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Abstract

The tensile strength of single-walled carbon nanotubes (CNT) is examined using a continuum-atomistic (CA) approach.
The strength is identified with the onset of the CNT instability in tension. The focus of this study is on the effects of multi-
body atomic interactions. Multiscale simulations of nanostructures usually make use of two- and/or three-body inter-
atomic potentials. The three-body potentials describe the changes of angles between the adjacent bonds – bond bending.
We propose an alternative and simple way to approximately account for the multi-body interactions. We preserve the pair
structure of the potentials and consider the multi-body interaction by splitting the changing bond length into two terms.
The first term corresponds to the self-similar deformation of the lattice, which does not lead to bond bending. The second
term corresponds to the distortional deformation of the lattice, which does lead to bond bending. Such a split of the bond
length is accomplished by means of the spherical–deviatoric decomposition of the Green strain tensor. After the split, the
continuum-atomistic potential can be written as a function of two bond lengths corresponding to the bond stretching and
bending independently. We apply an example exponential continuum-atomistic potential with the split bond length to the
study of tension instability of the armchair and zigzag CNTs. The results of the study are compared with those obtained by
Zhang et al. (2004. J. Mech. Phys. Solids 52, 977–998) who studied tension instability of carbon nanotubes by using the
Tersoff–Brenner three-body potential, and with recent experimental results on the tensile failure of single walled carbon
nanotubes.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Materials science, biomedical engineering and medicine are just a few fields, which benefit from the devel-
opment of nanotechnology. This technology allows for design and production of atomic assemblies and
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devices at the nanoscale including carbon nanotubes (Goddard et al., 2003; Dresselhaus et al., 1996; Harris,
1999; Meyyappan, 2005; Qian et al., 2002; Reich et al., 2004) and nanocomposites (Alexandre and Dubois,
2000; Beecrot and Ober, 1997; Odegard et al., 2002). Nanotube assemblies, in particular, can be regarded
as small structures undergoing deformation, vibrations, buckling and fracture. From this perspective, analysis
of mechanical behavior of nanostructures is of interest.

It is natural to apply the methods of quantum mechanics (QM) and/or molecular dynamics (MD) at the
nanoscale. However, such methods quickly become computationally intensive as the number of atoms
increase. This has led to the development of multiple-scale approaches where atomistic and continuum mod-
els are coupled. There are a number of ways to make this coupling. For example, Abraham et al. (1998) and
Broughton et al. (1999) developed the MAAD approach where macroscopic, atomistic and ab initio
(tight-binding) dynamics are linked together to simulate the processes of brittle fracture around a crack-
tip in silicon. Another approach, called the quasi-continuum (QC) method, was developed in a series of
papers by Tadmor et al. (1996), Shenoy et al. (1998), Miller et al. (1998), and Ortiz et al. (2001). In the
QC method, the interatomic potentials are enhanced with the continuum deformation gradients through
the Cauchy–Born rule. In a third approach, Liu and co-workers (2004) developed a concurrent-coupling
method where a hierarchical structure of the displacement field is introduced and used in different types of
numerical simulations.

Among the problems where coupled continuum-atomistic analysis is desirable, the mechanical behavior of
carbon nanotubes (CNT) stands out. The discovery of CNTs (Iijima, 1991; Ebbesen and Ajayan, 1992) and
the development of effective manufacturing techniques (Thess et al., 1996) led to an explosion of interest and
research in the field. CNT radii are usually of the order of one nanometer and the CNT length can vary from a
few nanometers to tens of nanometers. The experimentally measured stiffness (Young’s modulus) is remark-
able, of the order of TeraPascals (Treacy et al., 1996; Wong et al., 1997; Krishnan et al., 1998; Lourie and
Wagner, 1998a; Muster et al., 1998; Pan et al., 1999; Salvetat et al., 1999; Tombler et al., 2000; Yu et al.,
2000). Further, the critical fracture strain computed by using different techniques ranges from 10% to 50%.
For example, Yakobson et al. (1997) obtained a fracture strain ranging from 30% to 50% using MD simula-
tions based on the Brenner (1990) interatomic potential. Zhang et al. (2004) used a continuum-atomistic anal-
ysis considering the onset of fracture as the tension instability of the CNT and obtained a critical strain
ranging from 30% to 40%. Belytschko et al. (2002) found a critical strain between 10% and 16% by using
MD simulations with the modified Morse interatomic potential. Experimental results on the tensile failure
of single-wall carbon nanotubes (SWCNTs) are relatively rare. Lourie and Wagner (1998b) observed the frac-
ture of bundles of single-wall CNTs in a TEM (the CNTs were reinforcements in an epoxy matrix) but did not
obtain quantitative information on either critical or failure strains. Marques et al. (2004) present a more
detailed discussion of the high-resolution TEM experiments of Troiani et al. (2003) in which a single SWCNT
was failed in tension while under observation; the resulting failure strain was approximately 50%. An excellent
summary of recent experimental work is presented in a review article by Yu (2004).

The focus of the present study is twofold. First, we aim to develop a novel approach to account for the
multi-body atomic interactions in a continuum-atomistic calculation. Next, we aim to use this approach to
study the critical fracture strain under the tension of CNTs defining the onset of fracture as the bifurcation
of the CNT equilibrium in tension (Zhang et al., 2004). Existing approaches usually make use of two- and/
or three-body interatomic potentials. The three-body potentials describe the changes of angles between the
adjacent bonds – the bond bending. We propose an alternative and simple way to account for the multi-body
interactions. The idea is to preserve the pair structure of the potentials but to consider the multi-body inter-
action by splitting the changing bond length into two terms. The first term corresponds to the self-similar
deformation of the lattice, which does not lead to bond bending. The second term corresponds to the distor-
tional deformation of the lattice, which does lead to bond bending. Such a split of the bond length is accom-
plished by means of the spherical–deviatoric decomposition of the Green strain tensor. After the split, the
continuum-atomistic potential can be written as a function of two bond lengths corresponding to the bond
stretching and bending independently. This double split (continuum and atomistic) presents further elabora-
tion of the ideas put forward in Volokh (2004) and Volokh and Gao (2005). We apply an example exponential
continuum-atomistic potential with the split bond length to the study of tension instability of armchair and
zigzag CNTs.
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2. Continuum-atomistic coupling

In this section, we consider the interatomic potentials (Section 2.1), the continuum link through the Cau-
chy–Born rule (Section 2.2), and the split continuum-atomistic potential (Section 2.3). The results of this sec-
tion are used in the study of the CNT instability in Section 3.

2.1. Interatomic potentials

Consider a solid body X comprising atoms located at ri in the 3D space. Generally, the total potential
energy of the body is a function of the particle positions: Y(r1, r2, . . ., rn), where n is the number of particles.
Specifically for carbon, Tersoff (1988) and Brenner (1990) suggest
Y C ¼ 1

2

X
i;j

UðrijÞ; ð2:1Þ
where
UðrijÞ ¼
D

S � 1
fcðrijÞ exp �

ffiffiffiffiffiffi
2S
p

bðrij � RijÞ
h i

� SBðijÞ exp �
ffiffiffiffiffiffiffiffi
2=S

p
bðrij � RijÞ

h in o
; ð2:2Þ

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðri � rjÞ � ðri � rjÞ

q
; ð2:3Þ

Rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRi � RjÞ � ðRi � RjÞ

q
. ð2:4Þ
Here Ri is the initial equilibrium position of the ith atom; D = 6.0 eV; S = 1.22; b = 21 nm�1; and
Rij = 0.145 nm is the equilibrium bond length for atoms i and j under the condition of multi-atomic coupling
(Zhang et al., 2004).

The cutoff function fc (rij) used in (2.2) is
fc ¼

1; rij < a1;

1

2
þ 1

2
cos

pðrij � a1Þ
a2 � a1

; a1 < rij < a2;

0; rij > a2

8>><>>: ð2:5Þ
with a1 = 0.17 nm and a2 = 0.20 nm to include the only the first-neighbor shell for carbon.
The function representing the three-body coupling B(ij) = (Bij + Bji)/2 is
Bij ¼ 1þ
X

kð6¼i;jÞ
a0 1þ c2

0

d2
0

� c2
0

d2
0 þ ð1þ cos uijkÞ

2

 !
fcðrijÞ

( )�d

; ð2:6Þ

cos uijk ¼ rij � rik=ðrijrikÞ; ð2:7Þ
where a0 = 0.00020813, c0 = 330, d0 = 3.5, d = 0.5.
This three-body carbon potential was applied to CNT continuum-atomistic analysis by Zhang et al. (2004).

Other potentials accounting for two- and three-body interactions can also be found in the literature with var-
ious cutoff functions. However, the potential presented by Eqs. (2.1)–(2.7) will be utilized in this paper for
comparison purposes and for the assessment of the results of our analysis.

2.2. Cauchy–Born rule

According to the Cauchy–Born rule, originally applied to crystal elasticity (Born and Huang, 1954; Weiner,
1983), the current rij = ri � rj and initial (equilibrium) Rij = Ri � Rj relative positions of the same two atoms
can be related as follows:
rij ¼ FRij; ð2:8Þ

with the help of the deformation gradient
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F ¼ rvðXÞ; ð2:9Þ

where v(X) is the current position of the referential point X and the ith and jth atoms are found in the vicinity
of the point X – Fig. 1.

Substitution of Eq. (2.8) in Eq. (2.1) allows one to define the potential energy density W in terms of the
Green strain tensor E over representative volume V0:
W ¼ 1

2V 0

X
i;j

UðrijÞ ¼ W ðEÞ; ð2:10Þ
where
rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rij � ð1þ 2EÞRij

q
; ð2:11Þ

cos uijk ¼ Rij � ð1þ 2EÞRik=ðrijrikÞ; ð2:12Þ
E ¼ ðFTF� 1Þ=2. ð2:13Þ
Here 1 is the second-order identity tensor.
The second Piola–Kirchhoff stress tensor and the fourth-order tangent stiffness tensor can then be calcu-

lated from the strain energy function:
S ¼ oW =oE; ð2:14Þ
C ¼ oS=oE. ð2:15Þ
Remark 1. The basic formulation of the Cauchy–Born rule described above is applicable to the case of a
simple lattice. In the case of a multi-lattice, it is necessary to introduce additional vectors of atomic
displacements, which represent the atomic relaxation processes after deformation. In the case of the complex
lattice comprising two simple sub-lattices, for example, we have to replace Eq. (2.8) with
rij ¼ FRij þ c ¼ FðRij þ bÞ; ð2:16Þ

where vectors c and b = F�1c designate a possible shift between the two sub-lattices. These vectors are intro-
duced in order to account for the relaxation of the atomic positions providing the equilibrium of atoms. The
shift vector is determined by minimizing the strain energy density with respect to b (Weiner, 1983; Tadmor
et al., 1999; Arroyo and Belytschko, 2002):
Fig. 1. Cauchy–Born rule – scale linking.
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oW ðE; bÞ
ob

¼ 0. ð2:17Þ
Solving this equation it is possible to obtain b as a function of E. Now the second Piola–Kirchhoff stress tensor
can be calculated from the strain energy function by using the chain rule
S ¼ oW
oE
þ oW

ob
ob
oE
¼ oW

oE
. ð2:18Þ
The tangent stiffness moduli can be derived by further differentiation
C ¼ oS

oE
¼ o

2W
oE oE

� o
2W

ob oE

o
2W

ob ob

� ��1
o

2W
oE ob

; ð2:19Þ
where the result of differentiation of Eq. (2.17) with respect to E has been used.
Generally, the shift appears because symmetries break during the deformation. However, in the particular

case of the tension instability of the zigzag and armchair nanotubes, which will be considered in the next
section, the symmetries are preserved during the simple tension in the pre-bifurcation state and, consequently,
there is no need to account for the atomic relaxation. The symmetries break, of course, after the bifurcation of
the equilibrium state. The post-bifurcation behavior, however, is beyond the scope of this study. In summary,
we will ignore the shift vector between two sub-lattices of the zigzag and armchair CNTs in subsequent
considerations.

Remark 2. Direct use of Eq. (2.10) in analysis of material behavior can be difficult because of the large num-
ber of atoms in a representative volume. In this case, the sum of the bond potentials can be replaced with the
integral as follows:
W ¼ hUi ¼ W ðEÞ; hUi ¼ 1

V 0

Z
V �

0

UDV dV ; ð2:20Þ
where V0 is the reference representative volume; DV is the volumetric bond density function; and V �0 is the inte-
gration volume defined by the range of influence of U (Gao and Klein, 1998; Klein and Gao, 1998, 2000).
2.3. Split continuum-atomistic potential

The Cauchy–Born approach described in the two previous subsections is a mixture of atomistic and con-
tinuum concepts. However, the concept of the continuum deformation appears only at the last stage of the
model formulation when Eq. (2.10) is used. Thus, the choice of the interatomic potential is most crucial for
model formulation. The simplest potentials to use are pair potentials such as the Lennard-Jones or Morse
potentials, but improved accuracy is obtained by considering three-body potentials such as the Tersoff–Bren-
ner potential of Eq. (2.2), thus accounting for changes in bond angles as well as bond lengths (see Fig. 2).

We propose another approach to help account for the simultaneous multi-body interactions (see also Vol-
okh, 2004; Volokh and Gao, 2005). We assume that the simultaneous multi-body interactions are related with
the change of the interbond angles, which themselves are a result of the distortion of the atomic lattice. Thus,
the deformation of the lattice can be decomposed into a self-similar deformation, which does not lead to the
change of the interbond angles, and a distortional deformation, which does lead to the change of the interbond
angles (Fig. 3). Now the length of every atomic bond is generally changed due to both the self-similar (spher-
ical) and bond-angle-changing (distortional) lattice deformation. Such a split of the bond length can be
accomplished by means of the spherical–deviatoric decomposition of the Green strain tensor. After the split,
the continuum-atomistic potential can be written as a function of the two changes in bond length indepen-
dently. The latter will allow for preserving the simple structure of the interatomic potentials while accounting
to some degree for the multi-body effects. We accomplish this as follows.

From the point of view of continuum mechanics, it is convenient to use a quadratic measure of the inter-
atomic distance change



Fig. 2. Pair interatomic potential.

Fig. 3. Split of the bond length in the stretching (self-similar deformation) and the bending (distortional deformation).
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D ¼ l2 � L2; ð2:21Þ

where
l ¼ rij ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � ð1þ 2EÞn

p
; L ¼ Rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rij � Rij

p
; n ¼ Rij=L. ð2:22Þ
Substituting Eq. (2.22) in Eq. (2.21), we have
D ¼ 2L2n � En; ð2:23Þ

Let the Green strain tensor be decomposed into spherical and deviatoric parts accordingly
E ¼ 1

3
ðtrEÞ1þ Ê. ð2:24Þ
Substituting Eq. (2.24) in Eq. (2.23), we have
D ¼ wþ D̂; ð2:25Þ

where
w ¼ 2

3
L2trE; ð2:26Þ

D̂ ¼ 2L2n � Ên. ð2:27Þ
Here w designates the squared bond length change due to the self-similar lattice stretch and D̂ designates the
squared bond length change due to the lattice distortion. The former is driven by the spherical deformation
and the latter is driven by the deviatoric deformation.

Now we can write the energy density as follows:
W ¼ hUðw; D̂Þi ¼ W ðEÞ; ð2:28Þ

where the brackets mean the finite sum average as in Eq. (2.10) or the integral average as in Eq. (2.20).

Substituting Eq. (2.28) in Eqs. (2.14) and (2.15), we have
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S¼ 2L2

3
ðUw�U D̂Þ1þ2L2U D̂n�n

� �
; ð2:29Þ
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� �
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ð2:30Þ
where the following results were accounted for
ow
oE
¼ 2L2

3
1;

oD̂
oE
¼ 2L2n� n� 2L2

3
1;

o2w
oEoE

¼ 0 ¼ o2D̂
oE oE

. ð2:31Þ
To connect the continuum and atomistic problems, we must identify the potential to be used. Using the
Tersoff–Brenner potential of Eq. (2.2) as a basis, we write our potential as
Uðw; D̂Þ ¼ D
S � 1

exp �
ffiffiffiffiffiffi
2S
p

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wþ f D̂þ L2

q
� L

� �� �
� S exp �

ffiffiffiffiffiffiffiffi
2=S

p
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wþ f D̂þ L2

q
� L

� �� �	 

;

ð2:32Þ

where the cutoff function (2.5) has been ignored and the three-body coupling functions (2.6) have been set
equal to one. We wish to emphasize that we are not neglecting the multi-body interaction in this approach,
although we are not using the atomistic version of this coupling in the Brenner potential. Instead, we are incor-
porating the multi-body interaction (without limiting the number of atoms involved in the interaction) directly
into the continuum atomistic potential represented by Eq. (2.32).

This split continuum-atomistic potential (2.32) has one unknown dimensionless coefficient f related with the
lattice distortion, i.e. the bond bending. This coefficient can be determined either through comparison with
experimental results or through theoretical analysis as follows.

Some experimental research groups have estimated the Poisson ratio of carbon nanotubes assuming isot-
ropy of the CNT structure (this assumption is obviously idealization for single-walled CNTs, which have a
pronounced crystalline structure). Single-walled CNTs can be considered as isotropic for small strains (see
results below). Based on the value of the Poisson ratio we can derive the value for the parameter f of the con-
tinuum-atomistic potential (2.32). We begin by linearizing the constitutive law about w = 0 and D̂ ¼ 0:
U D̂D̂ ¼ f 2Uww;

UwD̂ ¼ fUww:

(
ð2:33Þ
In this case, the initial tangent moduli (designated with superscript zero) take the following form
C0
IJMN ¼

4L4

9
Uww ð1� f Þ2dIJdMN þ 9f 2nInJnMnN þ 3f ð1� f ÞðnInJdMN þ dIJnMnN Þ

n o� �
. ð2:34Þ
The brackets mean
h�i ¼ 1

V 0

Z p

�p

Z p

0

Z
L
�DL sin h dL dh du; ð2:35Þ
where we have used Eq. (2.20) with DV(L,h,u) = DL(L) because of isotropy. Since we have the geometric
results
Z p

�p

Z p

0

nInJnMnN sin h dh du ¼ 4p
15

dIJdMN þ dIMdJN þ dINdJMð Þ; ð2:36ÞZ p

�p

Z p

0

nInJ sin h dh du ¼ 4p
3

dIJ ; ð2:37ÞZ p

�p

Z p

0

sin h dh du ¼ 4p; ð2:38Þ
we can compute the right-hand side of Eq. (2.34) to give
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C0
IJMN ¼ UwwphL4i 16

9
� 32

45
f 2

� �
dIJdMN þ

16

15
f 2ðdIMdJN þ dINdJMÞ

	 

. ð2:39Þ
Eq. (2.39) essentially states that the Lame parameters of isotropic elasticity have the following expressions
k ¼ UwwphL4iL
16

9
� 32

45
f 2

� �
; ð2:40Þ

l ¼ UwwphL4iL
16

15
f 2. ð2:41Þ
The relationship between the Lame parameters and the Poisson ratio is
k ¼ 2lm=ð1� 2mÞ. ð2:42Þ

Reich et al. (2004) estimated the Poisson ratio m = 0.14 from their experiments. Substituting Eqs. (2.40) and
(2.41) in Eq. (2.42) and setting m = 0.14, we obtain
f ffi 1:26. ð2:43Þ

A theoretical estimate of the magnitude of f can be obtained by linking the potentials (2.2) and (2.32)

through the following formal procedure. Consider the following imaginary deformation of an infinite graphite
sheet shown in Fig. 4a
F ¼ k1k1 � K1 þ k2 � K2 þ k3 � K3; ð2:44Þ

where ki and KI are the coinciding Cartesian base vectors related with current and referential configurations
accordingly.

We substitute this deformation in the empirical potentials (2.2) and (2.32) by using the Cauchy–Born rule
(2.8). Now, the strain energy density based on the Tersoff–Brenner potential (2.2) is a function of the axial
stretch k1 only – WTB(k1). On the other hand, the strain energy based on the potential presented in this work
(2.32) is a function of both k1 and f �W(k1, f). In order to find f we equate the second derivatives of both
strain energies at k1 = 1, i.e. we define the equivalent initial stiffness
o2W TB

ok2
1

ðk1 ¼ 1Þ ¼ o2W

ok2
1

ðk1 ¼ 1; f Þ. ð2:45Þ
This is a transcendent equation with respect to f, which can be solved numerically. The solution is
f ffi 1:24. ð2:46Þ

Alternatively, we define the uniaxial stretch in the orthogonal direction (Fig. 4b)
F ¼ k1 � K1 þ k2k2 � K2 þ k3 � K3; ð2:47Þ

and use the equivalence condition
. 4. Imaginary deformations (given by Eqs. (2.44) and (2.47)) for comparison of the potentials given by Eqs. (2.2) and (2.32).
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o2W TB

ok2
2

ðk2 ¼ 1Þ ¼ o2W

ok2
2

ðk2 ¼ 1; f Þ. ð2:48Þ
The solution for parameter f is again 1.24, as in Eq. (2.46). It is remarkable that
o2W TB

ok2
1

ðk1 ¼ 1Þ ¼ o2W TB

ok2
2

ðk2 ¼ 1Þ; ð2:49Þ
i.e. the hexagonal sheet of the material can be considered isotropic under small initial deformations.
The magnitude of parameter f given by Eq. (2.46) practically coincides with the magnitude of f given by Eq.

(2.43). This result is encouraging.

3. Single wall carbon nanotubes under tension

In this section, we will use the developed continuum-atomistic theory to assess the tensile strength of the
single wall zigzag and armchair nanotubes. First, we develop equations describing the pre-bifurcation state
of the nanotubes (Section 3.1). Then we analyze the bifurcation (Section 3.2). Finally, we discuss the results
of the analysis (Section 3.3).

3.1. Pre-bifurcation state

Adopting a Lagrangian (referential) description, the equilibrium equations without the body forces take the
form
DivP ¼ 0; ð3:1Þ

where
P ¼ FS ð3:2Þ

is the first (two-point) Piola–Kirchhoff stress tensor; S = ST is the second (symmetric) Piola–Kirchhoff stress
tensor obtained from Eq. (2.14).

The boundary conditions are
v ¼ �v on oXv;

Pn ¼ �t on oXt;

	
ð3:3Þ
where t is the surface traction per unit reference area; n is a unit outward normal to the reference surface; and
the barred quantities are prescribed.

We will consider governing equations directly with respect to the following referential and current ortho-

normal bases in cylindrical coordinates {R,H,Z} and {r,h,z}
KRðHÞ ¼ ðcos H; sin H; 0ÞT KHðHÞ ¼ ð� sin H; cos H; 0ÞT KZ ¼ ð0; 0; 1ÞT;
krðhÞ ¼ ðcos h; sin h; 0ÞT khðhÞ ¼ ð� sin h; cos h; 0ÞT kz ¼ ð0; 0; 1ÞT:

(
ð3:4Þ
In this case, the current position vector of particle X has the following general representation
vðXÞ ¼ rkrðhÞ þ zkz; ð3:5Þ

where {r,h,z} are functions of {R,H,Z}.

Carbon nanotubes are very thin because they include only one or very few atomic layers. Based on this
notion we ignore variation of all quantities with respect to R, which is the initial tube radius (see also Remark
3 at the end of Section 2.2). We assume that the pre-bifurcation state is an axisymmetric tension, which can be
described as follows:
r ¼ rðaÞ; h ¼ H; z ¼ aZ; ð3:6Þ

where r is the current tube radius, which does not depend on R, and the axial stretch a is the control
parameter.
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Substituting Eq. (3.6) in Eqs. (3.4) and (3.5), we have
krðhÞ ¼ krðHÞ ¼ KRðHÞ; khðhÞ ¼ khðHÞ ¼ KHðHÞ; kz ¼ KZ ; ð3:7Þ
vðXÞ ¼ rkrðHÞ þ aZkz. ð3:8Þ
The coincidence of the base vectors in the current and referential configurations for h = H leads to dramatic
simplifications of all subsequent equations. In principle, we can abandon the use of kr(H), kh(H), kz replacing
them with KR(H), KH(H), KZ. However, we retain them in order to emphasize the two-point character of the
deformation gradient tensor:
F ¼ ovðXÞ
oR

� KRðHÞ þ
ovðXÞ
RoH

� KHðHÞ þ
ovðXÞ

oZ
� KZ ¼

r
R

khðHÞ � KHðHÞ þ akz � KZ ; ð3:9Þ
where the relation okr(H)/oH = kh(H) has been used. Henceforth we suppress the argument of the base
vectors.

Then we have from Eq. (3.2)
P ¼ r
R

SHRkh � KR þ
r
R

SHHkh � KH þ
r
R

SHZkh � KZ þ aSZRkz � KR þ aSZHkz � KH þ aSZZkz � KZ :

ð3:10Þ

Substituting Eq. (3.10) in Eq. (3.1), we get the following equilibrium equation
Div P ¼ � r

R2
SHHkr þ

r

R2
SHR þ

r

R2

oSHH

oH
þ r

R
oSHZ

oZ

� �
kh þ

a
R

SZR þ
a
R

oSZH

oH
þ a

oSZZ

oZ

� �
kz ¼ 0; ð3:11Þ
where the following derivatives of the base vectors were used
oKR

oH
¼ KH ¼ kh ¼

okr

oH
;

oKH

oH
¼ �KR ¼ �kr ¼

okh

oH
. ð3:12Þ
Note that equilibrium equation (3.11) can be interpreted as the average over the wall thickness if all terms are
pre-multiplied by the thickness magnitude, i.e. integrated over the thickness. Evidently, this will not affect the
subsequent analysis and we omit the wall thickness in the subsequent reasoning.

Assume now that the lateral surface of the CNT is stress-free
PKR ¼
r
R

SHRkh þ aSZRkz ¼ 0. ð3:13Þ
This means
SHR ¼ 0; SZR ¼ 0. ð3:14Þ

Substituting Eq. (3.14) into Eq. (3.11), we obtain
SHH ¼ 0;
oSHZ

oZ
¼ 0;

oSZH

RoH
þ oSZZ

oZ
¼ 0. ð3:15Þ
We assume that there are no tangent tractions at the edges Z = 0,H of the CNT
kh � PKZ ¼
r
R

SHZ ¼ 0. ð3:16Þ
We conclude from Eq. (3.152) and boundary condition (3.16) that SHZ does not depend on Z. Enforcing axial
symmetry we conclude that SHZ vanishes while SZZ is constant.

In summary, the final radius r of the CNT can be found from Eqs. (3.151) and (2.29) by solving
SHH ¼
2L2

3
ðUw � U D̂ þ 3U D̂n2

HÞ
� �

¼ 0. ð3:17Þ
The axial stress for the given axial stretch a is computed from
SZZ ¼
2L2

3
ðUw � U D̂ þ 3U D̂n2

ZÞ
� �

. ð3:18Þ
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Eqs. (3.17) and (3.18) include the dependence on w and D̂ which take the form
w ¼ 2

3
L2ðEHH þ EZZÞ; ð3:19Þ

D̂ ¼ 2L2ðEHHðn2
H � 1=3Þ þ EZZðn2

Z � 1=3ÞÞ; ð3:20Þ
where EHH = (r2/R2 � 1)/2 and EZZ = (a2 � 1)/2.

3.2. Bifurcation state

In order to formulate the bifurcation problem we superimpose small perturbing displacements
u ¼ urkr þ uhkh þ uzkz ð3:21Þ

on the current stress/deformation state. In this case, we have the following perturbed equilibrium equation
instead of Eq. (3.1)
Div eP ¼ 0; ð3:22Þ

and the following boundary conditions instead of Eq. (3.3), assuming ‘dead’ surface tractions and
displacements,
u ¼ 0 on oXv;ePn ¼ 0 on oXt:

(
ð3:23Þ
Here we have
eP ¼ eFSþ FeS; eF ¼ ou=oX; eS ¼ C : eE; eE ¼ ðeFTFþ FTeFÞ=2; ð3:24Þ
with all perturbed solutions designated with a tilde.
In the specific case under consideration we have
eF ¼ ou

oX

¼ our

RoH
� uh

R

� �
kr � KH þ

our

oZ
kr � KZ þ

ouh

RoH
þ ur

R

� �
kh � KH þ

ouh

oZ
kh � KZ þ

ouz

RoH
kz � KH

þ ouz

oZ
kz � KZ ; ð3:25Þ

S ¼ SZZKZ � KZ ; ð3:26Þ

eFS ¼ SZZ
our

oZ
kr � KZ þ SZZ

ouh

oZ
kh � KZ þ SZZ

ouz

oZ
kz � KZ ; ð3:27Þ

F ¼ r
R

kh � KH þ akz � KZ ; ð3:28Þ

eE ¼ r
R

ouh

RoH
þ ur

R

� �
KH � KH þ

1

2

r
R

ouh

oZ
þ a

ouz

RoH

� �
KH � KZ þ

1

2

r
R

ouh

oZ
þ a

ouz

RoH

� �
KZ � KH

þ a
ouz

oZ
KZ � KZ ; ð3:29Þ

eS ¼ CIJHH
r
R

ouh

RoH
þ ur

R

� �
KI � KJ þ CIJHZ

r
R

ouh

oZ
þ a

ouz

RoH

� �
KI � KJ þ CIJZZa

ouz

oZ
KZ � KZ ; ð3:30Þ
where H � 2, or Z � 3 are fixed indices and no summation over them is supposed.
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Then we have
FeS ¼ CHJHH
r2

R2

ouh

RoH
þ ur

R

� �
þ CHJHZ

r
R

r
R

ouh

oZ
þ a

ouz

RoH

� �
þ CHJZZa

r
R

ouz

oZ

� �
kh � KJ

þ CZJHHa
r
R

ouh

RoH
þ ur

R

� �
þ CZJHZa

r
R

ouh

oZ
þ a

ouz

RoH

� �
þ CZJZZa

2 ouz

oZ

� �
kz � KJ ; ð3:31Þ
where index J is equal to H or Z.
Substituting Eqs. (3.27) and (3.31) in Eq. (3.241) we obtain the following increment of the first Piola–

Kirchhoff stress
eP ¼ eP rZkr � KZ þ eP hHkh � KH þ eP hZkh � KZ þ eP zHkz � KH þ eP zZkz � KZ ; ð3:32Þ

eP rZ ¼ SZZ
our

oZ
;

eP hH ¼ CHHHH
r2

R3

ouh

oH
þ ur

� �
þ CHHHZ

r2

R2

ouh

oZ
þ a

rouz

R2oH

� �
þ CHHZZa

r
R

ouz

oZ
;

eP hZ ¼ CHZHH
r2

R3

ouh

oH
þ ur

� �
þ CHZHZ

r2

R2

ouh

oZ
þ a

rouz

R2oH

� �
þ CHZZZa

r
R

ouz

oZ
þ SZZ

ouh

oZ
;

eP zH ¼ aCHZHH
r

R2

ouh

oH
þ ur

� �
þ CHZHZ a

r
R

ouh

oZ
þ a2 ouz

RoH

� �
þ CHZZZa

2 ouz

oZ
;

eP zZ ¼ aCZZHH
r

R2

ouh

oH
þ ur

� �
þ CZZHZ a

r
R

ouh

oZ
þ a2 ouz

RoH

� �
þ CZZZZa

2 ouz

oZ
þ SZZ

ouz

oZ
;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð3:33Þ
Substituting Eq. (3.32) in Eq. (3.22), we get the following perturbed equilibrium equations
Div eP ¼ oeP rZ

oZ
�
eP hH

R

 !
kr þ

oeP hZ

oZ
þ oeP hH

RoH

 !
kh þ

oeP zH

RoH
þ oeP zZ

oZ

 !
kz ¼ 0. ð3:34Þ
Substituting Eq. (3.33) in Eq. (3.34), we obtain the following homogeneous system of equations
Lrrur þ Lrhuh þ Lrzuz ¼ 0;

Lhrur þ Lhhuh þ Lhzuz ¼ 0;

Lzrur þ Lzhuh þ Lzzuz ¼ 0;

8<: ð3:35Þ
where
Lrr ¼ SZZ
o2

oZ2
� CHHHH

r2

R4
;

Lrh ¼ �CHHHH
r2

R4

o

oH
;

Lrz ¼ �CHHZZ
ar

R2

o

oZ
;

Lhr ¼ CHHHH
r2

R4

o

oH
;

Lhh ¼ CHZHZ
r2

R2
þ SZZ

� �
o2

oZ2
þ CHHHH

r2

R4

o2

oH2
;

Lhz ¼ CHZHZ þ CHHZZð Þ ar

R2

o
2

oHoZ
;

Lzr ¼ CHHZZ
ar

R2

o

oZ
;

Lzh ¼ CHZHZ þ CHHZZð Þ ar

R2

o
2

oZoH
;

Lzz ¼ CHZHZ
a2

R2

o2

oH2
þ CZZZZa

2 þ SZZ

� � o2

oZ2
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:36Þ
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The incremental boundary conditions at Z = 0,H take the form
uz ¼ 0; eP rZ ¼ SZZ
our

oZ
¼ 0; eP hZ ¼ CHZHZ

r2

R2
þ SZZ

� �
ouh

oZ
þ aCHZHZ

rouz

R2oH
¼ 0. ð3:37Þ
Note we have set the tangent moduli CHZZZ = CZZHZ, CHHHZ = CHZHH equal to zero independently of the
deformation because of the symmetry properties of the armchair and zigzag nanotubes. The nonzero tangent
moduli are computed as follows:
CHHHH ¼
4L4

9
ðUww þ U D̂D̂ð1� 3n2

HÞ
2 þ 2ð3n2

H � 1ÞUwD̂

� �
;

CZZZZ ¼
4L4

9
ðUww þ U D̂D̂ð1� 3n2

ZÞ
2 þ 2ð3n2

Z � 1ÞUwD̂Þ
� �

;

CHZHZ ¼ 4L4U D̂D̂n2
Zn

2
H

 �
;

CHHZZ ¼
4L4

9
ðUww þ U D̂D̂ð9n2

Hn2
Z � 2Þ þ UwD̂Þ

� �
:

8>>>>>>>>>>><>>>>>>>>>>>:
ð3:38Þ
Since n = cos/KH + sin/KZ, we have
n2
H ¼ cos2 /; n2

Z ¼ sin2 /; ð3:39Þ

where / is the angle between the bond i–j and axis Z.

We consider solutions of Eq. (3.35) in the form of trigonometric series
ur ¼ uðm;nÞr cosðnHÞ cosðmpZ=HÞ;
uh ¼ uðm;nÞh sinðnHÞ cosðmpZ=HÞ;
uz ¼ uðm;nÞz cosðnHÞ sinðmpZ=HÞ:

8><>: ð3:40Þ
These expressions obey boundary conditions (3.37), and a nontrivial solution of Eq. (3.35) is obtained under
condition
det K ¼ 0; ð3:41Þ

where the entries of matrix K are
K11 ¼ �SZZðmp=HÞ2 � CHHHHr2=R4;

K12 ¼ K21 ¼ �CHHHHnr2=R4;

K13 ¼ K31 ¼ �CHHZZðmp=HÞar=R2;

K22 ¼ �ðCHZHZr2=R2 þ SZZÞðmp=HÞ2 � CHHHHn2r2=R4;

K23 ¼ K32 ¼ �ðCHZHZ þ CHHZZÞðnmp=HÞar=R2;

K33 ¼ �CHZHZn2a2=R2 � ðCZZZZa2 þ SZZÞðmp=HÞ2:

8>>>>>>>><>>>>>>>>:
ð3:42Þ
Eqs. (3.17) and (3.41) must be solved simultaneously with respect to a and r to obtain the bifurcation stretch
and CNT radius for the given (m,n) mode of the bifurcation displacement.

Remark 3. It is important to emphasize that all stresses and elasticities are averages (resultants) over a very
thin wall of the CNT and their dimension is force per length (N/m) instead of the usual force per squared
length (Pa). This is also in agreement with the fact that the representative volume element V0 in Eq. (2.10)
degenerates to the representative surface element V 0 ¼ 3

ffiffiffi
3
p

L2
0=4 where L0 is the interatomic distance in

equilibrium.
3.3. Results

We present the results of numerical solution (for the critical CNT radius r and stretch a) of the coupled
system of nonlinear bifurcation Eqs. (3.17) and (3.41) (see Fig. 5).



Fig. 5. Considered examples of the armchair and zigzag nanotubes.
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First, we studied the convergence of the solution depending on the initial post-buckling mode presented by
Eq. (3.40), i.e. as a function of the wave numbers m and n. The critical strains and stress for nanotubes with an
initial radius R = 0.5 nm and height H = 5.0 nm are presented in Fig. 6; they have remarkably different char-
acter for the zigzag and armchair CNTs. The zigzag CNT has the lowest critical point of bifurcation at m = 1
and n = 0, i.e. the symmetric bifurcation takes place. In the case of the armchair CNT m = 1 and n > 4 give the
minimum critical parameters, i.e. asymmetric bifurcation takes place. We note that Zhang et al., who incor-
porate the three-body interaction, predict only symmetric bifurcations for both zigzag and armchair CNTs.
Fig. 6. Modal (m,n) convergence of the critical (bifurcation) stress resultants and strains.
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Second, we varied the ‘multi-body stiffness’ parameter f. Since the choice of parameter f = 1.26 connected
with the multi-body atomic interactions was based on the experimental CNT Poisson ratio, which is approx-
imate, it is desirable to explore the sensitivity of the solution of the bifurcation problem to the changing mag-
nitude of this parameter. There is an increase of the CNT strength with the increase of f (Fig. 7, top). However,
the critical strains decrease with increasing f (Fig. 7, bottom). This kind of ‘embritllement’ is characteristic of
this particular continuum-atomistic model.

Third, we checked the sensitivity of the results with regard to the varying aspect ratio R/H of the tubes. No
sensitivity was found (Table 1).

Fourth, we compared the results of the bifurcation analysis based on the multi-body potential (2.32) with
f = 1.26 and two-body potential with f = 1. As expected, the ‘toughening’ of the model is observed when the
multi-body atomic interactions are included (Table 2).

Fifth, we tracked the stress–strain curves in the pre-bifurcation state – shown in Fig. 8. The initial slope
(464 N/m for f = 1.26) of the curves is equivalent for both armchair (Fig. 8, top) and zigzag (Fig. 8, bottom)
nanotubes. Since the crystalline structure of each nanotube is obtained from the other by p/2-rotation, it is
possible to claim that the material is approximately isotropic for small strains. The latter justifies the ideali-
zation made in experimental measurements of the Poisson ratio.
Fig. 7. Strength sensitivity of the armchair (a) and zigzag (b) CNTs to the varying multi-body stiffness ratio f.

Table 1
Critical strains and stress resultants (f = 1.26) for armchair (a) and zigzag (b) CNT as a function of varying aspect ratio

(a)
R/H 0.05 0.10 0.15 0.20 0.25
Ecr

ZZ (%) 25 25 25 25 25
rcr

zz ðN=mÞ 49 49 49 49 49

(b)
R/H 0.05 0.10 0.15 0.20 0.25
Ecr

ZZ (%) 21 21 21 21 21
rcr

zz ðN=mÞ 34 34 34 34 34



Table 2
Critical strains and stress resultants for two- and multi-body atomic interactions (Eq. (2.32))

Two-body interactions f = 1 Multi-body interaction f = 1.26

Ecr
ZZ (%) 29 25 Armchair

26 21 Zigzag

rcr
zz ðN=mÞ 45 49 Armchair

31 34 Zigzag

Fig. 8. Second Piola–Kirchhoff stress (resultant) versus Green strain for pair- (solid line) and multi- (dashed lines) body potentials before
bifurcation.
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4. Discussion

The lack of experimental data on single-walled CNTs makes it difficult to asses the results of the theoretical
analysis given in the present work directly. However, the work of Troiani et al. (2003) allows us to estimate the
upper bound for the critical tensile strain. Using observations within a TEM, these authors reported that they
observed 50% elongation of the single-walled nanotubes before breaking. Such an elongation corresponds to
	62% Green strain. Our data for the onset of the tensile instability are 21–25% Green strain (for f = 1.26).
Thus the necking occurs approximately between 20% and 60% Green strain, which seems reasonable. Some
comparison with the experiments performed by Yu et al. (2000) on multi-walled CNTs is also possible. These
authors measured the critical strain to be between 10% and 14% experimentally. Our results for critical strains
are 21% for the zigzag CNT and 25% for the armchair CNT (for f = 1.26). Assuming that the addition of the
wall layers leads to the stiffening of the CNT, the results of the theoretical analysis seem reasonable. Indeed,
the critical strains are expected to decrease and the critical stresses are expected to increase with the CNT
stiffening.
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When comparing the results of theoretical predictions and experimental measurements, it should be recog-
nized that idealized nano-structures are assumed in the analyses, while real imperfect nano-structures are tested
in practice. It is extremely difficult to develop defect-free nanotubes, and this is a particular problem when the
tensile instability will be modulated by the defects. The single SWCNT tests of Troiani et al. (2003) appear to be
the closest to defect-free structures, and they appear to show the largest failure strains (note that these are fail-
ure strains, not the onset of the instability, which is what is predicted by this theoretical analysis). Other exper-
iments (see, e.g. Yu (2004)) have generally shown a wide range of failure strains, typically significantly smaller,
but these are typically in less-clean structures. The presence of atomic defects can disturb the results of the mea-
surements. Further inclusion of the atomic imperfections in the theoretical models is of interest.

For the sake of comparison, our computations utilized the initial data of Zhang et al. (2004), who used the
continuum-atomistic three-body Tersoff–Brenner potentials for simulating the multi-body interaction. The
comparison of the results of Zhang et al. (2004) and of the present work can be summarized as follows:

• Zhang et al. (2004) predict 42% and 37% critical strains for the armchair and zigzag CNTs accordingly
while the corresponding predictions of the present work are 25% and 21%, i.e. we predict lower critical
strains.

• Zhang et al. (2004) predict symmetric bifurcation modes for both armchair and zigzag CNTs while the present
work predicts symmetric bifurcation of the zigzag CNT and asymmetric bifurcation of the armchair CNT.

• Zhang et al. (2004) predict the aspect ratio sensitivity for zigzag CNTs contrary to the present work which
predicts insensitivity of the tensile strength to the varying aspect ratio of the tube.

Commenting on this comparison summary we should note that our model gives lower critical strains
because it is stiffer and ‘more brittle’ than the Tersoff–Brenner continuum-atomistic model developed by
Zhang et al. (2004) and Jiang et al. (2003). The fact that our model is stiffer than that of Zhang et al.
(2004) is evident in that the estimate of the Young’s modulus by Zhang et al. (2002) is E 
 705 GPa and
our estimate E 
 1385 GPa (this latter seems to be a better fit to numerous experimental and theoretical pre-
dictions reviewed in Fig. 1 of Zhang et al. (2004)). However, the assessment of the Young’s modulus and stres-
ses in the CNT is not trivial because the thickness of the CNT wall is difficult to define. The estimates of the
Young’s modulus given above were obtained with the assumption that the wall thickness is 0.335 nm (see
Zhang et al., 2002). The fact that our model provides ‘embrittlement’ of the CNT mechanical response with
the enforcement of the multi-body interactions is seen in Fig. 7 where a parametric study of the tensile strength
of the armchair and zigzag CNTs is presented for the varying parameter of the multi-body interaction (f). The
‘embrittlement’ implies that the critical stress resultants increase while the critical strains decrease with the
increasing magnitude of f. Comparing the bifurcation mode predictions we should mention that symmetric
bifurcations are typical of the rod necking while asymmetric bifurcations are typical of the shell buckling.
Our results predict that ideally perfect armchair nanotubes are shell-like while the zigzag nanotubes are
rod-like in tension.

Concerning the detailed comparison of our results with those of Zhang et al. (2002, 2004) given above, we
should clearly emphasize that our theory is not an approximation of the Tersoff–Brenner continuum-atomistic
approach developed by Zhang et al. but a possible alternative to it. On the one hand, the physical strength of
our proposal is in the fact that it allows accounting for the multi-body interactions without specifying the
number of simultaneously interacting atoms. This is in contrast to the Tersoff–Brenner potential where the
number of the interacting atoms is limited to three. On the other hand, the mathematical simplicity of our
approach is in the fact that the pair structure of the continuum-atomistic potential is preserved. This is more
efficient computationally.
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