Myosins

1504-Pos Board B455
Macromolecular Crowding Increases Cross-Bridge Performance via Reduction of ADP Affinity to Acto-Myosin
Jinghua Ge1,2, Sherry Bouriaphon1, Yuri E. Nesmelov1,2, 1Physics, University of North Carolina, Charlotte, NC, USA, 2Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, USA.
We used methods of transient kinetics to determine if crowding agent Ficoll70, added to the reaction solution, changes the rate-limiting step of acto-myosin cycle, to explain the two-fold increase of acto-myosin ATPase activity in the presence of Ficoll70. D.discoideum myosin II S1 and rabbit skeletal actin were used as a model system. We determined kinetic rates of ATP binding to myosin, myosin recovery stroke, acto-myosin binding and dissociation, with and without ADP. Our experiments showed that virtually every kinetic step of the cross-bridge cycle was affected by Ficoll70. Addition of Ficoll70 slows the rate of ATP binding to myosin, myosin recovery stroke, acto-myosin binding and dissociation, with and without ADP. Our experiments showed that virtually every kinetic step of the acto-myosin dissociation. Affinity of ADP to acto-myosin was reduced two-fold in the presence of Ficoll70. ADP release from acto-myosin is the rate limiting step of D.discoideum myosin II ATPase cycle, therefore reduced ADP affinity is the reason of increased acto-myosin ATPase activity in the presence of Ficoll70. Addition of Ficoll70 does not change the rate limiting step of D.discoideum myosin II ATPase cycle.

1505-Pos Board B456
Macromolecular Crowding Modulates Cross-Bridge Performance
Jinghua Ge1,2, Sherry D. Bouriaphone1, Yuri E. Nesmelov1,2, 1Physics, University of North Carolina at Charlotte, Charlotte, NC, USA, 2Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA.
Cross-bridge kinetics is usually studied in diluted solution that does not reflect in vivo conditions of cell cytoplasm. In cells, myosin and actin work in dense environment of small and large macromolecules, affecting cross-bridge kinetics. We used high molecular weight sucrose polymer Ficoll70 to examine the effect of crowding on kinetics of acto-myosin interaction and cross-bridge cycle. Dictyostelium discoideum myosin II S1 and rabbit skeletal actin were used in the study. We observed two-fold increase of the rate of acto-myosin cycle in the presence of 25% w/v Ficoll70 in the reaction solution. Transient kinetics studies showed that virtually every kinetic step of the cross-bridge cycle was affected by Ficoll70. Ficoll70 decreases ADP affinity to acto-myosin, and therefore increases the overall rate of the cycle, because ADP release is the rate limiting step in D.discoideum myosin II actin activated ATPase activity. We conclude that macromolecular crowding modulates cross-bridge performance in cells.

1506-Pos Board B457
Mutating the SH1 Helix Region of Dictyostelium Myosin II Impairs Motile Activities and Thermal Stability
Kotomi Shibata, Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon university, Tokyo, Japan.
Mutations at the SH1 helix region of the myosin II motor domain, such as E706K (Glu-706 to Lys) and R702C (Arg-702 to Cys) have been reported to link to some autosomal-dominant diseases. The SH1 helix region acts as a linker for transmitting the structural changes of ATP-binding site in the catalysis domain to the lever arm. To investigate the effect of the mutation on the acto-myosin motility, we have introduced a corresponding mutation into the SH1 helix of Dictyostelium myosin II (E683K and R686C). The mutations resulted in a decrease in the acto-myosin sliding velocity (65% and 63% of the wild type for E683K and R686C, respectively), a decrease in the thermal stability and the thermal aggregation of the myosin, which might be implicated in the disease process.

1507-Pos Board B458
A Myosin II FRET-Based Biosensor Expressed in Dictyostelium
Jared G. Matzke1, David D. Thomas1, Karl J. Petersen1, Joseph M. Muretta1, Margaret A. Titus2, 1Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA, 2Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
Myosin II is responsible for force generation in skeletal and cardiac muscle. Understanding the mechanism of force generation is essential for developing novel treatments of muscle pathologies. Here we present a FRET-based biosensor capable of resolving structural states in the motor domain of Dictyostelium myosin II. We fused a green fluorescent protein (GFP) to the N-terminus of myosin subfragment 1 (S1) and incorporated a sequence of four cysteines into the K-helix of the upper 50 kDa domain (Sun et al., J Biol Chem, 2006). This tetracysteine site was then labeled with the biarsenical dye ReAsH as an acceptor for fluorescence resonance energy transfer (FRET). The FRET efficiency depends on the inverse sixth power of the distance between the two probes, as well as their relative orientations, so that small conformational changes of the motor domain are resolvable by nanosecond-resolution measured-momentum GFP fluorescent lifetime. We found the labeled apo S1 had a 17% decrease in fluorescent lifetime due to FRET. We then compared nucleotide-bound states of the S1 motor domain with the apo state, finding significant lifetime differences in the ADP.αPf and ADP.V40 states (analogs of the ADP.αP intermediate state) as compared with apo and ADP-bound GFP-myosin lifetimes. This result is consistent with crystallographic and tryptophan fluorescence data showing myosin structural state changes with nucleotide binding. We are now pursuing dual tagged GFP-RFP myosin constructs with the goal of resolving myosin structural states in living cells.

1508-Pos Board B459
The Inhibited, Interacting-Heads Motif Characterizes Myosin II from the Earliest Animals with Muscles
Guidenn Sulbaran1, Ji Young Mun1, Kyoung Hwan Lee1, Lorenzo Alamo1, Antonio Pinto1, Osamu Sato4, Mitsuo Ikebe1, Xiong Liu5, Edward D. Korn5, Michael S. Woody1, Marco Capitanio2, E. Michael Ostap1, Yale E. Goldman1, 1Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA, 2LENS, University of Florence, Florence, Italy.
Earliest Animals with Muscles
The Earliest Animals with Muscles

Monday, February 9, 2015 301a