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1. Introduction 2. Experimental 

The plasma membrane of animal cells contains a 
sodium- and potassium-pumping ATPase involved in 
such important physiological functions as regulation 
of cellular volume, generation of membrane poten- 
tials and driving of the cotransport of nutrients with 
sodium [1 ]. This enzyme does not seem to be present 
in plants, algae and fungi, probably because the rigid 
cell wall of  these cells obviates the need for osmotic 
regulation [2]. On the other hand, on the basis of 
physiological evidence it has been postulated that the 
plasma membrane of the eukaryotic cells contain a 
proton-pumping ATPase. This enzyme would explain 
membrane potentials, proton secretion and the 
cotransport of nutrients with protons observed in 
these cells [3]. 

Although there is circumstantial evidence that the 
fungal [4-7] and plant [8] plasma membrane 
ATPases operate as proton pmnps, this important 
point should be established by demonstrating ATP- 
dependent proton transport in proteoliposomes recon- 
stituted with the purified enzyme. We have reported 
that the purified yeast plasma membrane ATPase 
reconstituted in liposomes catalysed a 32Pi-ATP 
exchange inhibited by proton ionophores [10]. Here, 
we present more direct evidence for the proton-trans- 
port activity of the enzyme by demonstrating an ATP- 
induced quenching of acridine dye fluorescence. 

Abbreviations: CCPP, carbonylcyanide-m-chlorophenylhydra- 
zone; 1799,2,2'bis (hexafluoroacetonyl) acetone; ACMA, 
9-amino-6-chloro-2-methoxyacridine; Mes,2-(N-morpholino) 
ethanesulfonic acid; Tricine, N-tris-(hydro xymethyl) methyl- 
glycine 

Yeast plasma membrane ATPase was purified [9] 
and reconstituted in soybean phospholipid vesicles 
[ 10] as described. 32Pi-ATP exchange [9] and ATPase 
activity [11] were measured as indicated. Quenching 
of acridine dye fluorescence was measured at 30°C in 
2 ml medium containing 10 mM Mes and 2 mM MgSO4 
adjusted to pH 6.0 with NaOH. After addition of 
50/A reconstituted vesicles (10/~g protein, 1 mg 
phospholipid) and 2/11 1 mM ACMA, the reaction 
was started with 25/A of a solution containing 0.1 M 
NaATP and 0.1 M MgSO4 adjusted to pH 6.0 with 
NaOH. Fluorescence was measured with a Perkin 
Elmer model 204 Fluorescence Spectrophotometer, 
with exciter and analyzer wavelengths of 415 and 
485 nm, respectively, and registered in a Perkin Elmer 
model 56 recorder. Separation of protein-free lipo- 
somes from reconstituted proteoliposomes was 
achieved by layering 2.5 ml reconstitution mixtures 
over 1.5 ml 35% (v/v) glycerol, 10 mM tricine, 3 mM 
2-mercaptoethanol and 1 mM EDTA, pH 7.5 (NaOH). 
After centrifugation for 2 h at 0°C at 40 000 rev./min 
in a Beckman SW 56 rotor, the protein-free liposomes 
remained at the interphase and the proteoliposomes 
were recovered in the 35% glycerol layer. Protein and 
phospholipid were 0.2 and 0.7 mg/ml, respectively. 
The calibration of fluorescence changes with known 
pH gradients was performed as in [ 17] and is described 
in fig .2. 

The acridine dye ACMA was a gift of Dr R. 
Kraayenhof (Free University, Amsterdam). The 
uncoupler 1799 was obtained from Dr P. G. Heytler 
(Du Pont de Nemours, Wilmington DE) and nigericin 
from Dr W. E. Scott (Hoffmann-La Roche, Nutley N J). 
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Monensin was purchased from Calbiochem and CCCP, 
valinomycin and gramicidin D from Sigma. All these 
compounds were dissolved in methanol  and this sol- 
vent was <~0.5% in the assays. 

3. Results and discussion 

Although there is some controversy about the exact 
mechanism of  the phenomenon [12], the quenching 
of  the fluorescence o f  acridine dyes has been widely 
employed to moni tor  pH gradients (acidic inside) in 
submitochondrial  particles [ 13,14], chloroplasts [ 15 [, 
l iposomes [ 16], gastric microsomes [ 17] and proteolip- 
osomes reconsti tuted with energy-transducing 
enzymes [18 -20 ] .  This method is more sensitive than 
direct pH measurements [ 18,20] and the dye 9-amino- 
6-chloro-2-methoxiacridine (ACMA) proved to be the 
most suitable [20]. 

When ATP was added to a suspension of  proteolip- 
osomes reconsti tuted with the purified yeast plasma 
membrane ATPase, the fluorescence of  ACMA was 
quenched ( f ig . lA) .  After deplet ion of  ATP by hexo- 
kinase and glucose, the fluorescence slowly recovered 
to the original value ( f ig . lA) .  That this response was 
caused by  an ATP-dependent internal acidification of  
the vesicles was indicated by the complete inhibition 
caused by  the weak base imidazole (25 raM, adjusted 
to pH 6.0 with U2SO4) and by the proton ionophores 
gramicidin D (2/~g), monensin (0.5 ~g) and nigericin 
(0.2 ~ug, in the presence o f  10 mM potassium). At the 
pH 6 o f  the assay medium imidazole exist > 10% as 
the unprotonated  form. This uncharged molecule is 
freely permeable and therefore it would prevent the 
development of  pH gradients by  crossing the mem- 
brane and combining with the pumped protons [15]. 
Gramicidin creates a non-specific permeabili ty for 
monovalent  cations, including protons,  and monesin 
and nigericin catalyze the exchange of  protons for 
sodium and potassium, respectively [21 ]. None of  
these substances inhibited the ATPase activity (not 
shown). 

Both the initial rate and the extent  o f  quenching 
were increased by  the permeant anion nitrate,  while 
the less permeable chloride was much less effective 
(fig.lB,C). Similar results were obtained with the 
sodium, potassium and Tris salts o f  nitrate.  This stim- 
ulation suggest an electrogenic character of  the proton 

pump so that  the development of  a membrane poten- 
tial would inhibit proton transport .  In the presence of  

nitrate the potential  would be discharged and protons 
together with nitrate would accumulate inside the 
vesicles. In accordance with this interpretat ion,  in vesi- 
cles prepared with potassium inside valinomycin pro- 
duced the same stimulation as nitrate ( f i g . l D - F ) .  
In this case the pumping of  protons inside the vesicles 
would be electrically compensated by  the exit of  
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Fig.1. ATP-driven intravesicular acidification. Proteolipo- 
somes were reconstituted with 0.2 mg purified yeast plasma 
membrane ATPase/ml and 20 mg of sonicated soybean phos- 
pholipids/ml by 2 cycles of freezing-thawing-sonica- 
tion as in [10]. The reconstitution medium contained 10 mM 
tricine-NaOH (pH 7.5), 1 mM EDTA, 3 mM 2-mercaptoeth- 
anol, 4% glycerol and either 5 mM MgSO 4 (A C) or 25 mM 
K2SO 4 (D-F). Quenching of ACMA fluorescence was 
measured as in section 2, except that the assay medium 
included 50 mM KCI (B), 50 mM KNO 3 (C,F), 25 mM K 2 SO 4 
(D,E) and 1 ~g valinomycin (E). The first arrow indicates the 
time of ATP addition and an instantaneous quenching of 
~25% has been corrected in all the traces. The second arrow 
corresponds to the addition of either hexokinase and glucose 
(0.1 mg and 20 #mol, respectively (A C)) or 30 nmol 1799 
(E,F). The initial rate of quenching expressed as % total 
fluorescence/min is indicated. 
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potassium mediated by valinomycin. The proton 
transport observed in the absence of  permeant ions 
(fig.lA,D) can be ascribed to the passive permeability 
of  the vesicles towards the ions present in the assay 
medium. 

The identity between the plasma membrane ATPase 
and the proton pump was indicated by the following 
similar properties exhibited by the ATPase activity 
and by the ATP-dependent quenching of  ACMA fluo- 
rescence: 
(i) Dicyclohexylcarbodiimide (45/lg) and diethyl- 

stilbestrol (45/~g) inhibited >90% but the mito- 
chondrial ATPase inhibitor oligomycin (40/~g) 
was without effect. 

(ii) pH optimum was ~6,  with <10% activity at 
pH 4.5 and 7.5. 

(iii) Nucleotides other than ATP such as ITP, GTP, 
UTP, ADP and adenosine 5 '-(a/3-methylene) 
triphosphate were ineffective. 

(iv) The K m for ATP was >1 mM. 
Energy transduction by an electrogenic proton 

Table 1 
Effect of uncouplers and valinomycin on the energy transfer 

activities of the reconstituted proteoliposomes 

Ionophores 32Pi-ATP Extent of quenching 
exchange of ACMA fluores- 

cence 

Expt 1 
CCCP (5 nmol) 75 65 
CCCP (20 nmol) 55 40 
CCCP (5 nmol) 10 < 5 

+ valinomy cin 
1799 (5 nmol) 55 60 
1799 (20 nmol) < 5 10 
1799 (5 nmol) 25 35 

+ valinomycfin 

Expt 2 
CCCP (20 nmol) 
CCCP (20 nmol) 

+ valinomycin 
CCCP (0 5 nmol) 
CCCP (13.5 nmol) 

+ valinomycin 

55 

<5  

85 

10 

The reconstitution medium contained either 25 mM K=SO 4 
(expt 1) or 50 mM KNO 3 (expt 2) and 50 mM KNO 3 was 
included in the assay medium. Results are expressed as % of 
the values obtained in the absence of ionophores, correspond- 
ing to 19 nmol. min -1 .mg 32Pi-ATP exchange-' and 70% 
of quenching. The amount of valinomycin added was 1 tsg 
and in the absence of uncouplers it was without effect 

pump should be completely blocked by uncouplers 
[22] and, accordingly, the quenching of  ACMA fluo- 
rescence was abolished by 1799 (fig.1 E,F). However, 
in [10] it was shown that the uncoupler CCCP pro- 
duced only partial inhibition of  the 32Pi-ATP 
exchange unless valinomycin and potassium were 
present. These results are confirmed in table 1, where 
both the 32Pi-ATP exchange and the quenching of  
ACMA fluorescence are only partially inhibited by 
CCCP but completely blocked by the same uncoupler 
in the presence o f  valinomycin. Our interpretation in 
[ 10] was that the CCCP-resistant activity corresponded 
to an electroneutral proton-potass ium exchange. 
Uncouplers would only dissipate the pH gradient gen- 
erated by this pump when the proton efflux mediated 
by the uncoupler could be electrically compensated 
by potassium influx mediated by valinomycin. 

Two novel experimental findings have prompted a 
modification of  this view: 
(1) As mentioned above, another uncoupler like 

1799 produces complete inhibition of  energy 
transfer activities in the absence of  valinomycin 
and the action of  sub-optimal doses is much less 
potentiated by valinomycin than in the case of  
CCCP (table 1). 

(2) Even in vesicles containing nitrate the inhibition 
produced by CCCP was enormously potentiated 
by valinomycin (table 1). In these vesicles the 
electrical balance during proton efflux mediated 
by the uncoupler should be achieved by nitrate 
efflux and therefore the effect of  valinomycin 
must have some other explanation. 

One possibility is that the anionic form of CCCP and 
the positively charged valinomycin-potassium com- 
plex form a neutral complex inside the membrane 
which facilitates the carrier activity of  the uncoupler. 
The existence o f  such ternary complexes has been 
demonstrated [23] and the low solubility in the 
membrane of  the anionic form of  the uncouplers is 
known to be limiting for its proton transport activity 
[24]. A similar potentiation by charge neutralization 
inside the membrane has been postulated to explain 
the increase in dibenzyldimethyl ammonium perme- 
ability produced by tetraphenyl boron [25]. 

An approximate determination of  the pH gradient 
generated by the ATPase was obtained by calibrating 
the fluorescence changes with vesicles of  known 
imposed pH gradients [17]. For these experiments it 
was essential to remove the non-reconstituted lipo- 
somes by gradient centrifugation because they would 

353 



Volume 131, number 2 FEBS LETTERS August 1981 

g 

1.0 

0 .5  

i I 

i I 

0 g // 
I I I 
3 4 5 

~pN 

Fig.2. Experimental relationship between the extent of 
fluorescence quenching and ~xpH values generated artificially. 
Proteoliposomes purified by glycerol gradient centrifugation 
were incubated with 25 mM succinic acid at pH 4.25 (NaOH) 
for 1 min and then 100/~1 were diluted in 1.9 ml medium 
containing 10 mM tricine, 2 mM MgSO4, 50 mM KNO 3 and 
1 ~M ACMA. The pH was varied from 7-8.5 with NaOH. 
The % quenching of fluorescence (Q) was calculated taking as 
100% the value obtained after addition of 2 ~g gramicidin. 
The arrow indicate the quenching obtained with the same 
amount of vesicles energized with ATP at pH 6. 

respond to artificially created pH gradients but not to 

ATP. As indicated in fig.2, the results o f  such calibra- 

tion extrapolate a pH gradient of  ~5 units for the 
ATP-energized proteoliposomes. This value may be an 

underestimation because o f  the possibility that the 

gradient-purified proteoliposomes still contained vesi- 

cles unresponsive to ATP. On the other hand, this 

calibration curve as well as similar curves described 

for other systems [17] must be taken with caution 

because they deviate from the theoretical slope of  

1 calculated for an ideal fluorescent amine [16]. With 

these reservations in mind, the magnitude of  the esti- 

mated pH gradient suggests a stoichiometry for the 

proton pump of  1 H+/ATP. If the energy of  ATP 

hydrolysis were employed to pump 2 H +, the pH gra- 
dient could not exceed 4 pH units. In Neurospora 
crassa hyphae, electrophysiological studies have indi- 

cated a reversal membrane potential for the proton 

pump of  ~ - 4 0 0  mV [26]. This value also requires a 

stoichiometry o f  1 H÷/ATP. 

The enormous proton gradients needed to reverse 

a proton pump with such stoichiometry may explain 

the failure of  attempts to synthesize ATP driving back 

the enzyme with pH gradients either artificially 

imposed or generated by light in bacteriorhodopsin 

containing liposomes. 
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