A NOTE ON THE INDEPENDRNCE NUMBER OF TRIANGLE-FREE GRAPHS

James B. SHEARER
Department of Mathematucs, Unversity of Califorma, Berkeley, CA 94720, USA

Received 26 February 1982
Revised 16 August 1982

Abstract

Let G be a triangle-free graph on n points with average degree d Let α be the independence number of G. In this note we give a simple proof that $\alpha \geq n(d \ln d-d+1) /(d-1)^{2}$ We also consider what happens when G contans a limited number of triangles

Let G be a triangle-free graph on n vertices with average degree d. Let α be the independence number of G. In [1] A jtai et al. prove that $\alpha>n \ln d /(100 d)$ for $d \geqslant d_{0}$. Here we give a simpler proof of a slightly stronger result.

Theorem 1. Let G be a triangle-free graph on n vertices with average degree d. Let α be the independence number of G. Let $f(d)=\left(d \ln c^{\prime}-d+1\right) /(d-1)^{2}, f(0)=1$, $f(1)=\frac{1}{2}$. Then $\alpha \geqslant n f(d)$.

Proof. Note f is continuous for $0 \leqslant d<\alpha$ and for $0<d<\infty, 1>f(d)>0, f^{\prime}(d)<0$, $f^{\prime \prime}(d) \geqslant 0$ Furthermore f satisfies the difrerential equation

$$
\begin{equation*}
(d+1) f(d)=1+\left(d-d^{2}\right) f^{\prime}(d) \tag{1}
\end{equation*}
$$

We will prove the theorem by induction on n. Note it is true for $n \leqslant d / f(d)$ as G triangle-free implies the neighbors of ary point in G iorm an independent set so $\alpha \geqslant d \geqslant n f(d)$. Let P be a point in G. Let d_{1} be the degree of P. Let d_{2} be the average degree of the neighbors of P. We claim we may choose P so that

$$
\begin{equation*}
\left(d_{1}+1\right) f(d) \leqslant 1+\left(d d_{1}+d-2 d_{1} d_{2}\right) f^{\prime}(d) \tag{2}
\end{equation*}
$$

For as P ranges over the points of G the average value of $d_{1} d_{2}$ is equal to the average value of d_{1}^{2} which is $\geqslant d^{2}$. Hence the average value of the left hand side of (2) equals the left hand side of (1) while the average value of the right hand side of (2) is \geqslant the right hand side of (1). Hence (2) holds on the average which suffices to prove the claim.

Let G^{\prime} be the graph formed from G by deleting P and all its neighbors. Note G^{\prime} is also triangle-free and contains $n-d_{1}-1$ points and $\frac{1}{2} n d-d_{1} d_{2}$ edges. Iet d^{\prime} be the average degree of points in G^{\prime}. Then $a^{\prime}=\left(n d-2 d_{1} d_{2}\right) /\left(n-d_{1}-1\right)$. By the induction hypothesis G^{\prime} contains an indepenri nt set of size ($\left.n-d_{1}-1\right) f\left(d^{\prime}\right)$. 0012-365X/83/\$3.00 © 1983, Flsevier Science Publishers B.V. (North-Holland)

Hence by adding P we obtain an independent set in G of size $1+\left(n-d_{1}-1\right) f\left(d^{\prime}\right)$. Now since $f^{\prime \prime}(d) \geqslant 0$ for $0<d^{\prime}<\infty$ we have $f\left(d^{\prime}\right) \geqslant f(d)+\left(d^{\prime}-d\right) f^{\prime}(d)$. Therefore

$$
\begin{aligned}
1+\left(n-d_{1}-1\right) f\left(d^{\prime}\right) & \geqslant 1+\left(n-d_{1}-1\right) f(d)+\left(n-d_{1}-1\right)\left(d^{\prime}-d\right) f^{\prime}(d) \\
& =1+\left(n-d_{1}-1\right) f(d)+\left(d d_{1}+d-2 d_{1} d_{2}\right) f^{\prime}(d) \\
& \geqslant\left(n-d_{1}-1\right) f(d)+\left(d_{1}+1\right) f(d)=n f(d)
\end{aligned}
$$

Hence we have found an independent set in G of the desired size which completes the proof by induction.

Remark 1. Consider the following algorithm for generating an independent set of points of G. Pick a point P at random and place it in the independent set. Delete P and its neighbors from G and iterate. Since (2) holds on the average, the average size of an independent set generated by this algorithm will be $\geqslant n f(d)$.

Remark 2. By considering random graphs on n points with average degree d for $n \gg d \gg 1$ we can show the existence of triangle-free graphs on n points with average degree d and independence number

$$
\leqslant n\left[\frac{2 \ln d}{d}-\frac{2 \ln \ln d}{d}+O\left(\frac{1}{d}\right)\right] .
$$

We now consider what happens when we do not require G to be triangle-free. Given a graph G let $n(G)$ be the number of vertices G contains, $I(G)$ be the independence number of $G, d(G)$ be the average degree of a vertex in G and $T(G)$ be the average number of triangles a vertex of G is contained in. Then define $F(d, T)$ as follows:

$$
\begin{equation*}
F(d, T)=\lim _{\substack{n(G) \rightarrow \infty \\ d(G) \rightarrow d \\ r(G) \rightarrow T}} I(G) / n(G) \quad \text { for any } d, T \geqslant 0 . \tag{3}
\end{equation*}
$$

Note Theorem 1 and Remark 2 are equivalent to inequalities

$$
f(d) \leqslant F(d,(0) \leqslant 2 \ln d / d+O(\ln \ln d / d)
$$

Also if G consists of the disjoint union of K_{1} copies of G_{1} and K_{2} copies of G_{2}, then

$$
n(G)=K_{1} n\left(G_{1}\right)+K_{2} n\left(G_{2}\right), \quad I(G)=K_{1} I\left(G_{1}\right)+K_{2} I\left(G_{2}\right)
$$

or

$$
\begin{aligned}
& I(G) / n(G)= {\left[K_{1} n\left(G_{1}\right) / n(G)\right]\left[I\left(G_{1}\right) / n\left(G_{1}\right)\right] } \\
&+\left[K_{2} n\left(G_{2}\right) / n(G)\right]\left[I\left(G_{2}\right) / n\left(G_{2}\right)\right], \\
& d(G)=\left(\frac{K_{1} n\left(G_{1}\right)}{n(G)}\right) d\left(G_{1}\right)+\left(\frac{K_{2} n\left(G_{2}\right)}{n(G)}\right) d\left(G_{2}\right) \text { and } \\
& T(G)=\left(\frac{K_{1} n\left(G_{1}\right)}{n(G)}\right) T\left(G_{1}\right)+\left(\frac{K_{2} n\left(G_{2}\right)}{n(G)}\right) T\left(G_{2}\right) .
\end{aligned}
$$

Hence letting $\rho=K_{1} \boldsymbol{n}\left(G_{1}\right) / \boldsymbol{n}(G)$ it follows that

$$
\begin{align*}
F\left(\rho d_{1}+(1-\rho)\right. & \left.d_{2}, \rho T_{1}+(1-\rho) T_{2}\right) \tag{4}\\
& \leqslant \mu F\left(d_{1}, T_{1}\right)+(1-\rho) F\left(d_{2}, T_{2}\right), \quad 0 \leqslant \rho \leqslant 1 .
\end{align*}
$$

Using (4) it is easy to show that F is continuous and as a function of d or T alone nonincreasing.

As in [1] we can bound $F(d, T)$ from below in terms of $F(d, 0)$. Let G be a graph on n points with $T(G) \leqslant 3$. Then G contains $\frac{1}{3} n T(G) \leqslant n$ triangles. Hence by deleting 1 point from each triangle we obtain a triangle-free induced subgraph G^{\prime} of G containing at least $\left(1-\frac{1}{3} T(G)\right) n$ points. Furthermere $d\left(G^{\prime}\right) \leqslant$ $d(G) /\left(1-\frac{1}{3} T(G)\right)$. It follows that

$$
\begin{equation*}
F(d, T) \geqslant\left(1-\frac{1}{3} T \backslash F\left(d /\left(1-\frac{1}{3} T\right), 0\right) .\right. \tag{5}
\end{equation*}
$$

Let G be a graph on n points and let G^{\prime} be a random induced subgraph on K points. Let $\overline{d\left(G^{\prime}\right)}, \overline{T\left(G^{\prime}\right)}$ be the expected values of $d\left(G^{\prime}\right)$ and $T\left(G^{\prime}\right)$ respectively. Let $\rho=K / n$. Then

$$
\overline{d\left(G^{\prime}\right)}=d(G) \frac{K-1}{n-1} \leqslant \rho d(G) \quad \text { and } \quad \overline{T\left(G^{\prime}\right)}=T(G) \frac{(K-1)(K-2)}{(n-1)(n-2)} \leqslant \rho^{2} \Gamma(G) .
$$

It follows from (4) that

$$
\begin{equation*}
F(d, T) \geqslant \rho F\left(\rho \dot{d}, \rho^{2} T\right), \quad 0 \leqslant \rho \leqslant 1 . \tag{6}
\end{equation*}
$$

Combining (5) and (6) we obtain

$$
\begin{equation*}
F(d, T) \geqslant \max _{0 \leqslant \rho \leqslant 1} \rho\left(1-\frac{1}{3} \rho^{2} T\right) F\left(\frac{\rho d}{1-\frac{1}{3} \rho^{2} T}, 0\right) \tag{7}
\end{equation*}
$$

Let $\varepsilon=\rho^{2} T$. Then

$$
\begin{aligned}
F(d, T) & \geqslant \rho\left(1-\frac{1}{3} \varepsilon\right) F\left(\frac{\rho d}{1-\frac{1}{3} \varepsilon}, 0\right) \geqslant \rho\left(1-\frac{1}{3} \varepsilon\right) f\left(\rho d /\left(1-\frac{1}{3} \varepsilon\right)\right) \\
& \geqslant \rho\left(1-\frac{1}{3} \varepsilon\right) \frac{\ln \left[\rho d /\left(1-\frac{1}{3} \varepsilon\right)\right]-1}{\rho d /\left(1-\frac{1}{3} \varepsilon\right)} \quad\left(\text { using } f(x) \geqslant \frac{\ln x-1}{x}\right) \\
& \geqslant\left(1-\frac{2}{3} \varepsilon\right) \frac{\ln \rho+\ln d-1}{d}=\left(1-\frac{2}{3} \varepsilon\right) \frac{\ln d-\frac{1}{2} \ln T+\frac{1}{2} \ln \varepsilon-1}{d} \\
& \geqslant \frac{\ln d-\frac{1}{2} \ln T-1}{d}-\frac{2}{3} \varepsilon \frac{\ln d-\frac{1}{2} \ln T-1}{d}+\frac{\ln \varepsilon}{2 d}
\end{aligned}
$$

(assuming $\varepsilon \leqslant 1$). This is maximized when

$$
\varepsilon=\left[\frac{4}{3}\left(\ln d-\frac{1}{2} \ln T-1\right)\right]^{-1} .
$$

However, we must have $\rho \leqslant 1$ or $\varepsilon \leqslant T$ or

$$
\frac{4}{3} T\left(\ln d-\frac{1}{2} \ln T-1\right) \geqslant 1 \quad \text { or } \quad T \geqslant 7 / 4\left(\ln d-\frac{1}{2} \ln T-1\right) .
$$

Also $\varepsilon \leqslant 1 \Rightarrow T \leqslant e^{-7 / 2} d^{2}$. Hence

$$
\begin{align*}
& F(d, T) \geqslant\left(1-\frac{2}{3} T\right) \frac{\ln d-1}{d} \text { for } 0 \leqslant T \leqslant \frac{7}{4\left(\ln d-\frac{1}{2} \ln T-1\right)}, \\
& F(d, T) \geqslant \frac{\ln d-\frac{1}{2} \ln T-1}{d}-\frac{\frac{1}{2} \ln \frac{4}{3} \mathrm{e}\left(\left(\ln d-\frac{1}{2} \ln T-1\right)\right.}{d} \\
& \quad \text { for } \frac{7}{4\left(\ln d-\frac{1}{2} \ln T-1\right)} \leqslant T \leqslant \mathrm{e}^{-7 / 2} d^{2} . \tag{8}
\end{align*}
$$

Note we always have $F(d, T) \geqslant 1 /(d+1)$.
We also can bound $F(d, T)$ from above in terms of $F(d, 0)$ by mears of the following construction. Let G be a triangle-free graph on n ponts and let r be a positive integer. Let G^{\prime} be the graph obtained from G be replacing each point in G with the complete graph K_{r} and each edge in G with the complete bipartite graph $K_{r r}$ Then we have

$$
\begin{aligned}
& n\left(G^{\prime}\right)=r n(G), \quad I\left(G^{\prime}\right)=I(G) . \quad d\left(G^{\prime}\right)=r d(C,+r-1 . \\
& T\left(G^{\prime}\right)=\frac{3}{2}(r)(r-1) d(G)+\frac{1}{2}(r-1)(r-2) .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
F\left(d r+r-1, \frac{3}{2} d r(r-1)+\frac{1}{2}(r-1)(r-2)\right) \leqslant \frac{1}{r} F(d, 0) . \tag{9}
\end{equation*}
$$

Sunce F as a function of d or T alone is non-increasing (9) implie,

$$
\begin{equation*}
F\left((d+1) r, \quad 3(d+1) r^{2}\right) \leqslant \frac{1}{r} F(d, 0) \tag{10}
\end{equation*}
$$

In fact it can be shown (10) holds for non-integral r as well (if $r=S+\theta, 0<\theta<1$ replace ($1-\theta$) n points of G with K_{s}, θ n points of G with $K_{\mathcal{S}, 1}$). Changing variables in (10) yields

$$
\begin{equation*}
F(d . T) \leqslant \frac{3 d}{2 T} F\left(\frac{3 d^{2}}{2 T}-1,0\right), \quad T \leqslant 3 / 2 d^{2} . \tag{11}
\end{equation*}
$$

Combmang (11) with Remark 2 we obtain

$$
\begin{array}{rlrl}
F(d, T) & \leqslant \frac{2 \ln d}{d}+\mathrm{O}\left(\frac{1}{d}\right), & & 0 \leqslant T \leqslant d \\
& \leqslant 4 \frac{\ln d-\frac{1}{2} \ln T}{d}+\mathrm{O}\left(\frac{1}{d}\right), & d \leqslant T \leqslant d^{2} . \tag{12}
\end{array}
$$

Remark 3. It tollows from (12) that

$$
\begin{aligned}
F\left(d, A d^{2} /(\ln d)^{2}\right) & \leqslant 4 \frac{\ln d-\ln d+\frac{1}{2} \ln A+\ln \ln d}{d}+\mathrm{O}\left(\frac{1}{d}\right) \\
& =\frac{4 \ln \ln d}{d}+\mathrm{O}(1 / d) .
\end{aligned}
$$

This shows that Remark 3 in [1] which states in effect that there exist constants A, B such that $F\left(d, A d^{2} /(\ln d)^{2}\right) \geqslant B(\ln d) / d$ for $d \geqslant d_{0}$ is incorrect.

Remark 4. Some questions remain. For example what is

$$
\lim _{d \rightarrow \infty} d F(d, 0) / \ln d \quad \text { or } \quad \lim _{d \rightarrow \infty} F(d, d) / F(d, 0) ?
$$

Also what if anything can be proven about the independence number of $\boldsymbol{K}_{\mathbf{4}}$-free graphs?

After writing this paper I discovered two other papers [2], [3] which overlap this paper to some extent. In [3] it is shown that the independence number α of K_{p}-free graphs exceeds $c(n / d) \ln (\ln d / p)$ for $p \geqslant 4$ but the authors state they are unable to decide whether $\alpha>c_{p}(n / d)$ in d even with $p=4$.

References

[1] M Ajta, J Komlós and E Szemérdi, A dense ufinite Sidon sequence, Europ J Combmatorics ? (1981) 1-15
[2] M. Ajta, J. Komlós and E. Szemérdi, A note on Ramsey numbers, J Combin Theory (A) 20) (1980) 354-360
[3] M Ajtaı, P Erdos, J Komós and E Szemérdı. On Turán's theorem for sparse graph,. Combinatorica 1 (1981) 313-317

