetric,
Sμν,α = −Sνμ,α . On the other hand, in the presence of the spin
tensor the stress-energy tensor is not symmetric. In a theory of
gravity in which the gravitational variables are the metric gμν and
the torsion Q μν,α the sources satisfy the identities (see [6] for
more details)

t[μν] + (∇̃α − 2Q α
)

Sμν,α = 0,(∇̃μ − 2Q μ
)
tμν − 2Q μν,

αtμα − Sαβ,μ R̃αβμν = 0, (3.26)

where Q μ = Q μν,
ν and ∇̃α and R̃αβμν are respectively the co-

variant derivative and the curvature defined with respect to the
Riemann–Cartan connection.

The total action then reads

W [h, B, t, S] = W [h, B] +
∫

M4

(
tμνhνμ

+ m2
(−1)s

2
εμν

σρ Sσρ,α Bμν,α

)
. (3.27)

The reasons for the chosen form of the spin-field B coupling will
be clear in a moment. In the presence of matter the field equations
read

m1(hμν − hgμν) − εμσ
αβ∇σ Bαβ,ν + tμν = 0,

m2(Bμν,α − Bμgαν + Bν gαμ) − εμν
ρσ ∇ρhασ

+ m2
(−1)s

2
εμν

σρ Sσρ,α = 0. (3.28)

We do not expect all constraints (3.22) and (3.23) to be valid when
the coupling to matter is considered. However, we do want the
relation

∇μ(hμν − gμνh) = 0 (3.29)

to still hold and we want the field hμν to be symmetric. These two
conditions will impose certain restrictions on the stress-energy
tensor tμν and the spin tensor Sμν,α of the matter source. Here
we shall identify those restrictions. The strategy remains the same
as before. We find from the first equation in (3.28) that

m1∇μ(hμν − hgμν) − R

12
εν

αβρ Bαβ,ρ + ∇μtμν = 0. (3.30)

On the other hand, the contraction of the second equation in (3.28)
with the ε-tensor will produce the relation

m2εν
αβσ Bαβ,σ + 2(−1)s∇μ(hμν − gμνh) − 2m2 Sρ

ν,ρ = 0.

(3.31)

Combining the two equations (3.30) and (3.31) and imposing con-
dition (3.29) we find a relation to be satisfied by the matter ten-
sors

∇μtμν = R

6
Sρ

ν,ρ . (3.32)

In order to analyze the symmetry condition for the tensor hμν we
contract the first equation in (3.28) with the ε-tensor and obtain
that



K. Morand, S.N. Solodukhin / Physics Letters B 715 (2012) 260–266 263
m1εαβ
μνhμν − 2(−1)s(∇α Bβ − ∇β Bα + ∇σ Bαβ,σ

)
+ εαβ

μνtμν = 0. (3.33)

Then we compute the divergence of the second equation in (3.28)
and find that

m2
(∇σ Bαβ,σ − ∇β Bα + ∇α Bβ

) − R

6
εαβ

ρσ hρσ

+ m2
(−1)s

2
εαβ

μν∇σ Sμν,σ = 0. (3.34)

Combining the two equations (3.33) and (3.34) and imposing the
symmetry condition h[μν] = 0 we find another relation to be satis-
fied by the matter source

t[μν] = ∇σ Sμν,σ . (3.35)

It is now not difficult to see that, provided the background tor-
sion is zero and the background metric is maximally symmetric,
Eqs. (3.32) and (3.35) are identical to the relations (3.26) that ap-
pear in the Riemann–Cartan geometry. This in particular explains
our choice for the spin coupling in the action (3.27). Moreover,
since in the Riemann–Cartan geometry the spin tensor couples to
torsion we can identify the relation between our field Bμν,α and
the torsion Q μν,α :

Q μν,α = (−1)s

2
εμν

σρ Bσρ,α. (3.36)

This is a rather surprising observation since we did not implement
in the theory any new geometric structure other than the standard
Riemann geometry. What is interesting and perhaps non-standard
from the point of view of the Riemann–Cartan geometry is that
the torsion (3.36), on-shell, is completely determined by the metric
and vice versa. In the standard approach the metric and the torsion
are considered as two independent variables.

Having identified our field Bμν,α as the torsion we can now
invert the logic. Let us assume that the matter source satisfies the
conditions (3.32), (3.35) or, equivalently, (3.26). Then we deduce
from the field equations (3.28) that the field hμν is symmetric and
satisfies the condition (3.29).

3.6. The theory expressed in terms of hμν

As we have already noted, Eq. (3.15) can be used to express
the field Bμν,α in terms of the rank-2 tensor field hμν . After sub-
stitution back to the action (3.13) this would give us an action,
quadratic in derivatives, expressed in terms of the field hμν only,

W [h] =
∫

M4

[
m1

2

(
hμνhνμ − h2)

+ (−1)s

2m2
∇ρhνσ

(−∇ρhνσ − ∇νhρσ

+ ∇νhσρ − ∇ρhσν + ∇σ hρν + ∇σ hνρ
)]

. (3.37)

The field equations which follow from this action can be brought
to the form

Dμν(h) = m2(hμν − gμνh),

Dμν(h) = �hνμ + �hμν + ∇ρ∇νhρμ − ∇ρ∇νhμρ

− ∇ρ∇μhρν − ∇ρ∇μhνρ, (3.38)

where m2 = −(−1)sm1m2/2. On a maximally symmetric back-
ground the tensor Dμν(h) has the following properties
∇μDμν(h) = R

6

(∇μhμν − ∇νh
)
,

gμνDμν(h) = −2∇ν
(∇μhμν − ∇νh

)
. (3.39)

Combining these properties with Eq. (3.38) one finds that
∇μhμν = 0 and h = 0. The tensor Dμν(h) then can be brought
to the form

Dμν(h) = �(hμν + hνμ) − R

2
hμν − R

6
hνμ

− ∇ν∇ρhμρ − ∇μ∇ρhνρ. (3.40)

The antisymmetric part of Eqs. (3.38) then reduces to an algebraic
equation on the antisymmetric part of hμν(

R

6
− m2

)
h[μν] = 0, (3.41)

which in a generic case, when R �= 6m2, implies that the anti-
symmetric part is vanishing, h[μν] = 0. Eqs. (3.38) for the sym-
metric part h(μν) then reduce to the massive Klein–Gordon equa-
tion (3.25).

Thus, the action (3.37) describes correctly the spin-2 degrees of
freedom. It is surprising that this action is different from that of
Fierz and Pauli [7]. The two actions are different even when con-
sidered on a symmetric tensor field hμν . The difference appears in
the structure of the kinetic terms. The most striking peculiarity of
the action (3.37) is that it contains a coupling in the kinetic term
between the symmetric and antisymmetric parts of the field hμν .
Moreover, the trace h does not appear at all in the kinetic term.
The respective term in the field equations (3.38) cannot be identi-
fied with a linearized expression for a curvature tensor satisfying
the Jacobi identity. Nevertheless, the tensor Dμν(h), containing
only the second derivatives of hμν , is divergence-free in flat space–
time, ∂μDμν(h) = 0. This is a manifestation of the invariance of
the kinetic term in (3.37) (and, in fact, of the kinetic term in (3.13))
under the gauge symmetry

hμν → hμν + ∂νξμ, (3.42)

where ξμ is an arbitrary vector.

3.7. The propagator

Let us focus on flat Minkowski space–time equipped with met-
ric ηαβ . The field equations (3.38) for the tensor field hμν are
represented as

Oνσαβhαβ = 0, (3.43)

where the field operator

Oνσαβ = 1

2

(�(
ηανησβ + ηασ ηβν

) + ∂α∂νησβ

− ∂β∂νηασ − ∂α∂σ ηνβ − ∂β∂σ ηαν
)

− m2(ηασ ηβν − ηνσ ηαβ
)
. (3.44)

In the momentum–space we have to replace ∂α → ikα . The prop-
agator Pαβμν then satisfies the relation (we remind that the field
hμν is not a priori symmetric)

PαβμνOμνσρ = δσ
α δ

ρ
β . (3.45)

The propagator can be decomposed on symmetric and antisym-
metric parts with respect to the two groups of indexes,

Pαβμν = P(αβ)(μν) +P[αβ](μν) +P(αβ)[μν] +P[αβ][μν]. (3.46)

For the symmetric components of the propagator we find
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P(αβ)(μν) = P P F
αβμν + 1

4m4
(ηβνkαkμ + ηανkβkμ

+ ηβμkαkν + ηαμkβkν), (3.47)

where P P F
αβμν is the propagator in the Fierz–Pauli theory [7] of

massive gravity,

P P F
αβμν = − 1

k2 + m2

(
1

2
(Pαμ Pβν + Pαν Pβμ) − 1

3
Pαβ Pμν

)
,

(3.48)

where Pαβ = ηαβ − kαkβ

m2 . For the other components of the propa-
gator we find that

P[αβ](μν) = P(μν)[αβ]

= − 1

4m4
(ημβkνkα − ημαkνkβ

+ ηνβkμkα − ηναkμkβ), (3.49)

P[αβ][μν] = − 1

2m2

(
ημαηνβ − ημβηνα − 1

2m2
[ηναkμkβ

+ ημβkνkα − ηνβkμkα − ημαkνkβ ]
)

. (3.50)

We see that the propagator (3.46) in the theory (3.37) differs from
the propagator in the Fierz–Pauli theory only by regular terms.
Thus, the only singularity in the propagator is identical to that of
the Fierz–Pauli theory that corresponds to a massive spin-2 parti-
cle. The theory (3.37) then does not contain any physical or non-
physical states (considered as poles in the propagator) other than
that of the massive graviton. We should note that the theory (3.37)
could be viewed as a counter-example to the statement made long
ago in [8] that the only consistent theory of a rank-2 tensor hμν

that does not contain neither ghosts nor tachyons is the one in
which the symmetric and antisymmetric parts of hμν decouple.
The theory at hand does contain this kind of coupling, neverthe-
less it is free of the mentioned pathologies. The antisymmetric part
of hμν does not seem to be dynamical in the theory (3.37) since
the relevant part (3.50) of the propagator does not contain any
pole, although its presence is essential to have a consistent theory.
In fact, imposing the condition that the antisymmetric part of hμν

vanishes in the action (3.37) we would get a theory of the sym-
metric hμν that contains ghosts. Similarly, imposing the condition
that the symmetric part of hμν is zero in (3.37) we would get a
theory that effectively describes a tachyonic spin-1 massive mode.
Only when the both parts, symmetric and antisymmetric, of hμν

are present in the action we have a fully consistent theory with-
out ghosts and/or tachyons. In Appendix A we give some details of
this analysis.

3.8. The theory expressed in terms of torsion Q μν,α

On the other hand, we can use Eq. (3.14) and express the field
hμν in terms of Bμν,α or, using the relation (3.36), in terms of
the torsion tensor Q μν,α . The theory then is formulated entirely
in terms of the torsion with the quadratic action in the form

W [Q ] = − 2

m1

∫

M4

(
Hμν Hνμ − 1

3
H2 + m2 Q μν,α Q μα,ν

)
,

(3.51)

where m2 = −(−1)sm1m2/2 as before and we introduced Hμν =
∇σ Q μσ,ν , H = gμν Hμν . The field equation satisfied by Q μν,α is
∇μHαν − ∇ν Hαμ + 1

3
(gμα∇ν H − gνα∇μH)

+ m2(Q μα,ν − Q να,μ) = 0. (3.52)

This constitutes a formulation of the linearized massive gravity
that is dual to the metric formulation in terms of rank-2 tensor
field as given by Eqs. (3.37), (3.38).

Let us analyze Eq. (3.52). For simplicity we consider flat
Minkowski space–time as a background. In flat space–time we
have that ∂μHμν = ∂μ∂σ Q μσ,ν = 0 due to the antisymmetric
property of the torsion tensor, Q μσ,ν = −Q σμ,ν . Now, taking the
divergence ∂α of (3.52) we obtain that ∂α Q μα,ν = ∂α Q να,μ . This
indicates that the earlier introduced tensor Hμν = ∂α Q μα,ν is
symmetric, Hμν = Hνμ . As we will see in a moment namely this
tensor will contain the degrees of freedom of a spin-2 particle.

The one more divergence, this time with respect to index μ, of
Eq. (3.52) results in the equation

�Hαν + 1

3
(∂α∂ν H − gνα�H) − m2 Hαν − m2∂μ Q να,μ = 0.

(3.53)

The antisymmetric part of this equation gives the constraint
∂μ Q να,μ = 0 while the symmetric part takes the form of an equa-
tion for tensor Hμν

�Hαν + 1

3
(∂α∂ν H − gνα�H) − m2 Hαν = 0. (3.54)

The trace of this equation results in the condition that H = 0 so
that (3.54) reduces to the Klein–Gordon massive equation for Hμν .
Collecting all the equations obtained for the tensor Hμν we find
that

Hμν = Hνμ, ∂μHμν = 0, gμν Hμν = 0,(� − m2)Hμν = 0. (3.55)

These are exactly the conditions to be satisfied by a symmetric
tensor field which describes a spin-2 particle. However, in this con-
struction the field Hμν is not a primary object but rather it is built
from the torsion tensor.

Since the trace H = 0 Eq. (3.52) then takes the form

∂μHαν − ∂ν Hαμ + m2(Q μα,ν − Q να,μ) = 0. (3.56)

It can be used to express the torsion tensor in terms of the sym-
metric tensor Hμν satisfying Eqs. (3.55) as follows

Q μα,ν = − 1

m2
(∂μHαν − ∂α Hμν). (3.57)

Together with the condition that Hμν = ∂α Q μα,ν this constitutes
the field equations to be satisfied by the torsion tensor Q μν,α .

Below we list all the constraints imposed by the field equations
on the torsion tensor:

Q α
μ,α = 0, ∂μ Q να,μ = 0, ∂α Q μα,ν = ∂α Q να,μ,

Q μα,ν + Q αν,μ + Q νμ,α = 0. (3.58)

The last condition follows directly from the representation (3.57).
A more detailed analysis of the constraints can be done using the
momentum representation for the torsion tensor Q μν,α(k)eikμxμ

and choosing the coordinate system so that k0 = m and ki = 0,
i = 1,2,3. Then the analysis of Eq. (3.57) shows that the only
non-vanishing components of the torsion are Q 0i, j subject to
the symmetry condition Q 0i, j = Q 0 j,i and the trace condition
δi j Q 0i, j = 0. These conditions leave exactly 5 non-vanishing com-
ponents. These are the non-vanishing components of the tensor
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Hμν = −k0 Q μ0,ν satisfying (3.55). Finally, let us note that, as fol-
lows from Eqs. (3.24), the relation between the field hμν and the
torsion is hμν = 2/m1(−1)s∇σ Q μσ,ν = 2/m1(−1)s Hμν that in-
deed identifies the tensor Hμν built from the torsion tensor as
the one which describes a spin-2 particle.

It should be noted that our construction based on the action
(3.51) is very similar to the recent study made in [9] where the
vierbein and the spin connection as independent gravitational vari-
ables are considered. This theory, additionally to a massless gravi-
ton, contains a massive spin-2 propagating mode which originates
from the torsion tensor. In particular, Eq. (3.57) appears in the lin-
earized equation for the torsion field in the model of Ref. [9]. This
suggests that the two theories may be closely related. We how-
ever note that in the theory we consider in the present Letter the
“metric” hμν and the torsion are not two independent variables.
They are expressed one through the other. Hence, there is only
one propagating mode, that of the massive spin-2 particle. Pos-
sibly, there is a certain truncation of the model of Ref. [9] that
would give rise to the theory considered here. The other related
work is [10]. The model considered in that work involves the vier-
bein and the torsion (or the Lorentz connection) and, after gauging
away the Stueckelberg fields, it appears to take a form similar (but
not identical) to the one considered here. However, as the analy-
sis shows, this theory being formulated in terms of hμν , reduces
to the Pauli–Fierz theory for the symmetric part of hμν plus the
massive term (without a kinetic term) for the antisymmetric part.
There is no coupling between the symmetric and antisymmetric
parts of hμν in this theory. We could not find a local transforma-
tion which would bring our theory (3.37) to this diagonal form and
we believe that these two theories are not equivalent. The other
similar approaches which however lead to the standard Fierz–Pauli
theory are [11].

3.9. Generalization to higher dimensions

As we discussed in the Introduction, in a higher dimension d
the tensor field hμν should be supplemented with a rank-(d − 1)

tensor Bα1..αd−2,μ . This tensor is equivalent to a rank-3 tensor
Q μν,σ ∼ εμν

α1..αd−2 Bα1..αd−2,σ , where we omit the exact pre-factor,
which can still be identified with the torsion. The theory then is
most easily formulated in terms of fields hμν and Q μν,σ . The uni-
versal action which describes a massive spin-2 particle in arbitrary
dimension d then takes the form

W [h, Q ] =
∫

Md

(
m1

2

(
hμνhνμ − h2) + m2 Q μν,σ Q μσ,ν

+ 2Q αβ,μ∇βhμα

)
. (3.59)

In four dimensions this action is obtained from (3.13) by re-
expressing the field B in terms of the torsion using relation (3.36)
and after some re-definition of parameters m1 and m2 in order
to absorb the signature dependent factor (−1)s . We have checked
that in any dimension d this action still describes a transverse-
traceless symmetric field hμν (the symmetry condition follows
from the field equations) which satisfies a Klein–Gordon type
equation with the mass m2 = −m1m2/2.

4. Conclusions

In the current literature on the massive gravity it is believed
that, at the linearized level, the only consistent theory to be used
is that of the Fierz–Pauli which is formulated in terms of the sym-
metric rank-2 tensor. The latter is naturally identified with the
components of the metric (or, more precisely, with the deviation
of the curved metric from that of the Minkowski space–time). In
the present Letter we show that this description is not unique. Giv-
ing up the “symmetry condition”, we formulate a theory which
contains both the symmetric and antisymmetric parts of hμν . On
the field equations the antisymmetric part of hμν vanishes. The
remaining propagating degrees of freedom are that of a massive
spin-2 particle. Contrary to some expectations, this theory is free
of possible pathologies (ghosts or tachyons).

On the other hand, even the rank-2 tensor is not obligatory to
use when we want to describe a massive spin-2 particle. In the
other proposed formulation, which is dual to the one in terms of
hμν , the massive spin-2 particle is described entirely in terms of
a rank-3 tensor (torsion) Q μν,α . The equivalence between these
two formulations is demonstrated by means of the action which
contains both (non-symmetric) hμν and the torsion Q μν,α and is
linear in derivatives. These equivalent formulations exist in any di-
mension d � 4.

Of course, the most difficult part in formulating the massive
gravity starts at the non-linear level when the self-interactions are
introduced. Noting the remarkable recent progress in constructing
such a formulation based on the Fierz–Pauli theory we believe that
the class of theories introduced in this Letter should not be a pri-
ori excluded from the consideration. The study of the non-linear
versions of these theories may lead to interesting and perhaps sur-
prising development.
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Appendix A

In this appendix, we give the explicit expression for the propa-
gator associated with the (anti)symmetric part of hμν and empha-
size the crucial role played by the coupling between the symmetric
and antisymmetric terms in getting rid of ghosts and tachyons.

The action (3.37) with the Minkowski space–time as a back-
ground (with O defined by (3.44)) reads

W [h] =
∫

M4

(−1)s

m2

[
hαβOαβμνhμν

]
. (A.1)

We write the various symmetrizations of the differential opera-
tor O:

O(αβ)[μν] = 1

4

(
∂α∂μηνβ + ∂β∂μηαν − ∂α∂νημβ − ∂β∂νημα

)
,

O(αβ)(μν) = 1

2

[
�ηαμηνβ + �ηανημβ

− 1

2

(
∂α∂νημβ + ∂α∂μηνβ + ∂β∂νημα + ∂β∂μηαν

)

− 2m2
(

1

2

(
ηανηβμ + ηαμηβν

) − ημνηαβ

)]
,

O[αβ][μν] = 1

4

(
∂α∂μηνβ + ∂β∂νημα − ∂α∂νημβ − ∂β∂μηαν

)

− m2

2

(
ηανηβμ − ηαμηβν

)
. (A.2)

We note that O[μν](αβ) =O(αβ)[μν] and that (in the Fourier formu-
lation) kαkβO(αβ)[μν] = 0 and is therefore not invertible. We now
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give the expressions for the propagators associated with the totally
(anti)symmetric parts of O:

P̃(μν)(αβ) = −1

k2 + m2

[
1

2
(ημαηβν + ημβηαν) − 1

3
ημνηαβ

+ 1

2(k2 + 2m2)
[kμkαηβν + kμkβηνα + kνkαημβ

+ kνkβηαμ] − 1

3m2
(kμkνηαβ + kαkβημν)

− 1

3

k2 − m2

m4(k2 + 2m2)
kαkβkμkν

]
,

P̃[μν][αβ] = 1

2m2

[
(ημαηβν − ημβηαν) + 1

k2 − 2m2
(kμkβηαν

+ kαkνηβμ − kμkαηβν − kνkβηαμ)

]
. (A.3)

These reduced propagators contain supplementary poles (including
tachyonic ones) compared to the one present in the total propa-
gator (3.46). We now examine how these pathological poles are
cured in the complete theory via the coupling between h(μν) and
h[μν] . Resolving Eq. (3.45) in the complete theory we find that due
to the mixing part in the field operator the symmetric part of the
propagator P (αβ)(μν) is inverse to a new operator

O(αβ)(μν)
new = O(αβ)(μν) −O(αβ)[ρσ ]P̃[ρσ ][λγ ]O[λγ ](μν) (A.4)

and the antisymmetric part of the propagator P [αβ][μν] is inverse
to the operator

O[αβ][μν]
new = O[αβ][μν] −O[αβ](ρσ )P̃(ρσ )(λγ )O(λγ )[μν]. (A.5)

Although O[αβ][μν] alone gives rise to additional and potentially
pathological modes, the operator O[αβ][μν]

new , comprising the mixing
term, contains only healthy modes. This can be seen by invert-
ing it which gives back the (manifestly regular) propagator (3.50).
The same is true for the symmetric operator (A.4) and similarly,
the mixing term kills the supplementary modes and the total dif-
ferential operator acting on h(μν) is healthy and admits (3.47) as
inverse. The mixing part of the propagator (3.49) then is expressed
as follows

P [αβ](μν) = −P [αβ][γ λ]O[γ λ](σρ) P̃ (σρ)(μν). (A.6)
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