Ramification of Some Automorphisms of Local Fields

F. Laubie and M. Saïne

UPRESA CNRS 6090, Faculté des Sciences, 123 Avenue Albert Thomas, F-87060 Limoges Cedex, France

Communicated by K. Rubin

Received February 24, 1997; revised November 3, 1997

Let k be a perfect field of characteristic p and let $\gamma \in \operatorname{Aut}(k((t)))$. Define the ramification numbers of γ by $i_m = v_t(\gamma^{p^m}(t) - t) - 1$. We give a characterization of the sequences (i_m) which are the sequences of ramification numbers of infinite order automorphisms of formal power series fields over finite fields. Then, given a perfect field k, we give sufficient conditions on (i_m) to be the sequence of ramification numbers of an automorphism $\gamma \in \operatorname{Aut}_k(k((t)))$ and we investigate these sequences (i_m) in the case where there exists $\sigma \in \operatorname{Aut}_k(k((t)))$ such that $\sigma \gamma = \gamma \sigma$ with $\sigma \neq \gamma^{\nu}$ for all $\nu \in \mathbb{Z}_n$. © 1998 Academic Press

1. INTRODUCTION

Let k be a perfect field of characteristic p > 0 and set K = k((t)). For $\gamma \in \operatorname{Aut}_k(K)$ define $i(\gamma) = v_t((\gamma(t) - t)/t)$ and for $m \ge 0$ define $i_m = i(\gamma^{p^m})$.

In [2] K. Keating determines upper bounds for the i_m in some cases where γ has infinite order. He uses only elementary methods. In [6] the authors improve his results using Wintenberger's theory of fields of norms [13, 14]. In this paper we answer the question: Which sequences (i_m) are sequences of ramification numbers of automorphisms of finite extensions of K?

This question is closely related to the characterization of ramification numbers of the totally ramified \mathbb{Z}_p -extensions of local fields which was investigated in [1, 7, 9] and completely solved in [10]. The connection between the automorphisms of K and the \mathbb{Z}_p -extensions of local fields is given by the fields of norms theory [13, 14].

We use the same methods to give some indications on the ramification of two automorphisms σ and τ of K such that $\sigma \tau = \tau \sigma$.

Finally we give an erratum relating to Theorem 1 of [6].

2. MAIN THEOREMS

Let K be as before and let $\gamma \in \operatorname{Aut}_k(K)$ be of infinite order. For $m \ge 0$ we set $i_m = i(\gamma^{p^m})$ as before and $u_m = i_0 + (i_1 - i_0)/p + \cdots + (i_m - i_{m-1})/p^m$. The u_m are called the ramification numbers of γ in the upper numbering or more simply the upper ramification numbers of γ . In [11] S. Sen proved that the sequence (i_m/p^m) is strictly increasing and that, for every $m \ge 0$, $i_{m+1} \equiv i_m \mod p^{m+1}$; thus the u_m are integers. Moreover it can be easily deduced that $\lim_{m \to +\infty} i_m/p^m = pe/(p-1)$ where e is an integer ≥ 1 or $+\infty$ and if e is finite then $u_{m+1} = u_m + e$ for any large integer m.

THEOREM 1. Let (u_m) be an infinite increasing sequence of integers such that $u_0 \ge 1$ and set

$$\mu = \min\{m \in \mathbb{N}; u_{m+1} < pu_m\} \in \mathbb{N} \cup \{+\infty\}.$$

The following assertions are equivalent:

(i) there exists $e \in \mathbb{N} \cup \{+\infty\}$ with $(p-1) u_{\mu}/p \leq e < (p-1) u_{\mu}$ (therefore: $e = +\infty \Leftrightarrow \mu = +\infty$) such that

$$p \mid u_m \Rightarrow either \quad m \ge 1$$
 and $u_m \le p u_{m-1}$,
or $m = \mu$ and $e = \frac{(p-1) u_{\mu}}{p}$,

 $m \ge \mu \Rightarrow u_{m+1} = u_m + e.$

(ii) There exists a finite extension k' of k and $\gamma \in Aut_{k'}(k'((t)))$ such that (u_m) is the sequence of upper ramification numbers of γ .

(iii) There exists a finite field \mathbb{F}_q of characteristic p and $\gamma \in Aut_{\mathbb{F}_q}(\mathbb{F}_q((t)))$ such that (u_m) is the sequence of upper ramification numbers of γ .

Of course a translation of Theorem 1 in terms of sequences (i_m) instead of (u_m) is possible. It is useless but for the following corollary and Corollary 2 below which improve Theorem 7 of [2] and Theorem 2 of [6].

COROLLARY 1. Let i_0 and i_1 be two integers such that $0 < i_0 < i_1$. Then there exists a finite field \mathbb{F}_q and $\gamma \in \operatorname{Aut}_{\mathbb{F}_q}(\mathbb{F}_q((t)))$ such that $i(\gamma) = i_0$ and $i(\gamma^p) = i_1$ if and only if $p \mid i_1 - i_0$ and either $i_1 = pi_0$ (with $p \mid i_0$) or $i_1 > pi_0$ with $p \nmid i_0$. Moreover if $p \mid i_0$ then $i(\gamma^{p^n}) = p^n i_0$ for all $n \in \mathbb{N}$; if $p \nmid i_0$ and $i_1 < (p^2 - p + 1) i_0$ then $i(\gamma^{p^n}) = i_0 + ((p^n - 1)/(p - 1))(i_1 - i_0)$ for all $n \in \mathbb{N}$. In the case where the field K = k((t)) is given, we obtain only sufficient conditions on the sequences (u_n) to be the sequence of upper ramification numbers of some infinite order automorphism γ of K:

THEOREM 2. Let (u_m) be an increasing sequence of integers such that $u_0 \ge 1$ and let μ be as in Theorem 1.

Let us suppose that there exists $e \in \mathbb{N} \cup \{+\infty\}$ with $(p-1)u_{\mu}/p \leq e < (p-1)u_{\mu}$ such that

 $p \mid u_m \Rightarrow m \ge 1$ and $u_m \le p u_{m-1},$ $m \ge \mu \Rightarrow u_{m+1} = u_m + e.$

Then there exists $\gamma \in Aut_k(K)$ such that (u_m) is the sequence of upper ramification numbers of γ .

COROLLARY 2. Let i_0 and i_1 be two integers such that $0 < i_0 < i_1$ and $p | i_1 - i_0$. Let us suppose that $p \nmid i_0$ and either $pi_0 \leq i_1 \leq (p^2 - p + 1) i_0$, or $i_1 > (p^2 - p + 1) i_0$ with $p \nmid i_0 + (i_1 - i_0)/p$. Then there exists $\gamma \in \operatorname{Aut}_k(K)$ such that $i(\gamma) = i_0$ and $i(\gamma^p) = i_1$.

The proof of Theorem 1 is based on the following straightforward consequence of Theorems 7 and 8 of [7] (see also Remark 1 of [7] and for further details, the introduction of [10]).

THEOREM 3. Let E be either a local field of equal characteristic p or a local field of inequal characteristics which contains a primitive pth root of unity. Let us suppose that the Galois group of the maximal Abelian pro-p-extension of E is a free Abelian pro-p-group. Let $e \in \mathbb{N}^* \cup \{+\infty\}$ be the absolute ramification index of E and let (u_m) be an increasing sequence of integers. Then the following assertions are equivalent.

(iv) There exists a totally ramified \mathbb{Z}_p -extension of E whose sequence of the upper ramification numbers is (u_m) .

(v) (a) either $1 \le u_0 < ep/(p-1)$ and $p \nmid u_0$ or $u_0 = ep/(p-1)$;

(b) if $u_m < e/(p-1)$ then $u_{m+1} = pu_m$; or $pu_m < u_{m+1} < ep/(p-1)$ and $p \nmid u_{m+1}$; or $u_{m+1} = ep/(p-1)$;

(c) if
$$u_m \ge e/(p-1)$$
 then $u_{m+1} = u_m + e$.

Moreover if the local field *E* doesn't contain a primitive *p*th root of unity then the cases where $u_m = ep/(p-1)$ with m = 0 or $u_m > pu_{m-1}$ don't happen.

Remark 1. In fact the assertion (i) of Theorem 1 is equivalent to: there exists $e \in \mathbb{N}^* \cup \{+\infty\}$ such that the conditions (a), (b), and (c) of the assertion (v) in Theorem 3 are satisfied. But the formulation (i) is more adapted to the context of Theorem 1 because the index *e* is not given in the hypothesis.

Proof of the Remark. Let us prove that $(v) \Rightarrow (i)$. We have

$$\begin{split} u_{m+1} & \frac{e}{p-1} \quad \text{because} \quad \frac{e}{p-1} + e = p \frac{e}{p-1}, \\ u_m &> \frac{ep}{p-1} \Rightarrow u_{m-1} \geqslant \frac{e}{p-1} \quad \text{by (b)} \\ \Rightarrow \mu \leqslant m-1. \end{split}$$

Therefore, for $m = \mu$, we get $(p-1) u_{\mu}/p \le e < (p-1) u_{\mu}$ and, for all $m \ge \mu$, $u_{m+1} = u_m + e$ by (c).

Now, if $p | u_{m+1}$ then $u_{m+1} = pu_m < u_m + e$ or $u_{m+1} = u_m + e \le pu_m$; or $u_{m+1} = ep/(p-1)$ with either $u_m = e/(p-1)$ or $u_m < e/(p-1)$ and $\mu = m+1$.

Finally if $p | u_0$ then $u_0 = ep/(p-1)$ and $\mu = 0$. Now let us prove that (i) \Rightarrow (v).

(a) We have $u_0 \leq u_\mu \leq ep/(p-1)$ and if $p \mid u_0$ then $\mu = 0$ and $e = (p-1) u_0/p$.

(b) Let *m* be an integer such that $u_m < e/(p-1)$. Then $u_m < u_\mu$, $m < \mu$ and $u_{m+1} \le u_\mu \le ep/(p-1)$; moreover, since $u_{m+1} \ge pu_m$, in the case where $p \mid u_{m+1}$, we have either $u_{m+1} = pu_m$ or $u_{m+1} = ep/(p-1)$ and $\mu = m+1$.

(c) Let *m* be an integer such that $u_m \ge e/(p-1)$. Then we have $pu_{\mu-1} \le u_\mu \le pu_m$, $\mu - 1 \le m$ and therefore either $m \ge \mu$ and $u_{m+1} = u_m + e$; or $m = \mu - 1$ and $u_\mu = pu_m = ep/(p-1)$; in this last case $u_m = e/(p-1)$ and $u_{m+1} = u_\mu = ep/(p-1) = u_m + e$.

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Let F be a local field with an algebrically closed residue field of characteristic p. We consider the two following cases: either

F is of equal characteristic *p*, or *F* contains a primitive *p*th root of unity. Let *e* be the absolute ramification index of *F* (thus $e = +\infty$ in the first case). From the local class field theory, the Galois group of the maximal Abelian pro-*p*-extension of *F* is a free Abelian pro-*p*-group (see also [7, Theorem 8 and Remark 5]).

By Theorem 3, there exists a totally ramified \mathbb{Z}_p -extension of F whose upper ramification numbers are (u_m) . Now there exists a local field E whose residue field is finite and whose absolute ramification index is e and there exists a totally ramified \mathbb{Z}_p -extension M of E whose upper ramification numbers are the u_m (see [3, Theorem 3] if $p \neq 2$ and [4, Theorem 2] if p = 2).

Let N be the field of norms of M/E. There is a canonical isomorphism from the Galois group of M/E onto an automorphism group Γ of N which preserves the ramification filtrations [13]. Therefore if γ is a topological generator of Γ then the sequence of upper ramification numbers of γ is (u_m) . Thus the implication (i) \Rightarrow (iii) is proved.

Now let γ be an infinite order automorphism of k((t)) with k perfect field and let (u_m) be its sequence of upper ramification numbers. We consider the \mathbb{Z}_p -extension F/E corresponding to $\gamma \in \operatorname{Aut}_k(k((t)))$ by the equivalence of categories given by the field of norms functor of Fontaine and Wintenberger [14]. Then E is a local field with residue field k and the Galois group of F/E has the same upper ramification numbers as γ . Now it suffices to apply Theorem 3 to get the implications (iii) \Rightarrow (i) and (ii) \Rightarrow (i). Finally the last implication (iii) \Rightarrow (ii) is clear: given a perfect field k of characteristic p and a finite extension $\mathbb{F}_q/\mathbb{F}_p$, every automorphism of $\mathbb{F}_q((t))$ can be considered as an automorphism of $\mathbb{F}_q((t)) \otimes_{\mathbb{F}_q \cap k} k$ with the same ramification.

Proof of Corollary 1. Let i_0 and i_1 be two integers such that $0 < i_0 < i_1$ and $p | i_1 - i_0$; we recall that $u_0 = i_0$ and $u_1 = i_0 + (i_1 - i_0)/p$. We know by Theorem 1 that u_0 and u_1 are the first numbers of an infinite ramification sequence (u_m) of an automorphism of $\mathbb{F}_q((t))$ if and only if

$$p \mid u_0 \Rightarrow u_1 = u_0 + \frac{(p-1)u_0}{p},$$

$$p \nmid u_0 \Rightarrow \text{either} \quad u_1 \ge pu_0 \quad \text{or}$$

$$pu_0 < u_1 = u_0 + e \quad \text{with} \quad e > \frac{(p-1)u_0}{p}$$

that is to say, $u_1 > (2p-1) u_0/p$ for this last case.

We translate these conditions in terms of sequences (i_m) :

$$p \mid i_0 \Rightarrow i_1 = pi_0,$$

$$p \nmid i_0 \Rightarrow \text{either} \quad i_1 \ge (p^2 - p + 1) i_0, \quad \text{or}$$

$$(p^2 - p + 1) i_0 > i_1 > pi_0.$$

Moreover if $p \mid i_0$ then for every $m \ge 0$, $u_{m+1} = u_m + (p-1) u_0/p$ therefore $i_{m+1} = pi_m$; if $p \nmid i_0$ and if $i_1 < (p^2 - p + 1) i_0$ then $u_1 < pu_0$ and for every $m \ge 0$, $u_{m+1} = u_m + e$ with $e = (i_1 - i_0)/p = (i_{m+1} - i_m)/p^{m+1}$ therefore $i_m = i_0 + ((p^m - 1)/(p - 1))(i_1 - i_0)$.

Proof of Theorem 2. The conditions on (u_m) in Theorem 2 are equivalent to the assertion (v) of Theorem 3 where we exclude (a') $u_0 = ep/(p-1)$ and (b') $u_{m+1} = ep/(p-1)$ with $u_m < e/(p-1)$. We already noted (Remark 1) that if (u_m) is the sequence of upper ramification numbers of a \mathbb{Z}_p -extension of a local field E then the conditions (a') or (b') can happen only if E contains a pth root of unity ζ . Moreover if the residue field of E is finite then the Galois group of the maximal Abelian pro-*p*-extension of E is a free Abelian pro-*p*-group if and only if $\zeta \notin E$ (see [7, Theorem 8; 8] for more details).

Therefore, given a local field E with a perfect residue field k such that $\zeta \notin E$ and a sequence of integers (u_m) as in Theorem 2, there exists a \mathbb{Z}_p -extension F/E whose upper ramification numbers are the u_m (Theorem 3). Since k((t)) is isomorphic to the field of norms of F/E there exists an automorphism $\gamma \in \operatorname{Aut}_k(k((t)))$ whose sequence of upper ramification numbers is (u_m) .

Proof of Corollary 2. Let $i_0, i_1, u_0 = i_0$ and $u_1 = i_0 + (i_1 - i_0)/p$ be integers as before. If we exclude the cases where $p \mid i_0$ and $p \mid i_0 + (i_1 - i_0)/p$ with $i_1 > (p^2 - p + 1) i_0$ (that is to say, $p \mid u_0$ and $p \mid u_1$ with $u_1 > pu_0$) from the conditions on (i_m) written in Corollary 1, then we obtain exactly the conditions of Corollary 2. Therefore Corollary 2 follows from Theorem 2.

4. RAMIFICATION OF SOME COMMUTING AUTOMORPHISMS

Let k and K be as in the Introduction and let σ and $\tau \in \operatorname{Aut}_k(K)$ be such that the closed subgroup G of $\operatorname{Aut}_k(K)$ generated by σ and τ is isomorphic to an extension of \mathbb{Z}_p by \mathbb{Z}_p . This implies that σ and τ have infinite order and $\tau \neq \sigma^{\nu}$ for all $\nu \in \mathbb{Z}_p$ because the closed subgroup of $\operatorname{Aut}_k(K)$ generated by σ is constituted by the $\sigma^{\nu}, \nu \in \mathbb{Z}_p$. For example, if there exists a *p*-adic unit $\nu \equiv 1 \mod p$ such that $\tau \sigma \tau^{-1} = \sigma^{\nu}$ then the group G is such an extension of \mathbb{Z}_p by \mathbb{Z}_p .

As usual, the groups of ramification of G are defined by $G_i = \{g \in G; i(g) \ge i\}.$

PROPOSITION 1. With the hypothesis above, the sequences $(i(\sigma^{p^n})/p^n)$ and $(i(\tau^{p^n})/p^n)$ are not bounded.

Proof. By Theorem 1.5.2 of [5], the automorphism group G of K lies in the image of Wintenberger's functor "field of norms." This means that there exists a local field E and a Galois pro-p-extension F of E whose field of norms is isomorphic to K and there is a canonical isomorphism of Gonto Gal(F/E) preserving the filtrations of ramification. (The lower numbering of the ramification of Gal(F/E) exists because F/E is arithmetically profinite (A P F) in the sense of [13].) Let H be the closed subgroup of Ggenerated by σ and let $E' = F^H$. The extension E'/E is APF [13, Proposition 3.4.1]. Let N be the field of norms of E'/E. The \mathbb{Z}_p -extension F/E' can be identified with a \mathbb{Z}_p -extension M of N and the field of norms of M/Ncan be identified with K [13, Proposition 3.4.1]. Therefore there is a canonical isomorphism h from H onto Gal(M/N) such that for every $i \in \mathbb{N}$, $h(H_i) = \operatorname{Gal}(M/N)_i$. Thus the jumps of the filtration $\operatorname{Gal}(M/N)_i$ are the $i(\sigma^{p^n})$. Since N is a local field of equal characteristic, the sequence $((i(\sigma^{p^n})/p^n))$ is not bounded. Clearly we can prove analogously that $((i(\tau^{p^n})/p^n)$ is not bounded.

PROPOSITION 2. Let σ and τ be two automorphisms of K such that $\sigma\tau = \tau\sigma$, $\tau \neq \sigma^{\nu}$ for all $\nu \in \mathbb{Z}_p$ and $1 \leq i(\sigma) < i(\tau) < i(\sigma^p) < p(p^2 - p + 1) i(\sigma) - (p - 1) i(\tau)$. Then for all $n \geq 1$,

$$\begin{split} &i(\sigma^{p^n}) = i(\sigma) + (i(\sigma^p) - i(\sigma)) \, \frac{p^{2n} - 1}{p^2 - 1} \\ &i(\tau^{p^n}) = i(\sigma) + (i(\tau) - i(\sigma)) \, p^{2n} + (i(\sigma^p) - i(\sigma)) \, \frac{p^{2n} - 1}{p^2 - 1}. \end{split}$$

Proof. Let *G* be the closed subgroup of $\operatorname{Aut}_k(K)$ generated by σ and τ and let *F* be a totally ramified extension of a local field *E* corresponding to *G* by the equivalence of categories given by the norms field theory [14]. We identify $\operatorname{Gal}(F/E)$ with *G*. Let ψ and φ the Hasse–Herbrand functions of F/E: $\psi(x) = \int_0^x (G: G^t) dt$ for $x \ge 0$ and $\varphi = \psi^{-1}$. The first three jumps of the filtration of ramification (G^u) of F/E are $\alpha_0 = \varphi(i(\sigma)), \beta_0 = \varphi(i(\tau))$, and $\alpha_1 = \varphi(i(\sigma^p))$.

$$\begin{split} i(\sigma) &= \psi(\alpha_0) = \alpha_0 \\ i(\tau) &= \psi(\beta_0) = \alpha_0 + p(\beta_0 - \alpha_0) \\ i(\sigma^p) &= \psi(\alpha_1) = \alpha_0 + p(\beta_0 - \alpha_0) + p^2(\alpha_1 - \beta_0). \end{split}$$

Thus $p^2 \alpha_1 = p(p-1) i(\sigma) + (p-1) i(\tau) + i(\sigma^p)$, and the condition $i(\sigma^p) < p(p^2 - p + 1) i(\sigma) - (p-1) i(\tau)$ is equivalent to $\alpha_1 < p\alpha_0$.

Let F^{τ} be the fixed field of the subgroup of *G* generated by τ . By Herbrand's theorem [11, Chap. 4, Proposition 14] the first two jumps of the filtration of ramification of the \mathbb{Z}_p -extension F^{τ}/E are α_0 and α_1 . Since $\alpha_1 < p\alpha_0$ the local field *E* is of characteristic 0, the absolute ramification index of *E* is $e = \alpha_1 - \alpha_0$, and $\alpha_0 \ge e/(p-1)$. Therefore for all $n \ge 1$

$$\begin{split} i(\sigma^{p^n}) &= \psi(\alpha_0 + ne) = \alpha_0 + p(\beta_0 - \alpha_0) + p^2(\alpha_0 + e - \beta_0) + p^3(\beta_0 - \alpha_0) \\ &+ \dots + p^{2n}(\alpha_0 + e - \beta_0) \\ &= \alpha_0 + p(1 + p^2 + \dots + p^{2n-2})(\beta_0 - \alpha_0) \\ &+ p^2(1 + p^2 + \dots + p^{2n-2})(\alpha_1 - \beta_0) \\ &= i(\sigma) + (i(\sigma^p) - i(\sigma)) \cdot \frac{p^{2n} - 1}{p^2 - 1} \end{split}$$

because $i(\tau) - i(\sigma) = p(\beta_0 - \alpha_0)$ and $i(\sigma^p) - i(\tau) = p^2(\alpha_1 - \beta_0)$. By the same proof,

$$\begin{split} i(\tau^{p^n}) &= \psi(\beta_0 + ne) = \alpha_0 + p(1 + p^2 + \dots + p^{2n-2} + p^{2n})(\beta_0 - \alpha_0) \\ &+ p^2(1 + p^2 + \dots + p^{2n-2})(\alpha_1 - \beta_0) \\ &= i(\sigma) + p^{2n}(i(\tau) - i(\sigma)) + \frac{p^{2n} - 1}{p^2 - 1}(i(\sigma^p)) - i(\sigma)). \end{split}$$

Remark. A local field K and two automorphisms σ and τ of K as in Proposition 2 do exist.

Let α_0 , β_0 , α_1 , and *e* be positive integers such that $e/(p-1) < \alpha_0 < \beta_0 < \alpha_1 < p\alpha_0$ and let *E* be a local field of absolute ramification index *e* and with a finite residue field. By the local class field theory there exists a \mathbb{Z}_p -extension whose first two upper ramification numbers are α_0 and α_1 and another \mathbb{Z}_p -extension whose first ramification number is β_0 ; then taking the field of norms *N* of the composition of these two extensions we get an automorphism group of *N* whose generators satisfy our conditions.

Note. Theorem 1 of [6] must be modified as follows.

Assume k is the finite field \mathbb{F}_{p^f} , $p \nmid i_0$, and $i_1 < (p^2 - p + 1) i_0$. Then the *p*-rank of $\text{Gal}(K(\gamma)/K)$ is bf or bf + 1.

The end of the proof must be modified as follows. $W(E^a)$ is the maximal pro-*p*-extension of *K* containing $K(\gamma)$. The *p*-rank of $Gal(E^a/E)$ is ef + 2 if *E* contains a primitive *p*th root of unity or ef + 1 if not. So the *p*-rank of $Gal(K(\gamma)/K)$ is ef + 1 or *ef*. The rest of the proof need not be modified.

REFERENCES

- J.-M. Fontaine, Groupes de ramification et représentation d'Artin, Ann. Sci. École Norm. Sup. 4 (1971), 337–392.
- 2. K. Keating, Automorphisms and extensions of k((t)), J. Number Theory **41** (1992), 314–321.
- 3. F. Laubie, Groupes de ramification et corps résiduels, *Bull. Sci. Math.* 105 (1981), 309-320.
- 4. F. Laubie, Sur la ramification des extensions de Lie, Comp. Math. 55 (1985), 253-262.
- F. Laubie, Extensions de Lie et groupes d'automorphismes de corps locaux, *Comp. Math.* 67 (1988), 165–189.
- F. Laubie and M. Saïne, Ramification of automorphisms of k((t)), J. Number Theory 63 (1997), 143–145.
- M. A. Marshall, Ramification groups of Abelian local field extensions, *Canad. J. Math.* 23 (1971), 271–281.
- 8. M. A. Marshall, The maximal *p*-extension of a local field, *Canad. J. Math.* 23 (1971), 398–402.
- E. Maus, Existenz P-adisher Zahlkörper zu vorgegebenem Verzweigungsgruppenreihen, J. Reine Angew. Math. 230 (1968), 1–28.
- H. Miki, On the ramification numbers of cyclic p-extensions over local fields, J. Reine Angew. Math. 328 (1981), 99–115.
- 11. S. Sen, On automorphisms of local fields, Ann. of Math. (2) 90 (1969), 33-46.
- 12. J.-P. Serre, "Corps locaux," Hermann, Paris, 1962.
- J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux; applications, Ann. Sci. École Norm. Sup. 16 (1983), 59–89.
- J.-P. Wintenberger, Extensions abéliennes et groupes d'automorphismes des corps locaux, C. R. Acad. Sci. Paris 290 (1980), 201–203.