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a b s t r a c t

Peripheral leukocytes aggravate brain damage by releasing cytotoxic mediators that compromise blood–
brain barrier function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl)
that is formed via the myeloperoxidase–H2O2–chloride system. The reaction of HOCl with the en-
dogenous plasmalogen pool of brain endothelial cells results in the generation of 2-chlorohexadecanal
(2-ClHDA), a toxic, lipid-derived electrophile that induces blood–brain barrier dysfunction in vivo. Here,
we synthesized an alkynyl-analog of 2-ClHDA, 2-chlorohexadec-15-yn-1-al (2-ClHDyA) to identify po-
tential protein targets in the human brain endothelial cell line hCMEC/D3. Similar to 2-ClHDA, 2-ClHDyA
administration reduced cell viability/metabolic activity, induced processing of pro-caspase-3 and PARP,
and led to endothelial barrier dysfunction at low micromolar concentrations. Protein-2-ClHDyA adducts
were fluorescently labeled with tetramethylrhodamine azide (N3-TAMRA) by 1,3-dipolar cycloaddition
in situ, which unveiled a preferential accumulation of 2-ClHDyA adducts in mitochondria, the Golgi,
endoplasmic reticulum, and endosomes. Thirty-three proteins that are subject to 2-ClHDyA-modification
in hCMEC/D3 cells were identified by mass spectrometry. Identified proteins include cytoskeletal com-
ponents that are central to tight junction patterning, metabolic enzymes, induction of the oxidative stress
response, and electrophile damage to the caveolar/endosomal Rab machinery. A subset of the targets was
validated by a combination of N3-TAMRA click chemistry and specific antibodies by fluorescence mi-
croscopy. This novel alkyne analog is a valuable chemical tool to identify cellular organelles and protein
targets of 2-ClHDA-mediated damage in settings where myeloperoxidase-derived oxidants may play a
disease-propagating role.
& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The neurovascular unit separates most regions of the brain
from the peripheral circulation to maintain the specialized mi-
cromilieu of the central nervous system (CNS) [1]. In capillaries
brain microvascular endothelial cells (BMVEC) constitute the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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morphological basis of the blood–brain barrier (BBB) by the for-
mation of tight junction (TJ) and adherens junction complexes [2].
These junctional complexes prevent paracellular leakage of mo-
lecules and maintain CNS homeostasis via polarized expression of
specialized transporter systems [3,4].

Under inflammatory conditions the brain is under attack of
reactive chemical species that compromise BBB function [5,6].
Neurodegenerative disorders such as Parkinson's or Alzheimer's
disease are chronic diseases with a significant inflammatory
component [7]. These diseases manifest late in life and present a
complex pathological situation wherein persistent inflammation
and oxidative stress contribute to protein modification and sub-
sequent dysfunction [7]. Accordingly, myeloperoxidase (MPO) is
abundantly expressed in Parkinson's and Alzheimer's diseased but
not in normal human brain [8,9]. MPO is also expressed in white
and gray matter plaques of multiple sclerosis (MS) patients where
MPO levels were associated with early-onset MS [10]. In experi-
mental autoimmune encephalomyelitis, a murine preclinical MS
model, an MPO-activatable paramagnetic sensor [11] has been
used to demonstrate MPO activity in the brain [12]. MPO was
identified as a potential therapeutic target in stroke [13] and the
involvement of MPO in BBB dysfunction was also suggested in
bacterial meningitis [14,15].

Under physiological conditions MPO is considered a front-line
defender against phagocytosed microorganisms [16]. The
MPO–H2O2–chloride system generates the potent oxidant hypo-
chlorous acid (HOCl) that is primarily responsible for the micro-
bicidal action of neutrophils. However, there is now compelling
evidence that under chronic inflammatory conditions MPO-de-
rived HOCl attacks amino acids, proteins, nucleic acids, carbohy-
drate components, as well as lipids [17]. Among the lipid targets
that are subject to HOCl modification are the highly abundant
plasmalogens, which are ether phospholipids containing a viny-
lether bond at the sn-1 position of the glycerol backbone. The rate
constants for HOCl-mediated plasmalogen modification are ap-
prox. 10-fold higher as compared to their non-vinylether con-
taining glycerophospholipid counterparts [18]. Plasmalogen
breakdown generates α-chloro fatty aldehydes (α-ClFALDs) and a
remnant lysophospholipid; the prototypic fatty aldehyde is
2-chlorohexadecanal (2-ClHDA; for review see [19]). 2-ClHDA ac-
cumulates in activated neutrophils [20] and is elevated in ather-
osclerotic plaque material and upon myocardial infarction [21,22].
2-ClHDA induces neutrophil chemotaxis [20], endothelial dys-
function [23], inhibits eNOS activity [24], and activates cycloox-
ygenase-2 via NF-κB-mediated pathways [25]. In an earlier study
we demonstrated that a single, peripheral lipopolysaccharide (LPS)
injection in mice resulted in significantly elevated cerebral MPO
protein levels [26]. This treatment induced the formation of
2-ClHDA, which led to a significant decrease of brain plasmalogen
content [26].

It is conceivable that oxidative modification of brain en-
dothelial plasmalogens induces BBB dysfunction [27]. The elec-
trophile 2-ClHDA impacts protein function by their covalent
modification, thereby triggering cytotoxic and adaptive responses
that are typically associated with oxidative stress. The specific
molecular targets of 2-ClHDA, however, are unclear. To address
this pathophysiologically important issue on the proteome level
we have synthesized the clickable alkynyl analog, 2-chlorohex-
adec-15-yn-1-al (2-ClHDyA). We characterized 2-ClHDyA with
respect to its effects on cellular homeostasis, its subcellular dis-
tribution, and used proteomic approaches to identify potential
protein targets in human hCMEC/D3 brain endothelial cells. This
analysis unveiled a specific set of both cytosolic and membrane-
bound proteins, and identified fibronectin as a prime target of
2-ClHDA modification highlighting the susceptibility of cytoske-
letal proteins towards protein alkylation damage.
2. Materials and methods

2.1. Materials

Cell culture supplies were from Gibco (Life Technologies,
Vienna, Austria), PAA Laboratories (Pasching, Austria), Bartelt
(Graz, Austria), Costar (Vienna), or VWR (Vienna). Hexadec-7-yn-
1-ol, undec-10-yn-1-ol, and sodium hydride were from Alfa Aesar
(Karlsruhe, Germany). Dimethylsulfoxide (DMSO), 1,3-diamino-
propane, dichloromethane, trimethylamine, oxalyl chloride,
N-chlorosuccinimide, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphe-
nyltetrazolium bromide (MTT), pentafluorobenzyl (PFB) hydro-
xylamine, PFB bromide, pentafluorobenzoyl (PFBoyl), sodium cy-
anoborohydride, dithiothreitol (DTT), and DL-proline, were from
Sigma-Aldrich (Vienna). Electrical cell-substrate impedance sen-
sing (ECIS) electrode arrays (8W10Eþ) were from Ibidi (Martins-
ried, Germany). 5-Tetramethylrhodamin azide (N3-TAMRA) was
from Lumiprobe (Hannover, Germany). Coomassie Brilliant Blue
was from Bio-Rad (Vienna). Urea, thiourea, iodoacetamide, im-
mobilized pH gradient strips (IPG strips, pH 3–10), and Pharmalyte
(pH 3–10) were from GE Healthcare (Amersham Biosciences,
Vienna). Sequencing grade Trypsin was from Promega (Mannheim,
Germany). Polyclonal rabbit anti-caspase-3 and anti-glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) antibodies were
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Polyclonal
rabbit anti-poly(ADP-ribose) polymerase (PARP) and monoclonal
rabbit anti-calnexin, anti-COX IV, anti-DJ-1, anti-β-tubulin, anti-
Rab-5, and anti-annexin A2 antibodies were from Cell Signaling
(New England Biolabs, Frankfurt, Germany). Mouse monoclonal
anti-annexin A1, anti-early endosome antigen 1 (EEA1), and anti-
Golgi matrix protein 130 (GM130) antibodies were from BD Bios-
ciences (Schwechat, Austria). Horseradish peroxidase (HRP)-la-
beled secondary goat anti-rabbit IgG was from Sigma. Cyanine (Cy)
2 (goat anti-mouse IgG and goat anti-rabbit IgG)-labeled anti-
bodies were from Jackson Dianova (Hamburg, Germany). Im-
mobilon Western HRP Substrate was from Merck Millipore (Merck
Chemicals and Life Science, Vienna). BCA protein assay kit and
Ultra V blocking reagent were from Life Technologies. Antibody
diluent was from Dako (Vienna). Moviol was from Calbiochem-
Novabiochem (La Jolla, CA, USA). All other chemicals were from
Sigma-Aldrich, Roth (Vienna), and Merck Millipore (Vienna).

2.2. Methods

2.2.1. Synthesis of 2-chlorohexadec-15-yn-1-al (2-ClHDyA)
1,3-Diaminopropane (DAP; 10 ml) was added drop-wise to NaH

(60% in mineral oil; 480 mg, 12 mmol; washed three times with
5 ml hexane under argon) by gentle stirring under argon. After 1 h
at 70 °C in an oil bath the reaction mixture turned brown and was
allowed to cool to room temperature (RT). A solution of hexadec-
7-yn-1-ol (380 mg, 1.6 mmol) dissolved in 3 ml DAP was added
and stirred for 16 h at 55 °C under argon. Finally, the resulting
black solution was cooled down to RT and carefully hydrolyzed
with ice-cold water (5 ml). After acidification with aqueous HCl
(10%, v/v) hexadec-15-yn-1-ol was extracted four times with
hexane (70 ml each). The combined organic layers were washed
twice with saturated aqueous NaHCO3 and brine, dried over
Na2SO4, and evaporated under vacuum.

The resulting crude yellow-brown product (291.7 mg, 1.22 mmol)
was oxidized to hexadec-15-yn-1-al (HDyA) via Swern oxidation
using oxalyl chloride-activated DMSO. Oxalyl chloride (465.91 mg,
3.67 mmol) was added to 2 ml CH2Cl2, which was pre-cooled on dry
ice. DMSO (573.56 mg, 7.34 mmol) was added drop-wise under
gentle stirring and the reaction mixture was kept on dry ice for
15 min. The solution was then added to hexadec-15-yn-1-ol (in 4 ml
ice-cold CH2Cl2) and the reaction was allowed to proceed for 1 h at
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�70 °C during gentle agitation under an argon atmosphere. The
reaction was quenched by the addition of ice-cold trimethylamine
(1.49 g, 14.68 mmol), stirred for additional 10 min at �70 °C, and
allowed to warm at RT. After addition of CHCl3 (40 ml) the organic
solution was washed twice with brine, and the organic layer was
dried (Na2SO4) and evaporated under vacuum. The resulting crude
brown reaction product was further purified using a Silica 60 col-
umn and hexane/diethyl ether (90:10, v/v) as eluent. HDyA-con-
taining fractions were pooled and dried in a desiccator. The resulting
yellow product (106.6 mg, 0.45 mmol) was chlorinated at the sn-2
position via organocatalytic α-chlorination as described previously
[28] to yield 2-ClHDyA and further purified on a Silica 60 column
and hexane/diethyl ether (90:10, v/v) as eluent (final
yield¼93.69 mg, 0.35 mmol corresponding to 22%).

2.2.2. NMR analyses
For the complete assignment of proton and carbon signals, 1D

(1H and real-time J-upscaled 1H; Ref. [29]) as well as 2D (HSQC and
HMBC) spectra were acquired. All spectra were obtained on a
Bruker Avance III 500 MHz NMR spectrometer at 300 K, equipped
with a 5 mm room temperature TXI probe with z-axis gradients,
using CDCl3 as the solvent. The spectra were processed and ana-
lyzed using TopSpin 3.1 and MestReNova 8.0. Chemical shifts were
referenced relative to tetramethylsilane (TMS) and showed good
agreement with calculated values [30].

2.2.3. Cell culture
Human brain endothelial cells were isolated from the temporal

lobe of an adult female with epilepsy. Immortalization was per-
formed via sequential lentiviral transduction of hTERT and SV40
large T antigen transduction of hTERT and SV40 large T antigen. One
clonal population displayed characteristic properties of brain en-
dothelial cells and was designated hCMEC/D3 [31]. During the pre-
sent study hCMEC/D3 cells were cultured in collagen-coated 75 cm2

flasks in Earl's salts-containing ‘Medium 199’ supplemented with
10% (v/v) fetal calf serum (FCS), 1% (v/v) chemically defined lipid
concentrate, 10 mM HEPES buffer, 1.4 mM hydrocortisone, 5 mg/ml
ascorbic acid, 100 mg/ml penicillin/streptomycin, and 1 ng/ml bovine
fibroblast growth factor at 37 °C (5% CO2). The split ratio of cells was
1:3–1:5 and only passages below 40 were used for experiments.

After preincubation over night and during cell culture experi-
ments hCMEC/D3 cells were incubated in serum-free Earl's salts-
containing ‘Medium 199’ supplemented with 100 mg/ml penicillin/
streptomycin at 37 °C, 5% CO2. 2-ClHDA and 2-ClHDyA were pre-
pared as 250-fold stock solutions in DMSO and were applied to
hCMEC/D3 cells at indicated concentrations and for the indicated
time periods in serum-free culture medium. The final concentra-
tion of DMSO in the medium was 0.4% (v/v).

2.2.4. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) test

The metabolic activity of hCMEC/D3 cells treated with 2-ClHDyA,
2-ClHDA, or structural analogs was assessed using the MTT assay.
Cells plated in collagen-coated 24 or 96 well plates were grown to
confluence and then treated with the respective compounds up to
5 h as indicated. MTT (1.2 mM; in serum-free medium) was added to
cells and incubated for 1.5 h. Cells were washed with PBS and cell
lysis was performed with isopropanol/1 M HCl (25:1; v/v) on a rotary
shaker at 1200 rpm for 15 min. Absorbance was measured at 570 nm
on a Victor 1420 multilabel counter (Wallac) and corrected for
background absorption (650 nm).

2.2.5. Western blot analysis of caspase-3 activation and PARP
cleavage

hCMEC/D3 cells plated in collagen-coated 6 well plates were
grown to confluence and then treated with 2-ClHDyA at indicated
concentrations for the indicated time periods. After washing with
ice-cold PBS cells were scraped in 25 ml lysis buffer (50 mM Tris–
HCl, pH 7.4, 1% NP-40, 150 mM NaCl, 1 mM Na3VO4, 1 mM NaF,
1 mM EDTA, 10 μM phenylmethylsulfonyl fluoride, and 1 μg/ml
each aprotinin, leupeptin, and pepstatin). After sonication
(2�2 min on ice) the cell debris was removed by centrifugation
(13,000 rpm, 4 °C, 10 min) and the protein content was de-
termined using the BCA assay. 50 mg Protein was separated by
linear PAGE (150 V, reducing conditions) and electrophoretically
transferred onto polyvinylidene difluoride (PVDF) membranes
(150 mA). Membranes were probed at 4 °C over night with pri-
mary polyclonal rabbit antibodies raised against caspase-3, PARP,
or GAPDH (all diluted 1:1000 in 5% (w/v) BSA in TBS-T). Im-
munoreactive bands were visualized using HRP-conjugated goat
anti-rabbit IgG (1:5000 in 5% (w/v) nonfat milk powder in TBS-T;
2 h incubation) and subsequent Immobilon Western HRP Sub-
strate development.

2.2.6. Electrical cell-substrate impedance sensing (ECIS)
To determine the effects of 2-ClHDyA and 2-ClHDA on en-

dothelial barrier function, impedance measurements were per-
formed using an ECIS Z System (Applied Biophysics, Troy, NY, USA).
Cells were plated in collagen-coated gold electrodes of 8W10Eþ
arrays, grown to confluence, and set serum-free for 6 h before
treatment. Impedance was recorded in real time at 1 min intervals
at 4 kHz.

2.2.7. Uptake and metabolism of 2-ClHDyA by hCMEC/D3 cells
Analysis of the uptake and metabolism of 2-ClHDyA by hCMEC/

D3 cells was performed as described [23] with some modifications.
Cells plated in collagen-coated 6 well plates were grown to con-
fluence and treated with 10 mM (20 nmol in 2 ml culture medium)
2-ClHDyA for the indicated time periods at 37 °C. Subsequently,
lipids from 1 ml culture medium were extracted twice in 2 ml
hexane/methanol (5:1; v/v) in the presence of 2-Cl[13C8]HDA,
2-chlorohexadecanoic acid (2-ClHA), and 2-chlorohexadecanol (2-
ClHOH; 100 ng each), which were used as internal standards.
Cellular lipids were extracted twice in the presence of the re-
spective internal standards, 100 ng each, with 1 ml hexane/iso-
propanol (3:2; v/v) on a rotary shaker at 1000 rpm. After pre-
paration of PFB-oxime- and PFB-ester derivatives, 2-ClHDyA,
2-chlorohexadec-15-yn-1-oic acid (2-ClHyA), 2-chlorohexadec-15-
yn-1-ol (2-ClHyOH) were quantitated by negative ion chemical
ionization-gas chromatography-mass spectroscopy (NICI-GC–MS).
A one-phase exponential decay model (Ct¼C0�e�kt) was used to
fit experimental data using the GraphPad Prism package. Deriva-
tization and NICI-GC–MS analysis were performed as described
previously [23].

2.2.8. Detection of 2-ClHDyA-protein adducts using click chemistry
Click chemistry of protein lysates of 2-ClHDyA-treated hCMEC/

D3 cells was performed using the Click-iTs Protein Reaction Buffer
Kit (Life Technologies) according to the manufacturer's re-
commendations. Following the click reaction proteins were pre-
cipitated and stored at �20 °C until use. N3-TAMRA was used as
fluorophore for protein detection via fluorescence imaging using a
Typhoon 9400 scanner (Amersham Biosciences; excitation
532 nm, emission 580 nm).

2.2.9. Identification of protein targets of 2-ClHDyA
2.2.9.1. Separation of 2-ClHDyA-tagged proteins by 2-dimensional gel
electrophoresis (2-D GE). During the incubation protocols de-
scribed below 2-ClHDyA was used at 50 mM, approx. 5-fold higher
as compared to 2-ClHDA concentrations found in pathophysiolo-
gical settings [21,22,26]. This relatively high concentration of
2-ClHDyA reflects the necessity to achieve sufficiently high
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fluorescence signal intensities for gel imaging within reasonably
short incubation times to avoid excessive cell damage. Under the
conditions utilized during the present study (confluent hCMEC/D3
on 10 cm Petri dishes containing on average 3.02�106cells; 10 ml
medium), 50 mM 2-ClHDyA in the medium corresponds to
166 nmol 2-ClHDyA/1�106 cells, to 537 nmol 2-ClHDyA/mg cell
protein, or 2 mmol 2-ClHDyA/mg cellular PC.

hCMEC/D3 cells plated in collagen-coated 10 cm culture dishes
were grown to confluence and incubated in the presence of 50 mM
(final concentration) 2-ClHDyA for 30 min at 37 °C. Subsequently,
cells were washed with PBS and formed Schiff bases were reduced
to stable amines by incubation in reduction solution (50 mM
HEPES, 25 mM NaCNBH3, pH 7.4) for 90 min at 37 °C. After
washing with ice-cold PBS cells were scraped off in 300 ml ‘clicking
buffer’ (50 mM Tris/HCl, 1% SDS, pH 8.0); homogenates from three
culture dishes were pooled, and an aliquot of 10 ml was taken for
determination of protein content by the BCA assay. Cell homo-
genates were stored at �20 °C and 500 mg total protein was used
for click chemistry, which was performed within one week after
protein isolation. N3-TAMRA-clicked protein precipitates were
dissolved in 200 ml sample buffer containing 7 M urea, 2 M
thiourea, 4% (w/v) CHAPS, 1% (w/v) DTT, and 2% (v/v) Pharmalyte
(pH 3–10), vortexed vigorously, and incubated at RT for 30 min. To
prevent adverse isoelectric focusing (IEF) of proteins, 300 ml of
reswelling solution (7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 0.4%
(w/v) DTT, 0.5% (v/v) Pharmalyte (pH 3–10), and 0.002% (v/v)
Bromophenol blue) was added to the protein lysates. To remove
insoluble material samples were centrifuged (11,000g, 2 min, RT)
and subsequently applied to IPG strips (24 cm, linear pH range of
3–10) for rehydration which was performed for 15 h at 20 °C (30 V,
maximum current set at 50 mA/strip) in ceramic strip holders using
an Ettan IPGphor unit (Amersham Biosciences). IEF was carried out
at 20 °C (3 h at 150 V, 3 h at 300 V, 3 h at 600 V, remaining time at
8000 V to reach a total of 50,000 Vh) and maximum current set at
50 mA/strip. Subsequently, strips were equilibrated in SDS equili-
bration buffer (6 M urea, 2% (w/v) SDS, 30% (v/v) glycerol, 50 mM
(v/v) Tris/HCl, pH 8.8) either supplemented with 1% (w/v) DTT
(first equilibration step, 15 min) or with 4.5% (w/v) iodoacetamide
(IAA; second equilibration step, 15 min), each under gentle shak-
ing. IPG strips were directly applied to self-cast 26�20 cm2 SDS
gels (12%). Linear PAGE was carried out at 18 °C under reducing
conditions (15 mA/gel) in an Ettan Daltsix electrophoresis unit
(Amersham Biosciences). Fluorescence imaging was performed on
a Typhoon 9400 scanner. Fluorescent protein spots were manually
picked and tryptically digested [32].

2.2.9.2. Separation of 2-ClHDyA-tagged membrane proteins by 1-di-
mensional gel electrophoresis (1-D GE). Confluent hCMEC/D3 cell
monolayers in collagen-coated 10 cm dishes were treated with
50 mM (final concentration) 2-ClHDyA as described above and, fol-
lowing reduction of Schiff bases to stable amines, cells were washed
with ice-cold PBS and were harvested by scraping in 3 ml PBS. Cell
suspensions pooled from three culture dishes were centrifuged at
300g for 5 min at 4 °C. The cellular supernatant was removed, and
the pellet was resuspended in 1 ml homogenization buffer (10 mM
Tris/HCl, 0.25 M sucrose, 0.8 mM PMSF, 10 mg/ml each aprotinin and
leupeptin, pH 7.4). Following centrifugation at 450g for 5 min at 4 °C
the cells were swelled in homogenization buffer (1.5-fold pellet
volume) for 10 min on ice. Subsequently, cells were homogenized
using a pre-cooled glass-glass homogenizer (50 strokes), and the
post-nuclear supernatant (PNS) was collected by centrifugation at
600g for 10 min at 4 °C. After another centrifugation step at 600g for
5 min the PNS was diluted with homogenization buffer to reach a
final volume of 800 ml, and samples were transferred into
11�34 mm2 centrifuge tubes (Beckmann) for centrifugation at
142,000g for 60 min at 4 °C. The supernatant representing the
cytosolic fraction was discarded and the membrane pellet washed in
800 ml homogenization buffer. After centrifugation at 142,000g for
60 min at 4 °C the resulting membrane pellet was resuspended in
60 ml ‘clicking buffer’; 10 ml were taken for determination of protein
content using the BCA assay, and 100 mg protein were used for click
chemistry. N3-TAMRA-clicked protein precipitates were dissolved in
50 ml of SDS-containing sample buffer, vortexed vigorously, heated
for 10 min at 70 °C, and incubated at RT for another 30 min. Sub-
sequently, proteins were separated on 20 cm PA-SDS gels (12%) at
18 °C using the Ettan Daltsix system; fluorescence imaging, picking
of 2-ClHDyA-tagged proteins, and tryptic digestion were performed
as described above.

2.2.9.3. Pull-down of 2-ClHDyA-tagged proteins on azide agarose
beads. Confluent hCMEC/D3 cell monolayers in collagen-coated
10 cm dishes were treated with 50 mM (final concentration)
2-ClHDyA for 30 min at 37 °C followed by reduction of Schiff bases
to stable amines, as described above. Cells were washed two times
with ice-cold PBS and were scraped in 850 ml lysis buffer (200 mM
Tris/HCl, 4% CHAPS, 1 M NaCl, 8 M urea, pH 8). Five mg protein were
used for selective enrichment of 2-ClHDyA-tagged proteins via
covalent binding to an N3-agarose resin (50% slurry) using the Click
Chemistry Capture Kit (Click Chemistry Tools, Scottsdale, AZ, USA)
according to the manufacturer's recommendation. Following the
click reaction agarose-bound proteins were tryptically digested for
16 h and the resulting supernatant was desalted on a C-18 cartridge
(Waters, Vienna). After elution using 50% acetonitrile/0.1% tri-
fluoroacetic acid (v/v) the peptide extracts were dried using an Ep-
pendorf concentrator and stored at �20 °C until LC–MS/MS analysis.

2.2.10. LC–MS/MS analysis of tryptic digests. Peptide extracts were
dissolved in 0.1% formic acid and separated by nano-HPLC. The
sample was ionized in a Finnigan nano-ESI ion source (Finnigan
MAT, San Jose, CA) equipped with NanoSpray tips (PicoTipTM
Emitter, New Objective, Woburn, MA, USA) and analyzed in a
Thermo-Finnigan LCQ Deca XPplus ion trap mass spectrometer.
The MS/MS data were analyzed by searching the NCBI public da-
tabase with SpectrumMill version 2.7 (Agilent, Waldbronn, Ger-
many). Detailed LC–MS/MS conditions and search parameters are
given in the Supplementary information.

2.2.11. Detection of 2-ClHDyA-tagged proteins in hCMEC/D3 cells by
immunofluorescence microscopy. Cells plated in collagen-coated
4 well plastic chamber slides were grown to confluence and in-
cubated in the presence of 2-ClHDyA at 37 °C. Schiff bases were
reduced to stable amines as described above. After washing with
PBS cells were fixed in ice-cold methanol for 10 min and permea-
bilized with 0.1% (v/v) Triton X-100 for 10 min at RT. Subsequently,
cells were washed with 1% (w/v) BSA in PBS and 2-ClHDyA-con-
taining proteins were labeled with N3-TAMRA (via 1,3-dipolar cy-
cloaddition using the Click-iTs Cell Reaction Buffer Kit; Life Tech-
nologies), followed by confocal LSM as described below.

To validate data from the proteome screens and to identify
2-ClHDyA-accumulating compartments, colocalization studies
were performed. Following the click reaction cells were washed
two times with PBS and nonspecific absorption was blocked with
Ultra V blocking reagent. Cells were incubated at 4 °C over night
with antibodies against COX IV, GM130, calnexin, EEA1, annexin
A1, annexin A2, Rab-5, DJ-1, or β-tubulin (1:100 in antibody di-
luent). Cy2-labeled goat anti-mouse or goat anti-rabbit IgG (each
1:250 in antibody diluent) were used as secondary antibodies.
Cells were mounted in Moviol prior to confocal LSM.

2.2.12. Confocal laser scanning microscopy (LSM)
Images were acquired on a Leica SP5 confocal microscope with

spectral detection (Leica Microsystems Inc., Mannheim, Germany),



Fig. 1. Synthesis strategy and analytical characterization of 2-chlorohexadec-15-yn-1-al (2-ClHDyA). (A) Strategy of 2-ClHDyA synthesis and structures of intermediate
products. (B) 2-ClHDyA was dissolved in CDCl3 and was completely assigned using a combination of 1D (1H; upper panel) and 2D (HSQC and HMBC; middle and lower panel)
spectra. The complete assignment is presented in Table 1. (C) 2-ClHDyA was converted to the corresponding PFB-oxime derivative and subjected to NICI-GC–MS analysis in
the full scan mode. The elution profile (a) and the respective ion intensity ratios (b) and proposed fragmentation pattern (c) of 2-ClHDyA are shown.
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Table 1
NMR data of 2-ClHDyA acquired in DMSO-d6.

Position δ(1H) [ppm] Multiplicity J values [Hz] δ(13C) [ppm]

1 9.49 d 3J¼2.44 195.3
2 4.15 ddd 3J¼2.44/5.49/8.21 63.8
3 1.83 / 1.97 m 32.1
4 1.43 / 1.51 m 25.4
5–11 1.28 m 29.4
12 1.37 m 28.7
13 1.52 m 28.5
14 2.19 dt 3J¼7.14, 4J¼2.62 18.4
15 – – 84.8
16 1.94 t 4J¼2.62 68.0
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using a 63�1.4 NA oil immersion objective. Cy2 fluorescence was
excited at 488 nm and detected between 500 and 550 nm. TAMRA
fluorescence was excited at 561 nm and detected between 570 and
650 nm. Cy2 and TAMRA fluorescence signal was acquired
simultaneously.

2.2.13. Ingenuity pathway analysis (IPA)
2-ClHDyA-tagged proteins identified by 2-D GE, 1-D GE of en-

riched membrane protein fractions, or by N3-azide agarose pull-
down were analyzed using a free trial version of the IPA software
to identify potential proteomic interactions. IPA (www.ingenuity.
com; https://analysis.ingenuity.com) uses a knowledge database
derived from the literature to relate gene products based on their
interaction and function. This software is designed to identify
biological networks, global canonical pathways, and global func-
tions. The identified proteins and their accession numbers were
uploaded as .txt files into the Ingenuity software package, which
uses these data to navigate the Ingenuity Pathways knowledge
base and extract overlapping networks between the candidate
proteins. A score of better than 2 is usually attributed to a valid
network (the score represents the log probability that the network
is found by random chance).
3. Results

3.1. Synthesis and characterization of 2-chlorohexadec-15-yn-1-al
(2-ClHDyA)

The reaction conditions for 2-ClHDyA synthesis starting from
hexadec-7-yn-1-ol are shown in Fig. 1A. The terminal alkyne
moiety was introduced at the ω-position via an alkyne ‘zipper’
isomerization reaction. Hexadec-15-yn-1-ol was then oxidized to
HDyA followed by α-chlorination to yield 2-ClHDyA. The overall
yield for 2-ClHDyA was 22%. 2-ClHDyA could be completely as-
signed using a combination of 1D (1H) and 2D (HSQC and HMBC)
spectra (Fig. 1B). As typically found for terminal alkyne groups,
two peaks are seen in the HSQC for the proton on C-16: one to
C-16 and another weaker one to C-15. For H-16 also a relative large
4-bond coupling constant was found (4J¼2.62 Hz). Scalar coupling
constants were obtained using a real-time J-upscaled 1D 1H
spectrum, recorded with seven-fold J-upscaling. The complete
assignment of the 1H and 13C spectra for 2-ClHDyA is presented in
Table 1. Further characterization of the purified product was per-
formed by NICI-GC–MS analysis. A representative total ion chro-
matogram, fragment ions, and fragmentation of the corresponding
2-ClHDyA PFB-oxime derivative eluting at 10.99 is shown in Fig. 1C
(a). The intensity ratio of the fragment ions at m/z 284/286 of
approx. 3:1 is indicative for the presence of 35Cl/37Cl in the analyte
(Fig. 1C(b)). The molecular ion at m/z 465.93 (M�) as well as the
fragment ions at m/z 411, 196, 181, and 178 (Fig. 1C(c)) were de-
tected only at low intensity.

3.2. 2-ClHDyA impacts on the metabolic activity of hCMEC/D3 cells

2-ClHDyA was synthesized as a functional orthologue for
2-ClHDA, thus the effects on cellular homeostasis of both com-
pounds were studied. Using the MTT assay we found that
2-ClHDyA severely decreased metabolic activity with IC50 values of
26, 19, 16, and 9 mM at 3, 5, 10, and 24 h of cell growth, respectively
(Fig. 2A). These data are very similar to the damaging effect of
2-ClHDA with IC50 values of 50, 25, 21, and 13 mM, respectively
(Fig. 2B). Next we compared the toxicity of structural analogs.
After 5 h 2-ClHDyA reduced metabolic activity by 80% (25 mM) and
95% (50 mM); 2-ClHDA was less effective in that respect and im-
paired metabolic function by 20 and 64% at the indicated
concentrations (Fig. 2C). The non-chlorinated analogs, HDyA and
hexadecanal (HDA), only slightly impacted hCMEC/D3 metabolic
activity, with 20% and 10% reduction at the highest concentration
applied. At the cellular level, 2-ClHDyA induced cleavage of pro-
caspase-3 and PARP in a time- and concentration-dependent
manner (Fig. 2D) and compromised hCMEC/D3 cell barrier func-
tion (Fig. 2E).

3.3. Uptake and metabolism of 2-ClHDyA in hCMEC/D3 cells

2-ClHDA undergoes redox metabolism in the fatty acid–fatty al-
cohol cycle giving rise to the formation of 2-chlorohexadecanoic acid
(2-ClHA) and 2-chlorohexadecanol (2-ClHOH) [33]. Non-linear re-
gression analysis (exponential decay) of 2-ClHDyA concentrations
revealed a half-life in the cellular supernatant of approx. 40 min
(Fig. 3A). This decrease was accompanied by intracellular accumu-
lation with a maximum concentration of 1.7 nmol after 45 min
(Fig. 3B), corresponding to a recovery of 8.5% of 2-ClHDyA initially
supplied to the culture medium. This is comparable to what was
observed for 2-ClHDA in porcine brain capillary endothelial cells
[23]. To unveil whether 2-ClHDyA is subject to redox metabolism via
the fatty acid–fatty alcohol cycle the concentrations of 2-ClHDyOH
and 2-ClHyA were determined by GC–MS. Formation of 2-ClHDyOH
was more than 5-fold higher as compared to 2-ClHyA (3.4 versus
0.6 nmol; Fig. 4A). Concentrations of 2-ClHDyOH and 2-ClHyA in the
supernatant were 20% and 30% (0.7 and 0.2 nmol, respectively;
Fig. 4B) of those found intracellularly.

Data from Figs. 3, 4A and B were combined and used to establish
a mass balance for analyte recovery. These calculations revealed that
although 2-ClHDyA was quantitatively consumed from the medium
after 5 h, the recovery of chlorinated compounds (2-ClHyX¼sum of
2-ClHDyA, 2-ClHDyOH, and 2-ClHyA from cells and cellular super-
natant) accounted for 25% of initially added 2-ClHDyA (Fig. 4C).
These observations indicate that a significant fraction of 2-ClHDyA
underwent covalent adduct formation.

3.4. 2-ClHDyA induces protein alkylation in hCMEC/D3 cells

To provide experimental evidence for covalent adduct forma-
tion between 2-ClHDyA and proteins, hCMEC/D3 cells were in-
cubated with 5–50 μM 2-ClHDyA up to 2 h. Unstable imin com-
plexes were stabilized with NaCNBH3 and cell lysates were sub-
jected to 1,3-dipolar cycloaddition using N3-TAMRA as the reporter
fluorophore. Fluorescence imaging of the corresponding SDS gels
revealed time- and concentration-dependent labeling of cellular
proteins (Fig. 5A and B). Protein lysates of hCMEC/D3 incubated in
the presence of the clickable terminal alkyne containing alcohol,
undec-10-yn-1-ol and 2-ClHDA served as negative controls and
did not show any detectable signal after fluorescence imaging
(Fig. 5A). Protein alkylation by 2-ClHDyA is a rapid (maximum
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Fig. 2. Effects of 2-ClHDyA and 2-ClHDA on metabolic activity of hCMEC/D3 cells. Metabolic activity was assessed with the MTT assay. MTT reduction is expressed as % of
vehicle (0.4% DMSO, final concentration). Cells were treated with (A) 2-ClHDyA or (B) 2-ClHDA as indicated. (C) Metabolic activity of cells incubated in the presence of
chlorinated (2-ClHCyA, 2-ClHDA) or non-chlorinated (HDyA, HDA) fatty aldehydes. (D) Cells were incubated with 10 or 20 mM 2-ClHDyA for the indicated times. Cells were
lysed and aliquots of protein lysates were subjected to SDS-PAGE and transferred onto PVDF membranes for subsequent detection with rabbit polyclonal anti-caspase-3, anti-
PARP, or anti-GAPDH. (E) Cells were plated on gold microelectrodes and cultured to confluence. Impedance of monolayers (7.5�104 cells) was continuously monitored at
4 kHz. After 30 min, cells were challenged with 15 mM 2-ClHDyA, 2-ClHDA, or DMSO (vehicle, ‘vc’) as indicated. Impedance values were normalized to treatment start. Data
are displayed as mean7SD of triplicate determinations (ns¼not significant; ***po0.0001; two-way ANOVA and Bonferroni post hoc test).
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fluorescence observed after 30 min; Fig. 5C) and concentration-
dependent process (Fig. 5D). Labeling of a distinct set of protein
bands that differed in intensities from the Coomassie stained gel
suggests that 2-ClHDyA-mediated protein modification is a selec-
tive rather than a random process.

Selective intracellular accumulation was also suggested by fluor-
escence microscopy: living cells were incubated with increasing
concentrations of 2-ClHDyA, permeabilized, clicked with N3-TAMRA,
and visualized by confocal LSM. After 30 min incubation intracellular
accumulation of 2-ClHDyA-protein adducts was detected in a con-
centration-dependent manner, with highest fluorescence intensity
observed at perinuclear regions (Fig. 6).

3.5. Subcellular accumulation of 2-ClHDyA

To further identify intracellular compartments where
2-ClHDyA-protein adducts accumulate we used organelle-specific
marker antibodies. These immunofluorescence studies revealed
that 2-ClHDyA targets mitochondria, the Golgi, the ER, and, to a
lesser extent, endosomal compartments (Fig. 7). Only faint fluor-
escence was observed at the plasma membrane (an overexposed
micrograph is shown in Fig. S1). These data suggest that in-
tracellular membrane proteins may be the preferred targets for
2-ClHDyA attack.

3.6. Identification of potential protein targets for covalent 2-ClHDyA-
modification

To further identify specific protein targets, three different
proteomic approaches were taken: (i) Cells were incubated with
2-ClHDyA, cellular lysates were clicked with N3-TAMRA, separated
by 2-D GE, and proteins in fluorescent spots were identified. (ii)
After 2-ClHDyA incubation of cells, membrane fractions were
isolated by differential centrifugation, clicked with N3-TAMRA, and
separated by 1-D GE; proteins in fluorescent bands were



Fig. 3. Uptake of exogenous 2-ClHDyA by hCMEC/D3 cells. Cells were incubated in 2 ml culture medium with 10 mM 2-ClHDyA for 5 h. At the indicated time points medium
and cells were extracted in the presence of 100 ng 2-Cl[13C8]HDA as internal standard. After conversion to the corresponding PFB-oxime derivatives 2-ClHDyA concentrations
of (A) the cellular supernatant and (B) hCMEC/D3 cells were quantitated by NICI-GC–MS analysis. Results are displayed as mean7SD of triplicate determinations. Data in
(A) were fitted by nonlinear regression analysis (exponential decay; R2¼0.98).
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identified. (iii) 2-ClHDyA-containing proteins were directly bound
to N3-agarose, subjected to on-bead tryptic digestion and identi-
fied. Each of these approaches has distinct advantages but also
limitations; nevertheless, significant overlap of proteins identified
by these approaches supports the validity of the approach.

Representative 2-D- and 1-D-gel gray scale images are shown
in Supplementary Fig. S2A and B. Supplementary Table S1 lists the
proteins identified by 2-D GE, Supplementary Table S2 lists the
proteins identified in total membrane fractions, and Supplemen-
tary Table S3 lists the results from the N3-agarose pull-down. The
tables also provide information on spot/band number, number of
acquired spectra, peptide coverage, MS/MS search score, amino
acid coverage, theoretical and experimental molecular mass, and,
in case of 2-D GE, theoretical and experimental pI. Moreover,
Fig. 4. Metabolism of 2-ClHDyA by hCMEC/D3 cells. Cells were incubated in 2 ml culture
were extracted in the presence of the internal standards 2-ClHA and 2-ClHOH (100 ng
2-ClHyA and 2-ClHyOH of (A) cells and (B) the cellular supernatant was quantitated
determinations. Data in (C) represent loss of 2-ClHDyA from the medium (Fig. 3A) versu
cellular supernatant (from Figs. 3B, 4A and B).
Supplementary Table S3 contains information regarding sub-
cellular localization of proteins identified via N3-agarose pull-
down.

By 2-D GE (total cellular lysates) 117 distinct proteins and by
1-D GE (membrane protein fraction) 116 distinct proteins were
identified in 2-ClHDyA-treated cells. Using protein enrichment on
N3-agarose we detected a total number of 33 proteins out of which
5 proteins were also identified in total cell lysates or enriched
membrane fractions. Eleven proteins were common to all three
experimental approaches (Fig. 8).

To generate biologically meaningful networks from the identi-
fied proteins IPA was performed. Only proteins that were identi-
fied in two out of three independent experiments with a minimal
MS/MS search score of 20 were included in the analysis.
medium with 10 mM 2-ClHDyA for 5 h. At indicated time points, medium and cells
each). After conversion to the corresponding PFB-ester derivatives the content of
by NICI-GC–MS analysis. Results are displayed as mean values7SD of triplicate
s recovery of 2-ClHyX (sum of 2-ClHDyA, 2-ClHyA, and 2-ClHDyOH) in cells and the
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Fig. 5. 2-ClHDyA forms covalent adducts with hCMEC/D3 proteins. Cells grown on 10 cm dishes were incubated in the absence (vehicle, 0.4% DMSO, final concentration) or
presence of undec-10-yn-1-ol, 2-ClHDA, or 2-ClHDyA, followed by treatment with NaCNBH3 to reduce formed Schiff bases. (A) Cells on 10 cm dishes were lysed in 50 mM
Tris/HCl, 1% SDS, pH 8.0 and aliquots were subjected to click chemistry. After precipitation proteins were subjected to SDS-PAGE (40 mg cell protein/lane) and imaged on a
Typhoon 9400 scanner. (B) Loading control showing Coomassie Brilliant Blue stained protein lanes to verify equal loading. (C) Time- and (D) concentration-dependent
increase in fluorescence intensities of protein lanes from the image shown in (A).
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Interestingly, fibronectin, which was identified in all three pro-
teomic approaches, represents a central hub in all IPA networks
which yielded the highest score for 2-ClHDyA target proteins
identified via 2-D GE (total cellular lysates), 1-D GE (membrane
protein fraction), and after the N3-agarose pull-down. Fibronectin
binds cellular surfaces and compounds including collagen, DNA,
and actin. Moreover, fibronectin is involved in cytoskeleton sig-
naling, cell migration, adhesion, junctional assembly, maintenance
of cell shape, opsonization, and integrin binding.

For 2-D GE data IPA analysis retrieved the network RNA Post-
Translational Modification, Carbohydrate Metabolism, and Cell-to-
Cell Signaling and Interaction (score¼76; Fig. 9A). This network
consists of 11 identified focus proteins that are involved in meta-
bolic processes such as glycolysis, citric acid cycle, galactose and
fatty acid metabolism, synthesis and degradation of ketone bodies,
and amino acid catabolism. Thus, protein alkylation damage of
these enzymes is likely to severely impact on the energy status of
2-ClHDyA-treated hCMEC/D3 cells. Moreover, focus proteins in
this network that were identified in this study belong to the family
of the heterogeneous nuclear ribonucleoprotein family, which are
involved in transcription and post-translational protein
modification.

For the enriched membrane fraction the highest score in IPA
analysis was obtained for Post-Translational Modification, Protein
Synthesis, and Cellular Movement (score¼46; Fig. 9B). In this net-
work many proteins that directly (i. e. septin-9 or moesin) or in-
directly (i. e. AHNAK nucleoprotein, polypyrimidine tract binding
protein 1) interact with fibronectin regulate the formation of the
cytoskeleton which explains, at least in part, the significant loss of
endothelial barrier function in response to 2-ClHDyA treatment
(Fig. 2E). Interestingly, other 2-ClHDyA-tagged proteins identified
in this experimental approach are enzymes of the mitochondrial
respiratory chain such as NADH dehydrogenase (ubiquinone)
flavoprotein, NADH dehydrogenase (ubiquinone) 1 beta sub-
complex, ubiquinol-cytochrome c reductase core protein II, ubi-
quinol-cytochrome c reductase, or electron-transfer-flavoprotein,
beta polypeptide which parallels results obtained after 2-D GE and
suggests energy deprivation in response to 2-ClHDyA treatment.
This assumption is further supported by the significant 2-ClHDyA-
TAMRA staining of mitochondria (Fig. 7). To address unspecific
protein binding in the pull-down approach, cellular lysates were
incubated with N3-agarose, which was then processed as de-
scribed for the click procedure. During these experiments we have
identified serum albumin as the only unspecifically pulled-down
protein (Supplementary Table S4).

Protein targets identified by N3-agarose pull-down yielded the
highest IPA score (53) for Dermatological Diseases and Conditions,
Inflammatory Disease, and Inflammatory Response (Fig. 9C). In this
network, fibronectin once again serves the central hub interacting
with cytoskeletal proteins such as α- or β-tubulin or proteins re-
sponsible for cytoskeletal arrangement. Mapping of 2-ClHDyA-
tagged focus proteins (20 out of 33 identified via N3-agarose pull-
down) into this network further highlights the susceptibility of
cytoskeletal proteins towards protein alkylation damage.

3.7. Colocalization studies

To further support data from the proteome screens by im-
munofluorescence microscopy, cells were treated with 2-ClHDyA,
permeabilized, clicked with N3-TAMRA, and incubated with the
indicated antibodies. For the selected proteins (annexin A1, an-
nexin A2, DJ-1, Rab-5, and β-tubulin) colocalization with protein-
2-ClHDyA-TAMRA adducts could be confirmed (Fig. 10). These
findings support and backup the validity of proteome results ob-
tained after pull-down with N3-agarose.
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Fig. 6. Visualization of protein-2-ClHDyA-TAMRA adducts by confocal laser scanning microscopy in hCMEC/D3 cells. Cells grown on 4 well plastic chamber slides were
incubated in the presence of the indicated 2-ClHDyA concentrations for 30 min, fixed in methanol, permeabilized with Triton X-100, and subjected to click chemistry with
N3-TAMRA. Cells were mounted in Moviol and analyzed by confocal LSM. All images were acquired using the same microscope settings.
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4. Discussion

Characterization of 2-ClHDA-modified proteins is a challenging
task since only a small fraction of the cellular proteome is mod-
ified and the adduct may be lost during protein preparation.
Therefore we have synthesized an alkyne-containing 2-ClHDA
analog that allows (i) covalent attachment of N3-TAMRA as re-
porter fluorophore, (ii) identification of subcellular organelles
where protein adducts accumulate, (iii) enrichment of protein
adducts via pull-down strategies, and (iv) colocalization studies of
2-ClHDyA-TAMRA containing proteins with antibodies directed
against proteins identified in the proteome screen. The strategy for
2-ClHDyA synthesis shown in Fig. 1A was straightforward, yielded
the expected product in reasonable yields, and the alkyne group
apparently induced only minimal perturbation of the parent
compound, differing by only four terminal hydrogen atoms.
Nevertheless, this results in different (calculated; MarvinSketch
5.6) logP values of 5.09 and 5.77 for 2-ClHDyA and 2-ClHDA,
respectively.

2-ClHDyA treatment severely impacted hCMEC/D3 cell home-
ostasis: MTT reduction was significantly reduced and toxicity was
highest for compounds containing both, a chlorine atom and an
aldehyde group, while the non-chlorinated analogs HDA and
HDyA showed less toxic properties, comparable to earlier ob-
servations [23]. Whether the higher toxicity of 2-ClHDyA (as
compared to the parent compound 2-ClHDA) is a result of different
logP values is currently unclear. 2-ClHDyA decreased endothelial
barrier function, and induced apoptosis via caspase-3 and PARP
activation (Fig. 2). In addition 2-ClHDyA was converted to the
corresponding redox metabolites, 2-ClHyA and 2-ClHyOH
(Figs. 3 and 4). These findings indicate that 2-ClHDyA mimics
metabolic properties as observed for 2-ClHDA that is formed
in vivo under inflammatory conditions, thus serving as an ex-
cellent and biochemically tractable substitute.

Several (bio)chemical pathways can contribute to incomplete
recovery of chlorinated metabolites (25% of initially added
2-ClHDyA; Fig. 4A). Among these are scavenging by free amino
acids in the cell culture medium, binding to GSH [34] or phos-
phatidylethanolamine [35], oxidation to 2-ClHyA and subsequent
incorporation into complex lipid subclasses [23], and finally,
covalent binding to side chains of nucleophilic amino acids in
cellular proteins [36]. During the present study we have specifi-
cally addressed adduct formation with cellular proteins that were
subsequently characterized by the experimental approaches dis-
cussed below.

The prototypic reactive aldehyde 4-hydroxynonenal (4-HNE)
reacts with protein nucleophiles to form both, Michael adducts
and Schiff base adducts. For 4-HNE the latter reaction occurs with
lysine ε-amines, the formation of Michael adducts, however, is the
predominant pathway for 4-HNE adduction of cysteine thiols,
histidine imidazoles, and lysine ε-amines [37]. It seems reasonable
to assume that these side chains are also subject to nucleophilic
substitution by 2-ClHDyA (via chlorine abstraction) or Schiff base
formation at the ε-amino group of lysine.
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Fig. 7. Subcellular localization of 2-ClHDyA-TAMRA adducts in hCMEC/D3 cells. Cells grown on 4 well plastic chamber slides were incubated in the presence of 25 mM
2-ClHDyA for 30 min followed by treatment with NaCNBH3 to reduce Schiff bases. After treatment cells were fixed and permeabilized prior to click chemistry with
N3-TAMRA. Subsequently, cells were incubated with primary antibodies against cytochrome c oxidase subunit 4 (COX IV; mitochondria), Golgin subfamily A member 2
(GM130; Golgi), Calnexin (ER), and early endosome antigen 1 (EEA1; endosomes). Following incubation with Cy2-labeled secondary antibodies cells were mounted in Moviol
and analyzed by confocal LSM. Bars¼10 mm.
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As described for other alkyne-modified lipid electrophiles
2-ClHDyA-mediated protein nucleophile modification is a se-
lective, fast, and saturable event as revealed by 1,3-dipolar cy-
cloaddition of N3-TAMRA and subsequent fluorescence imaging
of SDS gels (Fig. 5). This is reminiscent of what was reported for
oxidized phospholipids in macrophages [38] and 4-HNE-protein
adduct formation in colon carcinoma cells [37]. Fluorescence
microscopy revealed selective rather than random accumulation
of the 2-ClHDyA-TAMRA containing protein adducts at peri-
nuclear regions. Subcellular distribution analysis demonstrated
colocalization of TAMRA-clicked 2-ClHDyA adducts and the re-
spective organelle-specific marker antibodies in mitochondria,
the Golgi, ER, and endosomes (Fig. 7). This subcellular dis-
tribution of 2-ClHDyA is compatible with other reports de-
monstrating mitochondrial accumulation of 4-HNE and 4-HNE-
modified proteins [39,40]. 4-HNE induces the ER stress response
in different cell types [41,42] and similar findings were made for
2-ClHA-treated monocytes [43]. On the other hand, the more
complex lipid peroxidation product 1-palmitoyl-2-(5-oxovaler-
oyl)-sn-glycero-3-phosphocholine accumulates at the plasma
membrane and in lysosomes, while no localization in the ER or
mitochondria was observed [44].

To identify 2-ClHDyA protein targets we have pursued three
different analytical strategies, all with their own inherent caveats.
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Fig. 8. Overlaps between the different proteomic approaches. Venn diagram
showing overlap of targets of 2-ClHDyA adduct formation that were identified in
total cell lysates by 2-D GE (purple), the enriched membrane protein fraction
after 1-D SDS-PAGE (blue), and total cell lysates by N3-agarose pull-down (yel-
low). The numbers represent total proteins identified in triplicate analysis of
each experimental approach. Overlaps between different methods are re-
presented by the numbers in the corresponding segments. A total of 11 identi-
fied proteins were common to all approaches. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article).
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First, 2-D GE poorly represents low abundance proteins and mul-
tiple proteins can co-migrate in one single spot [45]. Therefore
results from 2-D GE most likely represent an overestimation of
2-ClHDyA targets. A 1-D GE approach, which may also suffer from
co-migration of multiple proteins within one band, was applied for
enriched membrane-associated proteins. Finally, we used an affi-
nity pull-down approach with N3-agarose beads representing a
very specific method to identify targets of biologically active
compounds [46]. Non-specific protein binding to agarose beads
[47] was negligible, as only serum albumin was identified in the
pull-down from untreated cell extracts (Supplementary Table S4).

4.1. Overlap between all three proteome approaches

Eleven proteins were identified by all of the above-men-
tioned proteomic approaches (Table 2; Fig. 8). Of these at least
five proteins are directly involved in TJ formation and/or
maintenance. α-Actinin-4 recruits junctional Rab-13 binding
protein (JRAB) to cell–cell junctions where it supports the for-
mation of functional TJ [48]. Of the annexin family, annexin-A1,
-A2, and -A3 play important roles during TJ establishment
[49,50]. The same holds true for tubulins: Integral barrier pro-
teins (claudins, occludin, or JAM-A) are linked to peripheral
scaffolding proteins, which are in turn linked to microtubules
thereby generating functional TJs [51]. Fibronectin plays an
important role in regulating cell–matrix adhesion and promotes
brain capillary endothelial cell survival and proliferation in an
integrin-dependent manner [52] while myosin-9, a motor pro-
tein, is involved in angiogenesis [53]. PARK7 (DJ-1), a multi-
functional protein involved in oxidative stress response [54],
cell death decisions [55], and synucleopathies [56] was among
the identified candidates. Of note, HNE-adducted DJ-1 levels are
higher in blood of Parkinson's disease patients as compared to
healthy controls [57]. All of these proteins play important roles
in endothelial cell biology and electrophile attack by 2-ClHDyA
is likely to compromise endothelial barrier function as observed
in this study.

4.2. Overlap of proteins identified by 2-D GE and in the membrane
fraction

A closer comparison of proteins present in TAMRA-clicked
spots after 2-D GE and 1-D GE revealed 26 common proteins
(Fig. 8) that were identified by either method. In addition to the
proteins mentioned above four metabolic enzymes, three from
glycolysis (GAPDH, fructose-bisphosphate aldolase A, and lactate
dehydrogenase) and one from the TCA cycle (malate dehy-
drogenase, mitochondrial) were identified in both experimental
settings (Table 3). Data from the MTT test are consistent with an
electrophile damage of these enzymes, leading to metabolically
compromised phenotypes. The remaining proteins in this group
take functions in stress response, immune function, ribosomal
function, signal transduction, nucleic acid metabolism, and apop-
tosis, respectively.

4.3. Overlap of proteins identified by 2-D GE and N3-agarose pull-
down

In addition to the 11 proteins identified in all three proteomic
approaches, five were identified in both the 2-D GE and the
agarose pull-down experiments (Table 4): Of these galectin-1
plays a role in angiogenesis by facilitating interaction between
endothelial cells and other cell types and/or the extracellular
matrix [58]. Glutathione S-transferase Ω-1 and lactoylglutathione
lyase contribute to intracellular redox homeostasis and prevent
endothelial dysfunction [59]. In addition to the proteins that
contribute to the maintenance of the actin/tubulin cytoskeleton,
which were identified by all three proteomic approaches, the
Ca2þ-binding protein S100-A6 participates in the organization of
the actin cytoskeleton in NIH 3T3 fibroblasts [60] and regulates
cell-cycle progression in endothelial cells [61]. 2-ClHDyA-medi-
ated alkylation damage of acetyl-CoA acetyltransferase may im-
pact on several metabolic pathways, e.g. fatty acid metabolism,
synthesis and degradation of ketone bodies, and amino acid me-
tabolism and is thus likely to have pleiotropic phenotypic
consequences.

4.4. Overlap of proteins in the membrane fraction and N3-agarose
pull-down

Targets identified in this group (Table 5) include the plasma
membrane proteins BASP1, AHNAK, ATP1A1, caveolae (PTRF), or
intracellular vesicles (TAGL-2). Among these proteins ATP1A1 is
expressed in embryonic porcine brain [62] and in capillaries of the
ear where ATP1A1 interacts with PKCeta and occludin, a member
of the blood–labyrinth barrier [63]. In terms of 2-ClHDyA inter-
nalization, PTRF (cavin-1) might be a potentially important can-
didate: cavin-1 is an essential scaffold component of caveolae [64],
which are cellular membrane structures representing small ome-
ga-shaped invaginations of the plasma membrane. Caveolae are
highly abundant in endothelial cells and play an important role in
cellular lipid metabolism [65]. Modification of cavin-1 may
therefore generate 2-ClHDyA-loaded caveolae that enter the en-
dosomal pathway, thus facilitating internalization and intracellular
distribution of 2-ClHDyA. BASP1 was shown to be present in ca-
veolae and raft enriched membrane fraction of human endothelial
cells [66]; it regulates the formation of cell–cell contacts in HU-
VECs [67], further providing strong support that protein alkylation
by 2-ClHDyA impacts on endocytosis and barrier integrity.



Fig. 9. Ingenuity pathway analysis (IPA). Networks of proteins were generated through IPA. Proteins (displayed as abbreviated gene names) identified in (A) total cell lysates
by 2-D GE, (B) enriched membrane fractions separated by 1-D SDS-PAGE, and after (C) N3-agarose pull-down were connected via the Ingenuity Pathways knowledge base.
Solid lines represent direct interaction and dashed lines indirect interaction. (A) Network A contains 32 identified proteins (out of 35 components) involved in RNA Post-
Translational Modification, Carbohydrate Metabolism, and Cell-to-Cell Signaling and Interaction (score¼76). AARS, alanyl-tRNA synthetase; PGAM1, phosphoglycerate mutase 1;
ALDOA, aldolase A, fructose-bisphosphate; RBM4, RNA binding motif protein 4; ERP29, endoplasmic reticulum protein 29; LDHB, lactate dehydrogenase B; HNRNPA0,
heterogeneous nuclear ribonucleoprotein A0; ENO1, enolase 1 (alpha); HNRNPH3, heterogeneous nuclear ribonucleoprotein H3; HNRNPF, heterogeneous nuclear ribonu-
cleoprotein F; TSH, thyroid stimulating hormone; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; S100A6, S100 calcium binding protein A6; ANXA1, annexin A1; PGK1,
phosphoglycerate kinase 1; LDHA, lactate dehydrogenase A; FN1, fibronectin 1; HNRNPH1, heterogeneous nuclear ribonucleoprotein H1; EIF4A3, eukaryotic translation
initiation factor 4 A3; PCBP2, poly(rC) binding protein 2; PHB, prohibitin; HNRNPA1, heterogeneous nuclear ribonucleoprotein A1; MDH2, malate dehydrogenase 2, NAD
(mitochondrial); DDX39B, DEAD (Asp-Glu-Ala-Asp) box polypeptide 39B; EIF2S3, eukaryotic translation initiation factor 2, subunit 3 gamma; MVP, major vault protein;
ADRB, beta adrenergic receptor; IDH1, isocitrate dehydrogenase 1 (NADPþ), soluble; PARK7, Parkinson protein 7; GALE, UDP-galactose-4-epimerase; SEPT2, septin 2; ACAT2,
acetyl-CoA acetyltransferase 2; MDH1, malate dehydrogenase 1, NAD (soluble). (B) Network B contains 22 identified proteins (out of 35 components) involved in Post-
Translational Modification, Protein Synthesis, and Cellular Movement (score¼46). NDUFB10, NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10; SOD2, superoxide
dismutase 2, mitochondrial; ATPA1, ATPase, Naþ/Kþ transporting, alpha 1 polypeptide; MVP, major vault protein; Capla2, calcium-dependent phospholipase A2; PRDX3,
peroxiredoxin 3; UQCRFS1, ubiquinol-cytochrome c reductase, Rieske iron–sulfur polypeptide 1; HSD17B10, hydroxysteroid (17-beta) dehydrogenase; PHB2, prohibitin 2;
FN1, fibronectin 1; NDUFV2, NADH dehydrogenase (ubiquinone) flavoprotein; UQCRC2, ubiquinol-cytochrome c reductase core protein II; ETFB, electron-transfer-flavo-
protein, beta polypeptide; MDH2, malate dehydrogenase 2, NAD (mitochondrial); MSN, moesin; IMPDH2, IMP (inosine 5′-monophosphate) dehydrogenase 2; ILF2, inter-
leukin enhancer binding factor 2; MRPS23, mitochondrial ribosomal protein S23; SEPT9, septin 9; HNRNPH1, heterogeneous nuclear ribonucleoprotein H1; PTBP1, poly-
pyrimidine tract binding protein 1; AHNAK, AHNAK nucleoprotein; RALY, RALY heterogeneous nuclear ribonucleoprotein. (C) Network C contains 20 identified proteins (out
of 35 components) involved in Dermatological Diseases and Conditions, Inflammatory Disease, and Inflammatory Response (score¼53). MX1, MX dynamin-like GTPase 1; PTRF,
polymerase I and transcript release factor; CFL, cofilin; TUBA1C, tubulin, alpha 1c; MYH9, myosin, heavy chain 9, non-muscle; TCR, T-cell receptor; TUBB4B, tubulin, beta 4B;
EEF1A2, eukaryotic translation elongation factor 1 alpha 2; ATP1A1, ATPase, Naþ/Kþ transporting, alpha 1 polypeptide; ACTN4, actinin, alpha 4; S100A11, S100 calcium
binding protein A11; ANXA1, annexin A1; FN1, fibronectin 1; ANXA2, annexin A2; GSTO1, glutathione S-transferase omega 1; Cpla2, calcium-dependent phospholipase A2;
LGALS1, lectin, galactoside-binding, soluble, 1; AHNAK, AHNAK nucleoprotein; S100A6, S100 calcium binding protein A6; HIST1H1D, histone cluster 1, H1d; HIST1H1B,
histone cluster 1, H1b; TAGLN2, transgelin 2.
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Fig. 10. Colocalization studies of selected protein-2-ClHDA-TAMRA adducts hCMEC/D3 cells grown on 4 well plastic chamber slides were incubated in the presence of 25 mM
2-ClHDyA for 30 min followed by treatment with NaCNBH3 to reduce Schiff bases. Cells were fixed and permeabilized prior to click chemistry and incubated with primary
antibodies against annexin A1, annexin A2, DJ-1 (PARK-7), Rab-5, and β-tubulin. All of these proteins (except Rab-5) were identified in the N3-agarose pull-down experi-
ments; Supplementary Table S3. Following incubation with Cy2-labeled secondary antibodies cells were analyzed by confocal LSM. Bars¼10 mm.
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Colocalization studies for a selected set of proteins by confocal
LSM further supported results of the proteome screens.

In summary, subcellular localization and proteome data ob-
tained in this study suggest that the detrimental effects of
2-ClHDyA-induced electrophile damage on human brain en-
dothelial cells involves multifactorial pathways. These include
modification of cytoskeletal components that are central to TJ
patterning, modification of metabolic enzymes, induction of the
oxidative stress response, electrophile damage to the caveolar/
endosomal Rab machinery; ultimately, cell damage may evoke
induction of apoptosis. These findings indicate that inhibition of
MPO in neurodegenerative diseases involving BBB dysfunction
represents a valuable therapeutic option to impede 2-ClHDA-
mediated electrophile damage.



Table 2
Proteins identified in all three proteomic approaches.

Protein name Accession
number

Molecular mass
(Da)

pI

Alpha-actinin-4 O43707.2 104,854.6 5.27
Annexin A1 P04083.2 38,714.5 6.57
Annexin A2 P07355.2 38,604.2 7.58
Annexin A3 P12429.3 36,375.5 5.63
Fibronectin P02751.4 262,625.9 5.46
Interferon-induced GTP binding
protein Mx1

P20591.4 75,520.7 5.60

Myosin-9 P35579.4 226,533.4 5.50
POTE ankyrin domain family
member F

A5A3E0.2 121,445.3 5.83

Protein DJ-1 Q99497.2 19,891.2 6.33
Tubulin alpha-1C chain Q9BQE3.1 49,895.6 4.96
Tubulin beta-4B chain P68371.1 49,831.3 4.79

Table 3
Overlapping proteins identified by 2-D GE and 1-D SDS-PAGE.

Protein name Accession
number

Molecular mass
(Da)

pI

60S acidic ribosomal protein P0 P05388.1 34,273.7 5.72
Calpain small subunit 1 P04632.1 28,315.9 5.05
Fructose-bisphosphate aldolase A P04075.2 39,420.2 8.30
Glyceraldehyde-3-phosphate
dehydrogenase

P04406.3 36,053.4 8.57

Heat shock protein beta-1 P04792.2 22,782.6 5.98
Heterogeneous nuclear ribonucleo-
protein H

P31943.4 49,229.7 5.89

Heterogeneous nuclear ribonucleo-
proteins A2/B1

P22626.2 37,429.9 8.97

HLA class I histocompatibility anti-
gen, A-11 alpha chain

P13746.1 40,937.0 5.77

Interleukin enhancer-binding factor 2 Q12905.2 43,062.4 5.19
L-Lactate dehydrogenase A chain P00338.2 36,688.9 8.44
Major vault protein Q14764.4 99,327.3 5.34
Malate dehydrogenase,
mitochondrial

P40926.3 35,503.5 8.92

Poly(rC)-binding protein 2 Q15366.1 38,580.3 6.33
Thioredoxin-dependent peroxide re-
ductase, mitochondrial

P30048.3 27,692.8 7.67

Vimentin P08670.4 53,651.9 5.06

Table 4
Overlapping proteins identified by 2-D GE and N3-agarose pull-down.

Protein name Accession
number

Molecular mass
(Da)

pI

Acetyl-CoA acetyltransferase,
cytosolic

Q9BWD1.2 41,351.1 6.47

Galectin-1 P09382.2 14,715.8 5.34
Glutathione S-transferase omega-
1

P78417.2 27,566.0 6.24

Lactoylglutathione lyase Q04760.4 20,777.8 5.12
Protein S100-A6 P06703.1 10,179.8 5.32

Table 5
Overlapping proteins identified by 1-D SDS-PAGE and N3-agarose pull-down.

Protein name Accession
number

Molecular mass
(Da)

pI

Brain acid soluble protein 1 P80723.2 22,693.5 4.64
Neuroblast differentiation-asso-
ciated protein AHNAK

Q09666.2 629,104.8 5.80

Polymerase I and transcript release
factor

Q6NZI2.1 43,476.3 5.51

Sodium/potassium-transporting
ATPase subunit alpha-1

P05023.1 112,896.8 5.33

Transgelin-2 P37802.3 22,391.6 8.41
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