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Abstract

We investigate Laplacians on supercritical bond-percolation graphs with different boundary conditions
at cluster borders. The integrated density of states of the Dirichlet Laplacian is found to exhibit a Lifshits
tail at the lower spectral edge, while that of the Neumann Laplacian shows a van Hove asymptotics, which
results from the percolating cluster. At the upper spectral edge, the behaviour is reversed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and summary

Ever since Mark Kac posed the question “Can one hear the shape of a drum?” [15], there has
been a great deal of interest in finding relations between the geometry of a manifold or a graph
and spectral properties of the Laplacian defined on it. The impressive works [3,6,8–10], which
have been chosen by way of example, witness the steady progress achieved in recent years and
provide further references. Whereas Laplacians on manifolds dominated the scene in the earlier
years, the rise of spectral graph theory [5,7,11,22,23] in the late 1980s and 1990s has contributed
to deepen our understanding of the discrete case.
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Spectral theory of random graphs, however, is still a widely open field. The very recent contri-
butions [2,14,21] take a probabilistic point of view to derive heat-kernel estimates for Laplacians
on supercritical Bernoulli bond-percolation graphs in the d-dimensional hyper-cubic lattice. On
the other hand, traditional methods from spectral theory are used in [19] to investigate the inte-
grated density of states of Laplacians on subcritical bond-percolation graphs. Depending on the
boundary condition that is chosen at cluster borders, two different types of Lifshits asymptotics
at spectral edges were found [19]. For example, the integrated density of states of the Neumann
Laplacian behaves as

“NN(E) − NN(0) ∼ exp
{−E−1/2}” as E ↓ 0 (1.1)

at the lower spectral edge for bond probabilities p below the percolation threshold pc. We have
put quotation marks here, because, strictly speaking, one should take appropriate logarithms on
both sides. The Lifshits exponent 1/2 in (1.1) is independent of the spatial dimension d . This
was explained by the fact that, asymptotically, NN is dominated by the smallest eigenvalues
which arise from very long linear clusters in this case. In contrast, for the Dirichlet Laplacian
and p < pc, it was found that

“ND(E) ∼ exp
{−E−d/2}” as E ↓ 0. (1.2)

We note that ND(0) = 0. The Lifshits exponent in (1.2) comes out as d/2, because the dominating
small Dirichlet eigenvalues arise from large fully connected cube- or sphere-like clusters. Thus,
depending on the boundary condition (and the spectral edge) different geometric graph properties
show up in the integrated density of states. We refer to the literature cited in [19] for a discussion
of other spectral properties of these and closely related operators, for the history of the problem
and what is known in the physics literature. Lifshits asymptotics for a Neumann Laplacian on
Erdős–Rényi random graphs are studied in [18].

In this paper we pursue the investigations of [19] and ask what happens to (1.1) and (1.2) in the
supercritical phase of bond-percolation graphs. Clearly, one would not expect the contribution
of the finite clusters to alter the picture completely. But for the infinite percolating cluster, the
story may be different. Indeed, we will prove that the percolating cluster produces a van Hove
asymptotics

“NN(E) − NN(0) ∼ Ed/2” as E ↓ 0 (1.3)

in the Neumann case for p > pc. There is also an additional Lifshits-tail behaviour due to finite
clusters, but it is hidden under the dominating asymptotics (1.3). Loosely speaking, (1.3) is true
because the percolating cluster looks like the full regular lattice on very large length scales (big-
ger than the correlation length) for p > pc. On smaller scales its structure is more like that of
a jagged fractal. The Neumann Laplacian does not care about these small-scale holes, however.
All that is needed for (1.3) to be true is the existence of a suitable d-dimensional, infinite grid.
In contrast, the Dirichlet Laplacian does care about holes at all scales so that (1.2) continues to
hold for p � pc, as we shall prove. Low-lying Dirichlet eigenvalues require large fully connected
cube- or sphere-like regions, and this is a large-deviation event.

Closely related large-deviation results for Laplacians on percolation graphs have been ob-
tained in [1,4]. To be precise, [1,4] refer to the pseudo-Dirichlet Laplacian � D̃ in the sense
of our Definition 2.1(ii) below. Considering both site- and bond-percolation graphs, and using
a discrete version of the method of enlargement of obstacles, Antal [1] derives the long-time
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asymptotics for the mean (i.e. annealed) hitting-time distribution of the set of absent sites (re-
spectively bonds) for the random walk generated by � D̃. Biskup and König [4] work in the
setting of the parabolic Anderson model, which contains � D̃ on site-percolation graphs as a spe-
cial case. In particular, they establish a Lifshits tail for the corresponding integrated density of
states, see also Remark 2.6(v).

This paper is organised as follows. In the next section we give a precise statement of our
results in Theorems 2.5 and 2.7. Section 3 is devoted to the proof of Theorem 2.5. In this proof
we follow the strategy laid down in [24], see also [25]. The goal there was to establish Lifshits
tails in the context of random Schrödinger operators. Finally, Section 4 contains the proof of
Theorem 2.7, where we apply the recent deep heat-kernel estimates from [2,14,21].

2. Definitions and precise formulations

To set up the mathematical arena, let us first recall some notions from Bernoulli bond per-
colation. For d ∈ N, a natural number, we denote by L

d the (simple hyper-cubic) lattice in
d dimensions. Being a graph, the lattice L

d = (Zd ,E
d) has the vertex set Z

d and the edge
set Ed given by all unordered pairs {x, y} of nearest-neighbour vertices x, y ∈ Zd , that is,
those vertices which have Euclidean distance |x − y| := (

∑d
ν=1 |xν − yν |2)1/2 = 1. Here, el-

ements of Z
d are canonically represented as d-tuples x = (x1, . . . , xd) with entries from Z.

Next, we consider the probability space Ω = {0,1}E
d
, which is endowed with the usual prod-

uct sigma-algebra, generated by finite cylinder sets, and equipped with a product probability
measure P. Elementary events in Ω are sequences of the form ω ≡ (ω{x,y}){x,y}∈Ed , and we as-
sume their entries to be independently and identically distributed according to a Bernoulli law
P(ω{x,y} = 1) = p with bond probability p ∈ ]0,1[. To a given ω ∈ Ω , we associate an edge set
E (ω) := {{x, y} ∈ E

d : ω{x,y} = 1}.
A bond-percolation graph in Z

d is the mapping G :Ω � ω �→ G(ω) := (Zd ,E (ω)) with values
in the set of subgraphs of L

d . Given x ∈ Z
d , the vertex degree dG(ω) (x) counts the number of

edges in G(ω) which share x as a common vertex.

Definition 2.1. The random operators D :Ω � ω �→ D(ω), respectively A :Ω � ω �→ A(ω), are
called vertex-degree operator, respectively adjacency operator, of bond-percolation graphs in Z

d .
Their realisations, D(ω) :�2(Zd) → �2(Zd), respectively A(ω) :�2(Zd) → �2(Zd), act on the
Hilbert space of complex-valued, square-summable sequences indexed by Z

d according to

D(ω)ϕ(x) := dG(ω) (x)ϕ(x),

A(ω)ϕ(x) :=
∑

y∈Zd : {x,y}∈E (ω)

ϕ(y), (2.1)

for all ϕ ∈ �2(Zd), all x ∈ Z
d and all ω ∈ Ω . With these definitions, we introduce Laplacians

on bond-percolation graphs for three different “boundary conditions” at non-fully connected
vertices

(i) Neumann Laplacian: �N := D − A,

(ii) pseudo-Dirichlet Laplacian: �D̃ := �N + (2d1 − D) = 2d1 − A,

(iii) Dirichlet Laplacian: �D := �N + 2(2d1 − D).

Here 1 stands for the identity operator on �2(Zd).
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Remarks 2.2. (i) The motivation and origin of the terminology for the different boundary condi-
tions are discussed in [19]—together with some basic properties of the operators.

(ii) The random self-adjoint Laplacians are ergodic with respect to Z
d -translations. Hence,

their spectra and the spectral subsets arising in the Lebesgue decomposition are all equal to
non-random sets with probability one. In particular, the spectrum is P-almost surely given by
spec(�X) = [0,4d] for all X ∈ {N, D̃,D}, as was shown in [19].

Next, we define the quantity of our main interest for this paper, the integrated density of states
of �X. To this end let δx ∈ �2(Zd) be the sequence which is concentrated at the point x ∈ Z

d ,
i.e. δx(x) := 1 and δx(y) := 0 for all y ∈ Z

d \ {x}. Moreover, Θ stands for the Heaviside unit-
step function, which we choose to be right continuous, viz. Θ(E) := 0 for all real E < 0 and
Θ(E) := 1 for all real E � 0.

Definition 2.3. For every p ∈ ]0,1[ and every X ∈ {N, D̃,D} we call the function

NX : R � E �→ NX(E) :=
∫
Ω

P(dω)
〈
δ0,Θ

(
E − �

(ω)
X

)
δ0

〉
(2.2)

with values in the interval [0,1] the integrated density of states of �X.

Remarks 2.4. (i) The integrated density of states NX is the right-continuous distribution function
of a probability measure on R. The set of its growth points coincides with the P-almost-sure
spectrum [0,4d] of �X.

(ii) It is shown in [19] that the Laplacians are related to each other by a unitary involution,
which implies the symmetries

ND̃(E) = 1 − lim
ε↑4d−E

ND̃(ε),

ND(N)(E) = 1 − lim
ε↑4d−E

NN(D)(ε) (2.3)

for their integrated densities of states for all E ∈ R. The limits on the right-hand sides of (2.3)
ensure that the discontinuity points of NX are approached from the correct side.

(iii) By ergodicity, Definition 2.3 of the integrated density of states coincides with the usual
one in terms of a macroscopic limit of a finite-volume eigenvalue counting function. More pre-
cisely, let Λ ⊂ Z

d stand for bounded cubes centred at the origin with volume |Λ|. For every
X ∈ {N, D̃,D} let �X,Λ be the finite-volume restriction of �X to �2(Λ) introduced in [19, Defi-
nition 1.11]. Then there exists a set Ω ′ ⊂ Ω of full probability, P(Ω ′) = 1, such that

NX(E) = lim
Λ↑Zd

[
1

|Λ| trace�2(Λ) Θ
(
E − �

(ω)
X,Λ

)]
(2.4)

holds for all ω ∈ Ω ′ and all E ∈ R, except for the (at most countably many) discontinuity points
of NX, see [19, Lemma 1.12]. In Section 3 we will construct another finite-volume restriction of
�D̃, for which (2.4) holds, too.

Let pc ≡ pc(d) denote the critical bond probability of the percolation transition in Z
d . We

recall that pc = 1 for d = 1, otherwise pc ∈ ]0,1[, see e.g. [13]. Despite the title of this paper,
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our first main result covers the non-percolating phase p ∈]0,pc[ and the critical point p = pc,
too.

Theorem 2.5. Assume d ∈ N and p ∈ ]0,1[. Then the integrated density of states NX of the
Laplacian �X on bond-percolation graphs in Z

d exhibits a Lifshits tail at the lower spectral
edge

lim
E↓0

ln |lnNX(E)|
lnE

= − d

2
for X ∈ {D̃,D} (2.5)

and at the upper spectral edge

lim
E↑4d

ln |ln[1 − NX(E)]|
ln(4d − E)

= − d

2
for X ∈ {N, D̃}. (2.6)

Remarks 2.6. (i) The theorem follows directly from the upper and lower bounds in Lemma 3.1
below, together with the subsequent Remark 2.6(ii). In fact, the bounds of Lemma 3.1 provide a
slightly stronger statement than Theorem 2.5.

(ii) The Lifshits tails at the upper spectral edge are related to the ones at the lower spectral
edge by the symmetries (2.3).

(iii) In the non-percolating phase, p ∈]0,pc[, the content of the theorem is known from [19],
where it is proved by a different method. The method of [19], however, does not seem to extend
to the critical point or the percolating phase, p ∈]pc,1[.

(iv) The Lifshits asymptotics of Theorem 2.5 are determined by those parts of the percolation
graphs, which contain large, fully-connected cubes. This also explains why the spatial dimension
enters the Lifshits exponent d/2.

(v) We expect that (2.5) can be refined in the case X = D̃ as to obtain the constant

lim
E↓0

lnND̃(E)

E−d/2
=: −c∗(d,p). (2.7)

An analogous statement is known from [4, Theorem 1.3] for the case of site-percolation graphs.
Moreover, it is demonstrated in [1] that the bond- and the site-percolation cases have similar
large-deviation properties.

Our second main result complements Theorem 2.5 in the percolating phase.

Theorem 2.7. Assume d ∈ N \ {1} and p ∈ ]pc,1[. Then the integrated density of states of the
Neumann Laplacian �N on bond-percolation graphs in Z

d exhibits a van Hove asymptotics at
the lower spectral edge

lim
E↓0

ln[NN(E) − NN(0)]
lnE

= d

2
, (2.8)

while that of the Dirichlet Laplacian �D exhibits one at the upper spectral edge

lim
E↑4d

ln[N−
D (4d) − ND(E)]
ln(4d − E)

= d

2
, (2.9)

where N−
D (4d) := limE↑4d ND(E) = 1 − NN(0).
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Remarks 2.8. (i) The theorem follows directly from the upper and lower bounds in Lemma 4.1
below, together with the symmetries (2.3). In fact, the bounds of Lemma 4.1 provide a slightly
stronger statement than Theorem 2.7. Lemma 4.1 relies mainly on recent estimates [2,14,21] for
the long-time decay of the heat kernel of �N on the percolating cluster.

(ii) The reference value NN(0) in (2.8) results from the mean number density of zero eigen-
values of the Neumann Laplacian [19]. It is given by

NN(0) = κ(p) + (1 − p)2d , (2.10)

where κ(p) is the mean number density of clusters, see e.g. [13, Chapter 4], and (1 − p)2d the
mean number density of isolated vertices.

(iii) The counterpart of Theorem 2.7 for the non-percolating phase, p ∈]0,pc[, was proved
in [19]. There, NN was shown to have a different kind of Lifshits asymptotics with a Lifshits ex-
ponent 1/2 at the lower spectral edge, see also Section 1, and the same is true for ND at the upper
spectral edge. This type of Lifshits behaviour is caused by large (isolated) linear clusters, which
explains why the spatial dimension does not influence the Lifshits exponent. This behaviour is
also present for p ∈ ]pc,1[, but hidden under the more dominant van Hove asymptotics caused
by the percolating cluster.

(iv) At the critical point p = pc, the behaviour of NN at the lower spectral edge, respectively
that of ND at the upper spectral edge, is an open problem.

3. Proof of Theorem 2.5

In this section we prove the Lifshits-tail behaviour of Theorem 2.5. Thanks to the symmetries
(2.3), it suffices to consider the lower spectral edge only.

Lemma 3.1. For every d ∈ N and every p ∈ ]0,1[ there exist constants εD, αu, αl ∈ ]0,∞[ such
that

exp
{−αlE

−d/2} � ND(E) � ND̃(E) � exp
{−αuE

−d/2} (3.1)

holds for all E ∈ ]0, εD[.

Proof. The left inequality in (3.1), i.e. the lower bound on ND, was proved in [19, Lemma 2.9].
The middle one simply reflects the operator inequality �

(ω)

D̃
� �

(ω)
D , which is valid for all ω ∈ Ω .

So it remains to prove the upper bound on ND̃.
We follow the strategy of the proof in [24], see also [25, Chapter 2.1]. To do so, we have to

fix some notation, first. Given a bounded cube Λ ⊂ Z
d and x ∈ Λ, we introduce the boundary

degree

b∂Λ(x) := ∣∣{{x, y} ∈ E
d : y /∈ Λ

}∣∣ (3.2)

as the cardinality of the set of edges in the regular lattice L
d that connects x with Z

d \ Λ. The
restriction G(ω)

Λ := (Λ,E (ω)
Λ ) with E (ω)

Λ := {{x, y} ∈ E (ω): x, y ∈ Λ} of any realisation G(ω) of
a bond-percolation graph to Λ is obtained by keeping only vertices and edges within Λ, and
dG(ω)

Λ

(x) � 2d − b∂Λ(x) stands for the associated vertex degree of x ∈ Λ. In particular, E
d
Λ :=

{{x, y} ∈ E
d : x, y ∈ Λ} is the edge set of the fully connected cube L

d
Λ := (Λ,E

d
Λ), that is the
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restriction of the regular lattice L
d to Λ. Finally, let �2(Λ) be the Hilbert space of complex-valued

(finite) sequences indexed by Λ, and, given any subgraph G := (Λ,E) of L
d
Λ, we introduce the

operator HG :�2(Λ) → �2(Λ), ϕ �→ HGϕ, where

HGϕ(x) := −
∑

y∈Λ: {x,y}∈E

ϕ(y) + (
2d − b∂Λ(x)

)
ϕ(x)

=
∑

y∈Λ: {x,y}∈E

(
ϕ(x) − ϕ(y)

) + (
2d − b∂Λ(x) − dG(x)

)
ϕ(x) (3.3)

for all ϕ ∈ �2(Λ) and all x ∈ Λ. Now, we define the restriction of the pseudo-Dirichlet Laplacian
�D̃ to the cube Λ with Neumann conditions along the boundary ∂Λ of Λ as the random bounded

self-adjoint operator HΛ with realisations H
(ω)
Λ := HG(ω)

Λ

for all ω ∈ Ω .

Next we claim that

ND̃(E) = inf
Λ⊂Zd

[
1

|Λ|
∫
Ω

P(dω′) trace�2(Λ) Θ
(
E − H

(ω′)
Λ

)]
(3.4)

holds for all E ∈ R. This is so, because:

(i) the operator H
(ω)
Λ differs from the finite-volume restriction �

(ω)

D̃,Λ
in Remark 2.4(iii) by a

perturbation whose rank is at most of the order of |∂Λ|, the surface area of the cube Λ.
Hence, (2.4) remains true for X = D̃ and with �

(ω)

D̃,Λ
being replaced by H

(ω)
Λ on its right-

hand side,

ND̃(E) = lim
Λ↑Zd

[
1

|Λ| trace�2(Λ) Θ
(
E − H

(ω)
Λ

)]
. (3.5)

(ii) On the other hand, H
(ω)
Λ is designed in such a way that H

(ω)
Λ1

⊕ H
(ω)
Λ2

� H
(ω)
Λ1∪Λ2

holds

on �2(Λ1 ∪ Λ2) for all bounded cubes Λ1,Λ2 ⊂ Z
d with Λ1 ∩ Λ2 = ∅ and for all ω ∈ Ω .

Hence, Θ(E −H
(ω)
Λ ) gives rise to a subergodic process and we conclude from the Ackoglu–

Krengel subergodic theorem that the right-hand side of (3.5) equals the right-hand side of
(3.4)—again for all continuity points of the limit and uniformly for ω in a set of probability
one.

(iii) From this we have (3.4) for all continuity points of both sides. But since both sides of
(3.4) are right-continuous functions of E, equality holds for all E ∈ R, and the derivation is
complete.

From (3.4) we infer the upper bound

ND̃(E) � inf
Λ⊂Zd

P[EΛ � E], (3.6)

where the non-negative random variable EΛ stands for the smallest eigenvalue of the random
operator HΛ.

The aim is to obtain a simple large-deviation estimate for the probability in (3.6). This will
be achieved with the help of analytic perturbation theory along the lines of [24], see also [25,
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Section 4.1.10]. We write H0,Λ := H
L

d
Λ

for the Neumann Laplacian of the fully connected cube

L
d
Λ and WΛ := HΛ − H0,Λ. Given t ∈ [0,1], we introduce

HΛ(t) := H0,Λ + tWΛ (3.7)

so that HΛ(1) = HΛ. We want to construct an upper bound for the probability that EΛ is small.
Denoting the bottom eigenvalue of HΛ(t) by EΛ(t), we use the following ideas.

(a) The function [0,1] � t �→ EΛ(t) is non-decreasing, EΛ(0) = 0 and EΛ(1) = EΛ.
(b) This function can be linearised, if its argument is small enough. More precisely, there exist

constants τ,β ∈ ]0,∞[, which depend only on the spatial dimension d , such that∣∣EΛ(t) − tE′
Λ(0)

∣∣ � βt2|Λ|2/d (3.8)

for all t ∈ [0, τ |Λ|−2/d ]. Here, we have set E′
Λ(0) := d

dt
EΛ(t)

∣∣
t=0.

(c) The slope E′
Λ(0) obeys a large-deviation estimate. Given any α ∈]0,1 − p[, there exists a

constant γ ∈ ]0,∞[, which depends on p and d , such that

P
[
E′

Λ(0) � α
]
� e−γ |Λ|. (3.9)

We will prove (a) with a Perron–Frobenius argument in Lemma 3.2 and discuss observations (b)
and (c) below. For the time being, let us go on to estimate the probability that EΛ is small.

Suppose EΛ(t) � E. Then we conclude from (a), the triangle inequality and (b) that

E′
Λ(0) � EΛ(t)

t
+

∣∣∣∣EΛ(t)

t
− E′

Λ(0)

∣∣∣∣ � E

t
+ βt |Λ|2/d , (3.10)

provided t is small enough. So we need to adjust t ≡ tE and Λ ≡ ΛE such that tE � τ |ΛE |−2/d .
Moreover, we aim to achieve that the right-hand side of (3.10) is bounded from above by some
α < 1 −p. This is accomplished in the following way. Without restriction we can assume that, in
addition, α < 2βτ . Then we set tE := α/(2β|ΛE |2/d) and choose the size of the cube such that

α

2(βE)1/2
− 1 � |ΛE |1/d � α

2(βE)1/2
. (3.11)

For this to make sense, the right-hand side of (3.11) has to exceed 2. So, we restrict ourselves to
low energies, say E ∈]0, εD[, and summarise this argument as

EΛE
(tE) � E implies E′

ΛE
(0) � α < 1 − p. (3.12)

Note that εD depends only on p and d .
Altogether, we infer from Eq. (3.6), observation (a), implication (3.12) and observation (c)

that

ND̃(E) � P
[
EΛE

(tE) � E
]
� P

[
E′

ΛE
(0) � α

]
� e−γ |ΛE | � e−αuE−d/2

, (3.13)

where αu ∈ ]0,∞[ is a constant that depends only on p and d .
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Next, we verify observations (b) and (c) above. Observation (b) relies on a deterministic result
from analytic perturbation theory. To this end we consider the operator family H(z) := H0 +zH1

for z ∈ C. Here, H0 := H0,Λ is the Neumann Laplacian of L
d
Λ and H1 := W

(ω)
Λ the perturbation

with ω ∈ Ω arbitrary, but fixed. The bottom eigenvalue 0 of H0 is an isolated simple eigenvalue.
Its isolation distance ϑ := dist(0, spec(H0 \ {0})) is determined by the magnitude of the smallest
non-zero eigenvalue of H0. This distance obeys the estimate ϑ � c|Λ|−2/d for some constant
c ∈ ]0,∞[, which follows from reducing the eigenvalue problem for H0 to that of a linear chain
by separation of variables and applying a Cheeger-type inequality, see e.g. [19, Eq. (2.6)]. More-
over, we have the uniform bound ‖W(ω)

Λ ‖ � 2d for the operator norm of the perturbation so that
H(z) has one isolated eigenvalue E(z) in the complex disc Bϑ/2(0) provided z < ϑ/(4d). We
refer to [17, Chapter II, §1, Sections 1, 2 and Chapter VII, §3, Sections 1, 2 and 4] for a detailed
exposition of the general method. Elementary function theory then gives an estimate for the sec-
ond derivative of E(z), and Taylor’s theorem yields (b). Details of the argument, geared towards
our application here, can also be found in [25, Section 4.1.10].

Concerning observation (c), we refer again to analytic perturbation theory. The Feynman–
Hellmann formula yields

E′
Λ(0) = 〈ϕ0,WΛϕ0〉, (3.14)

where ϕ0 := |Λ|−1/2, the normalised vector in �2(Λ) with equal components, is the ground state
of the unperturbed operator H0,Λ. Therefore, recalling WΛ = HΛ − H0,Λ = HGΛ

− H
L

d
Λ

and the
definition in (3.3), we have

E
(ω)
Λ

′(0) = 1

|Λ|
∑
x∈Λ

∑
y∈Λ:

{x,y}∈E
d
Λ\E (ω)

Λ

1 = 2

|Λ|
∑

{x,y}∈E
d
Λ

(1 − ω{x,y})

� 1

|Ed
Λ|

∑
{x,y}∈E

d
Λ

(1 − ω{x,y}) (3.15)

for all ω ∈ Ω . We recall that the ω{x,y}’s, which indicate the presence of an edge in the bond-
percolation graph, are i.i.d. Bernoulli distributed with mean p. Hence, (3.9) follows from stan-
dard large-deviation estimates, see e.g. [16, Eq. (27.4)] or [26, Theorem 1.4]. �

So far we have deferred the proof of observation (a) in the above demonstration. This is a
deterministic result which we address now in

Lemma 3.2. Let Λ ⊂ Z
d be a bounded cube, let G = (Λ,E) be a subgraph of the fully connected

cube L
d
Λ and let HG be the finite-volume Laplacian (3.3) on �2(Λ). For t ∈ R let e(t) be the

smallest eigenvalue of

h(t) := H
L

d
Λ

+ tW, (3.16)

where W := HG − H d . Then the function [0,1] � t �→ e(t) is non-decreasing.

LΛ
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Proof. We observe from the definition of W and (3.3) that

Wϕ(x) =
∑

y∈Λ: {x,y}∈E
d
Λ\E

ϕ(y) (3.17)

for all ϕ ∈ �2(Λ) and all x ∈ Λ. Given t ∈ [0,1] let us rewrite h(t) = HG − (1 − t)W =: 2d1 −
a(t). In particular, a(1) = 2d1 − HG acts as

a(1)ϕ(x) =
∑

y∈Λ: {x,y}∈E

ϕ(y) + b∂Λ(x)ϕ(x) (3.18)

for all ϕ ∈ �2(Λ) and all x ∈ Λ. Equations (3.17) and (3.18) show that the self-adjoint linear
operator

a(t) = a(1) + (1 − t)W, (3.19)

which lives on the finite-dimensional Hilbert space �2(Λ), has only non-negative matrix ele-
ments 〈δx,a(t)δy〉 for all x, y ∈ Λ. Together with the min-max principle, this implies that one
can choose the eigenvector(s) corresponding to the largest eigenvalue of a(t) in such a way
that all their components in the basis {δx}x∈Λ are non-negative. Hence, the same is true for the
eigenvector(s) corresponding to the smallest eigenvalue of h(t). Thus, another application of the
min-max principle yields

e(t2) = inf
0�=ϕ∈�2(Λ)

ϕ(x)�0 ∀x∈Λ

〈ϕ,h(t2)ϕ〉
〈ϕ,ϕ〉 = inf

0�=ϕ∈�2(Λ)
ϕ(x)�0 ∀x∈Λ

〈ϕ,h(t1)ϕ〉 + (t2 − t1)〈ϕ,Wϕ〉
〈ϕ,ϕ〉

� e(t1) (3.20)

for all 0 � t1 � t2 � 1, because the scalar product involving W is non-negative by (3.17). �
4. Proof of Theorem 2.7

In this section we prove the van Hove asymptotics of Theorem 2.7. Again, it suffices to con-
sider the lower spectral edge, because of the symmetries (2.3). That asymptotics follows from

Lemma 4.1. Assume d ∈ N \ {1} and p ∈ ]pc,1[. Then there exist constants εN, Cu, Cl ∈ ]0,∞[
such that

ClE
d/2 � NN(E) − NN(0) � CuE

d/2 (4.1)

holds for all E ∈ ]0, εN[.

To prove Lemma 4.1 we separate the contribution of the percolating cluster to NN from that
of the finite clusters.
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Definition 4.2. Let Ω∞ denote the event that the origin belongs to the percolating cluster and,
for E ∈ R, define

NN,∞(E) :=
∫

Ω∞

P(dω)
〈
δ0,Θ

(
E − �

(ω)
N

)
δ0

〉
, (4.2)

which is the contribution of the percolating cluster to the integrated density of states of the
Neumann Laplacian. We write ÑN,∞(t) := ∫ ∞

0 dNN,∞(E) e−Et for its Laplace transform, where
t ∈ [0,∞[.

As is well known, the Laplace transform of (4.2) can be related to the mean return proba-
bility of a continuous-time, simple random walk {Zt }t∈[0,∞[ on the percolating cluster. More
precisely, this random walk is the Markov process on Z

d defined by the following set of rules.
Suppose the process is at x ∈ Z

d . Then, after having waited there for an exponential time of
parameter one, one of the 2d neighbours of x in Z

d , say y, is chosen at random with proba-
bility 1/(2d). If ω{x,y} = 1, then the process jumps immediately to y, otherwise there will be
no move. The procedure then starts afresh. Assuming that Z0 = x0 ∈ Z

d is the starting point of
the process, we denote its law by P(ω)

x0 . The process Zt is generated by the Neumann Lapla-
cian in the sense that the transition probability for going from x to y within time t is given by

P(ω)
x0 (Zs+t = y | Zs = x) = P(ω)

x (Zt = y) = 〈δy, e−t�
(ω)
N /(2d)δx〉 for all s ∈ [0,∞[ and all x0 in

the same connected component as x and y. From this it follows that

ÑN,∞(t) =
∫

Ω∞

P(dω) P(ω)
0 (Z2dt = 0). (4.3)

Hence, (P(Ω∞))−1ÑN,∞(t) is the (conditional) mean return probability at time 2dt for the
process on the percolating cluster for p ∈ ]pc,1].

Averaged transition probabilities of Zt or related random walks have recently been studied in
[2,14,21] with elaborate methods. We state a special case of the results as

Proposition 4.3. Assume d ∈ N \ {1} and p ∈ ]pc,1[. Then there exist constants cl, cu ∈ ]0,∞[
and t0 ∈]1,∞[, all of which depend only on p and d , such that

clt
−d/2 � ÑN,∞(t) � cut

−d/2 (4.4)

holds for all t ∈ [t0,∞[.

Remark 4.4. In view of (4.3), the lower bound in Proposition 4.3 can be found as Eq. (30) in
Appendix D in [21]. That paper also contains a “quenched” upper bound, i.e. an upper bound for
P(ω)

x (Zt = y), which is valid for P-almost every ω ∈ Ω∞. Unfortunately, it is not clear how to
take the probabilistic expectation thereof, that is, to get an “annealed” upper bound. On the other
hand, the authors of [14] prove an annealed upper bound in their Theorem 8.1. But this bound
includes an additional logarithmic factor. The strongest results, both annealed and quenched, are
those of Barlow [2], and (4.4) is a special case thereof. However, his results apply to a random
walk which is generated by D−1�N instead of �N. Hence, some additional comments are needed
to adapt his results, and we address this issue now.
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Proof of Proposition 4.3. According to the preceding remark the proposition is established, if
we show that Barlow’s quenched upper bound for the return probability, i.e. the special case
x = y of the upper bound in [2, Theorem 2], applies also to the random walk generated by �N.
Eventually, the upper bound in [2, Theorem 2] is reduced to [2, Proposition 3.1] via Theorem 1,
Proposition 6.1, Theorems 5.7 and 3.8—the latter being nothing but the off-diagonal generali-
sation of Proposition 3.1, so we do not need it here. The reduction does not make use of any
specific properties of the random walk’s generator. Hence, all that remains to check is [2, Propo-
sition 3.1]. It turns out that some of the constants in the proof of Proposition 3.1 must be modified
for our purpose, but this does not have any consequences. In addition, the proof of Proposition 3.1
also requires estimates (1.7) and (1.8) of Lemma 1.1 in [2]. Estimate (1.8) follows from estimate
(1.5), as is argued in the proof of [2, Lemma 1.1(b)]. This argument applies in our situation,
too. So, in the end, we have to verify the validity of (1.7) and (1.5) in [2] for the random walk
generated by �N.

Estimate (1.5) is seen to hold as a special case of [12, Corollary 11]. The upper bound in
estimate (1.7) can be inferred, for example, from [8, Theorem II.5], which is a general result for
ultracontractive Markov semigroups. (Actually, we refer to the first of the two theorems with the
same number II.5 in [8].) To verify statement (ii) of that theorem, one may use the application
following it together with the reasoning in Corollary V.2 and its proof with the choice ψ(x) = x.
This choice corresponds to a weak isoperimetric inequality which merely reflects that the per-
colating cluster contains an infinitely long path. From this point of view, the weak t−1/2-decay
of the upper bound in estimate (1.7) does not come as a surprise. Finally, the lower bound in
estimate (1.7) arises solely from the uniform growth condition |B(x,R)| � const · Rd for the
volume of a ball around x ∈ Z

d with radius R. Such type of results is well known for heat ker-
nels on manifolds and also for discrete-time random walks [9,10,20]. To employ them here, we
decompose

Px(Zt = x) =
∞∑

n=0

〈
δx,K

nδx

〉
Px

(
there are n attempted

jumps up to time t

)
, (4.5)

using the stochastic independence of all building blocks of Zt . Here, the contraction K :=
1 − �N/(2d) is the transition matrix of a discrete-time random walk on Z

d , which controls
the directions of the jumps of Zt . The number of attempted jumps up to time t is governed
by a Poisson distribution with mean t . Using this, the lower bound in (1.7) follows from [20,
Theorem 3(ii)] applied to K . �

In order to apply Proposition 4.3 in the proof of Lemma 4.1, we will use two elementary
Tauberian inequalities.

Lemma 4.5. Let μ be a positive Borel measure on R
+ = [0,∞[. Suppose there are constants

t0, δ, cl, cu ∈ ]0,∞[ such that the Laplace transform μ̃(t) := ∫
R+ μ(dE)e−Et exists for all t ∈

[t0,∞[ and obeys

clt
−δ � μ̃(t) � cut

−δ. (4.6)

Then there exist constants Cl,Cu ∈ ]0,∞[ such that

ClE
δ � μ

([0,E]) � CuE
δ (4.7)

holds for all E ∈]0, t−1].
0
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Proof. We express μ([0,E]) = ∫
R+ μ(dλ)Θ(1 − λ/E) in terms of the right-continuous Heavi-

side unit-step function and observe the elementary inequality e−τx − e−(τ−1)e−x � Θ(1 − x) �
e1−x , which is valid for all x ∈ R

+ and all τ ∈ [1,∞[. The upper bound in (4.7) is obvious now.
For the lower bound, one has to choose τ large enough such that the constant, which arises from
the application of both estimates in (4.6), is strictly positive. �
Proof of Lemma 4.1. We set NN,fin := NN − NN,∞ for the contribution of the finite clusters to
the integrated density of states and observe

NN(E) − NN(0) = [
NN,fin(E) − NN,fin(0)

] + NN,∞(E) (4.8)

for all E ∈ R.
Proposition 4.3 and Lemma 4.5 establish the desired van Hove bounds for NN,∞. There-

fore, it remains to show that the finite clusters do not spoil this behaviour. Since NN,fin(E) −
NN,fin(0) � 0 for all E ∈ [0,∞[, only an appropriate upper bound is required for the contribu-
tion of the finite clusters. We shall show in Eq. (4.10) below that NN,fin(E) − NN,fin(0) obeys
even a Lifshits-type upper bound, which will then complete the proof.

The Lifshits behaviour for the contribution of the finite clusters in the percolating phase arises
from the cluster-size distribution—in the same way as it was shown to arise in the non-percolating
phase in [19]. Indeed, we have

NN,fin(E) − NN,fin(0) � P
{
ω ∈ Ωfin:

∣∣C(ω)
0

∣∣ � (dE)−1/2} (4.9)

for all E ∈ ]0,∞[. Here Ωfin := Ω \ Ω∞ is the event that the origin belongs to a finite cluster,
say C(ω)

0 , and |C(ω)
0 | denotes the number of its vertices. Inequality (4.9) follows from repeating

the steps that lead to the first inequality in [19, Eq. (2.24)] with NN,fin instead of NN. For p > pc
the cluster-size distribution on the right-hand side of (4.9) decays sub-exponentially according to
[13, Theorem 8.6.5] so that we obtain

NN,fin(E) − NN,fin(0) � c1 exp
{−ξE−(d−1)/2d

}
(4.10)

for all E ∈ ]0,∞[ with some constants c1, ξ ∈ ]0,∞[, which depend only on p and d . This
completes the proof. �
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