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We compute the renormalization group flow of O (N) scalar field theories in de Sitter space using
nonperturbative renormalization group techniques in the local potential approximation. We obtain the
flow of the effective potential on superhorizon scales for arbitrary space–time dimension D = d + 1. We
show that, due to strong infrared fluctuations, the latter is qualitatively similar to the corresponding
one in Euclidean space RD with D = 0. It follows that spontaneously broken symmetries are radiatively
restored in any space–time dimension and for any value of N . 
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1. Introduction

The study of quantum field dynamics in de Sitter (dS) space is a
subject of topical interest. It is of relevance for inflationary cosmol-
ogy, where timely issues concern the understanding of radiative
corrections to inflationary observables [1–5]. Moreover, the maxi-
mally symmetric dS space offers a paradigm example for the study
of quantum field theory on curved space–times, which reveals a
realm of nontrivial effects as compared to Minkowski space [6–9].
The case of light fields, with mass small in units of the curvature, is
of particular interest both for phenomenological applications to in-
flationary cosmology and for it has no flat space analog. Such fields
exhibit strong, semi-classical fluctuations on superhorizon scales,
responsible for nonperturbative infrared/secular effects [6]. Simi-
lar issues arise in various instances in flat space, e.g., for bosonic
fields at high temperature or near a critical point, or for nonequi-
librium systems. Powerful methods have been developed to deal
with such situations, including, e.g., renormalization group, two-
particle-irreducible, or large-N techniques. In recent years, some
efforts have been put in adapting these methods to study the in-
frared (IR) dynamics of quantum fields in dS space [10–17].

An interesting issue concerns the possibility of spontaneous
symmetry breaking (SSB). It is known that the phase structure of
a given theory can be dramatically affected by the space geome-
try [18]. It had been argued in [19], in the case of an O (2) scalar
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theory, that a spontaneously broken symmetry gets radiatively re-
stored as a consequence of the large-distance logarithmic behavior
of the two-point correlator of a massless field in dS space, in anal-
ogy to what happens in flat space in two dimensions [20]. Simi-
larly, a recent explicit calculation of the effective potential of O (N)

theories in the large-N limit [13] shows that strong fluctuations of
superhorizon modes prevent the possibility of SSB in any space–
time dimension. An simple intuitive picture may be that long range
order cannot develop because of the existence of a causal horizon.
If correct, this would apply to arbitrary value of N , including the
discrete symmetry case N = 1.

Subsequent studies have been undertaken using either the
Hartree approximation [21] or a field theoretical generalization of
the Wigner–Weisskopf method [22], which conclude that SSB is
possible in dS space for finite N and that there is a first order tran-
sition to a symmetric phase as a function of the dS radius. These
studies also find that the would-be-Goldstone excitations acquire
a nonzero mass. However, the Hartree approximation is known to
erroneously predicts a first order transition and massive Goldstone
modes in flat space [23], due to the neglect of important nonlocal
self-energy contributions in the broken phase [24]. This makes the
analogous results in dS space dubious. Recently, employing a semi-
classical stochastic approach, the authors of [25] conclude to the
impossibility of SSB for arbitrary value of N , conforting the results
of [13,19] and the intuitive argument above.

In this Letter, we address the question of SSB employing non-
perturbative renormalization group (NPRG) techniques [26]. In flat
space, the latter have proven powerful tools in a wide variety of
unded by SCOAP3.
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physical problems from condensed matter physics, to non-abelian
gauge theories or to quantum gravity [27]. The simple local po-
tential approximation (LPA) is able to capture the phase structure
of O (N) theories in arbitrary dimension, including nontrivial phe-
nomena in two dimensions such as the Mermin–Wagner theorem
for N > 2, or, with the inclusion of an anomalous dimension, the
Kosterlitz–Thouless transition for N = 2 [26]. The LPA thus pro-
vides a unique tool to study the phase structure of O (N) theories
in dS space.

NPRG techniques have recently been formulated in cosmologi-
cal spaces in four dimensions in [28], where the author explicitly
derives flow equations in the LPA for the N = 1 theory in the
symmetric phase in dS space. Here, we generalize this deriva-
tion to arbitrary dimensions, making use of the physical momen-
tum representation of dS correlators [29,30], hereafter called the
p-representation. The latter exploits as much as possible dS sym-
metries in a momentum representation and allows for a trans-
parent formulation of the renormalization group flow directly in
physical momentum space.

We derive the explicit flow equation for the effective poten-
tial in the LPA, including a nonzero anomalous dimension, for
superhorizon scales. Introducing appropriately rescaled quantities,
we show that, due to strong superhorizon fluctuations, the flow
equation has the same form, up to a numerical factor, as the corre-
sponding one in Euclidean space R

D with D = 0. As a consequence
of this dimensional reduction, the phase structure of the O (N) the-
ory in dS space is similar to that of a zero-dimensional Euclidean
theory. In particular, a broken symmetry phase is not possible
whatever the dimension or the value of N . We illustrate this by
computing the flow of the minimum of the potential and show
that, under mild assumptions, the latter runs to zero in the IR.

2. General setup

Consider the O (N)-symmetric scalar field theory with classical
action (a sum over a = 1, . . . , N is implied)

S[ϕ] =
∫
x

{
1

2
ϕa

(
�− m2

dS

)
ϕa − λ

4!N (ϕaϕa)
2
}
, (1)

with the invariant measure
∫

x ≡ ∫
dD x

√−g , on the expanding
Poincaré patch of a D = (d + 1)-dimensional dS space. In terms
of the comoving spatial coordinates X and the conformal time
−∞ < η < 0, the line-element reads (we choose the Hubble scale
H = 1)

ds2 = η−2(−dη2 + dX · dX
)
. (2)

In Eq. (1), the mass term m2
dS = m2 + ξR includes a possible cou-

pling to the Ricci scalar R = d(d + 1) and � is the appropriate
Laplace operator.

The NPRG is conveniently formulated as a flow equation for the
so-called average action at the scale κ , Γκ [φ], which interpolates
between the classical action for κ → ∞ and the full (quantum)
effective action for κ → 0+ . One introduces a regulator Rκ as S →
S + 	Sκ , where

	Sκ [φ] = 1

2

∫
x,y

φa(x)Rab
κ (x, y)φb(y) (3)

is chosen so as to suppress fluctuations on scales below κ while
leaving high momentum modes unaffected. The average action is
defined as Γκ [φ] = Γ eff

κ [φ] − 	Sκ [φ], where Γ eff
κ is the usual ef-

fective action corresponding to the action S + 	Sκ . The evolution
of Γκ with the scale κ is governed by the Wetterich equation [26]
Γ̇κ [φ] = 1

2
Tr

{
Ṙκ Gκ [φ]}, (4)

where the dot stands for κ∂κ and the trace concerns both O (N)

indices and space–time variables. Here,

Gκ [φ] = i
(
Γ

(2)
κ [φ] + Rκ

)−1
(5)

denotes the propagator in presence of the regulator Rκ , with

Γ
(2)

κ,ab[φ](x, y) = [g(x)g(y)]− 1
2 δ2Γκ [φ]/δφa(x)δφb(y). A technical

remark is in order here. Quantum field theory on cosmologi-
cal spaces is conveniently formulated as a nonequilibrium-like,
initial value problem. In that case, the use of functional tech-
niques requires one to introduce a closed contour C in time [31].
Eqs. (1)–(5) hold with the replacement

∫
x → ∫

C dx0
∫

ddx
√−g(x),

where the time variable runs over the contour C [32].
We now formulate the flow equation (4) in dS space using the

p-representation. It is preferable to choose a regulator which re-
spects the symmetries of the problem, here the dS and the O (N)

groups. However, it is also desirable to employ a momentum space
description, for which the role of the regulator is transparent. The
p-representation provides a compromise between those two de-
mands, which are conflicting in dS space. By definition, the regula-
tor Rκ has the same p-representation as an inverse propagator. Us-
ing spatial homogeneity and isotropy in the coordinate system (2),
one writes

Rab
κ (x, y) =

∫
dd K

(2π)d
eiK·(X−X′) R̃ab

κ

(
η,η′, K

)
, (6)

with K the (conserved) comoving spatial momentum. dS symme-
tries imply the following p-representation [29,30]

R̃ab
κ

(
η,η′, K

) = (
ηη′) d+3

2 K 3 R̂ab
κ

(
p, p′), (7)

where p = −Kη and p′ = −Kη′ are the physical momenta asso-
ciated with the comoving momentum K at times η and η′ re-
spectively. The closed time contour C can be traded for a closed
momentum contour Ĉ [30], on which the function R̂κ is defined.
Here, we employ a local, mass-like, O (N)-diagonal regulator

R̂ab
κ

(
p, p′) = δĈ(p − p′)

p2
δab Rκ (p), (8)

where the function Rκ (p) plays the role of a heavy mass for modes
p < κ . The factor p−2 is such that a p-independent function Rκ (p)

would indeed correspond to a mass term [30]. We emphasize that
a p-dependent function Rκ (p) actually breaks the full dS invari-
ance. This is the price to pay for using a simple local regulator in
physical momentum as in (8). The affine subgroup of the dS group,
which underlies the p-representation [29], is left unbroken. It is
important to note that this also assumes a quantum state com-
patible with the p-representation. For instance, this includes the
class of α-vacua [33], but not the dS-breaking states considered,
e.g., in [34] in discussing the quantum stability of dS space. In the
following we consider the Bunch–Davies (α = 0) state [35].

3. Flow of the effective potential

Having in mind a derivative expansion, we write

Γκ [φ] =
∫
x

{
−Vκ (φ) + Zκ

2
φa�φa

}
, (9)

where Vκ (φ) is the effective potential at scale κ and where we
included a field-strength renormalization factor Zκ from which
one defines a running anomalous dimension ηκ = − Żκ/Zκ . The
LPA corresponds to ηκ = 0 and (9) is sometimes called the LPA′ .
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We stress that the fully dS invariant ansatz (9) is not the most
general one with second order derivatives compatible with the
p-representation. We use it here assuming that dS breaking terms
are suppressed in the IR. The effective potential is defined as
Vκ (φ) = −Ω−1Γκ [φ]|φ=const. , where Ω = ∫

x is a volume factor.
Writing Eq. (4) at constant field, the propagator (5) can be written
in the p-representation. Introducing the comoving Fourier trans-
form as in (6), one has

G̃ab
κ

(
η,η′, K

) = (ηη′) d−1
2

K
Ĝab

κ

(
p, p′). (10)

The function Ĝκ is defined on the closed momentum contour Ĉ
and can be decomposed in terms of a statistical ( F̂κ ) and a spectral
(ρ̂κ ) function as [30]

Ĝab
κ

(
p, p′) = F̂ ab

κ

(
p, p′) − i

2
signĈ

(
p − p′)ρ̂ab

κ

(
p, p′), (11)

where the sign function is understood on the contour. Note
the symmetry properties F̂ ab

κ (p, p′) = F̂ ba
κ (p′, p) and ρ̂ab

κ (p, p′) =
−ρ̂ba

κ (p′, p). Finally, equal-time commutation relation imply
∂pρ̂

ab
κ (p, p′)|p=p′ = −δab/Zκ . Using Eqs. (8)–(11) in (4), we obtain,

after simple manipulations,

V̇κ (φ) = 1

2

∫
dd p

(2π)d
Ṙκ (p)

F̂ aa
κ (p, p)

p
. (12)

We note, in particular, that the volume Ω factors out in the
p-representation.

Let us first illustrate the flow equation in the deep IR in the
case N = 1. With the ansatz (9), the correlator (5) satisfies the
inhomogeneous equation

[
∂2

p + 1 − ν2
κ − 1

4 − Z−1
κ Rκ (p)

p2

]
Ĝκ

(
p, p′) = δĈ(p − p′)

i Zκ
, (13)

where we defined νκ = √
d2/4 − V ′′

κ (φ)/Zκ . Equivalently the func-
tions F̂κ and ρ̂κ satisfy a similar equation with right hand side set
to zero. The latter are solved as F̂κ (p, p′) = Z−1

κ Re{uκ (p)u�
κ (p′)}

and ρ̂κ (p, p′) = −2Z−1
κ Im{uκ (p)u�

κ (p′)} where the function uκ

satisfies the same homogeneous equation. Following [28], we em-
ploy the simple Litim regulator [36]

Rκ (p) = Zκ

(
κ2 − p2)θ(

κ2 − p2), (14)

for which one has

u′′
κ (p) +

(
1 − ν2

κ − 1
4

p2

)
uκ (p) = 0 for p � κ, (15)

u′′
κ (p) − ν̄2

κ − 1
4

p2
uκ (p) = 0 for p � κ, (16)

where ν̄κ = √
ν2
κ − κ2. Eq. (12) becomes

V̇κ (φ) = Ωd

2(2π)d

κ∫
0

dp pd−1[(2 − ηκ)κ2 + ηκ p2]∣∣uκ (p)
∣∣2

. (17)

Demanding the Bunch–Davies vacuum at large momentum [28],
Eqs. (15) and (16) are solved as

uκ (p) =
√

π p

2
eiϕκ Hνκ (p) for p � κ, (18)

uκ (p) =
√

π p
eiϕκ

[
c−
κ

κν̄κ

ν̄κ
+ c+

κ

pν̄κ

ν̄κ

]
for p � κ, (19)
2 p κ
with ϕκ = π
2 (νκ + 1

2 ) and where Hν(z) is the Hankel function of
the first kind. The continuity of uκ (p) and u′

κ (p) at p = κ im-
poses

c±
κ = 1

2

[
Hνκ (κ) ± κ

ν̄κ
H ′

νκ
(κ)

]
. (20)

The momentum integral in (17) can be performed exactly [28,
39]. However, we can readily obtain the flow equation in the IR
regime, κ � 1. In this Letter, we are interested in the case of
light fields, for which nontrivial infrared effects come into play.
More precisely, we assume small curvature V ′′

κ (φ)/Zκ < d/2, such
that νκ ∈ R. As explained above, this is the case of phenomeno-
logical interest for inflationary physics. Moreover, it is the rele-
vant case for the study of the phase structure of O (N) theories
in dS space. Indeed, consider the case of a SSB potential at a
UV scale κ 	 1. Integrating out subhorizon momenta generates
the standard Minkowski flow which brings the effective poten-
tial to a very flat shape for scales κ ∼ 1 [26]. Here, we wish to
study the further evolution of such a flat potential as one inte-
grates out superhorizon scales. Finally, we mention that the IR
finiteness of the flow equation (17) requires ν̄κ < d/2, that is
κ2 + V ′′

κ (φ)/Zκ > 0.
Using Hν(z) = 2νΓ (ν)/(iπ zν)[1 + O(z2)] and the definition

of ν̄κ , we find, up to relative corrections of O(κ2), c−
κ = 2νκ Γ (νκ )/

(iπκνκ ) and c+
κ = −(κ/2νκ )2c−

κ . One easily checks that the contri-
bution to (17) from c+

κ in (19) is thus IR suppressed. After some
simple calculations we obtain, up to relative corrections of O(κ2),

V̇κ (φ) = Ωd Fνκ

2(2π)d
κd+2−2νκ

{
2 − ηκ

d − 2ν̄κ
+ ηκ

d + 2 − 2ν̄κ

}
, (21)

with Fν = [2νΓ (ν)]2/(4π). Here, the trivial dimensional factor
κd+2 gets modified by a large dynamical contribution ∼ κ−2νκ

from enhanced IR fluctuations.
To obtain a form of the flow equation with no explicit depen-

dence on κ , we introduce the rescaled variable

ρ = Zκ

2
κ2φ2 and Uκ (ρ) = Vκ (φ), (22)

such that V ′′
κ (φ) = κ2[U ′

κ (ρ) + 2ρU ′′
κ (ρ)]. We thus have d − 2νκ =

O(κ2) and d − 2ν̄κ ≈ (2/d)κ2[1 + U ′
κ (ρ) + 2ρU ′′

κ (ρ)] and the first
term in bracket in (21) gets further IR enhanced by a factor κ−2.
We obtain, in the limit κ � 1,

U̇κ (ρ) = (2 − ηκ)

{
−ρU ′

κ (ρ) + Ad

1 + U ′
κ (ρ) + 2ρU ′′

κ (ρ)

}
, (23)

with Ad = dΩd Fd/2/4(2π)d = dΓ (d/2)/8πd/2+1 and where the
prime denotes a derivative with respect to ρ . As announced, the
flow equation (23) is similar to the corresponding one in Euclidean
space R

D with D = 0 [26], up to the factor Ad . One thus expects
the phase structure in dS space to be qualitatively the same as that
of the flat Euclidean theory in low dimension.

The minimum ρ̄κ of Uκ (ρ) is defined as U ′
κ (ρ̄κ ) = 0. Using

U̇ ′
κ (ρ̄κ ) + ˙̄ρκ U ′′

κ (ρ̄κ ) = 0, one gets the flow equation

˙̄ρκ = (2 − ηκ)

{
ρ̄κ + Ad

3 + 2ρ̄κ gκ

(1 + 2ρ̄κλκ)2

}
, (24)

where λκ = U ′′
κ (ρ̄κ ) � 0 and gκλκ = U ′′′

κ (ρ̄κ ). Observe that ˙̄ρκ > 0
under reasonable assumptions on ηκ and gκ . In that case, ρ̄κ de-
creases in the IR and reaches zero at a finite renormalization scale.
The physical minimum φ̄κ , defined as ρ̄κ = Zκκ2φ̄2

κ/2, also runs
to zero under conservative assumptions concerning the flow of ηκ ,
e.g., ηκ→0 → const. This is illustrated in Fig. 1, where Eq. (23) is
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Fig. 1. The flow of the potential in the LPA (ηκ = 0) with the ansatz Vκ (φ) =
λκ (ρ − ρ̄κ )2/2, where ρ = κ2φ2/2, for N = 1 and d = 3 (A3 = 3/16π2). The ini-
tial parameters at the arbitrary scale κ0 � 1 are λκ0 = ρ̄κ0 = 0.1. The curves from
right to left correspond to lnκ0/κ = 0,0.1,0.2,0.3,0.4,0.51. The potential flattens
as its minimum decreases and reaches zero at a finite scale (leftmost curve).

solved in the LPA with a quartic ansatz Uκ (ρ) = λκ(ρ − ρ̄κ )2/2,
for which ηκ = gκ = 0.

The previous analysis is easily extended to N > 1. One has to
distinguish longitudinal and transverse modes according to the
projectors P L

ab = φaφb/φ
2 and P T

ab = δab − P L
ab . In particular, the

curvature of the potential now becomes, in terms of the defini-
tions (22), V ′′

κ (φ) → κ2[U ′
κ (ρ)+2ρU ′′

κ (ρ)]P L
ab +κ2U ′

κ (ρ)P T
ab . After

similar manipulations as before, we get, in the limit κ → 0,

U̇κ (ρ) = (2 − ηκ)

{
−ρU ′

κ (ρ)

+ Ad

[
N − 1

1 + U ′
κ (ρ)

+ 1

1 + U ′
κ (ρ) + 2ρU ′′

κ (ρ)

]}
. (25)

As before, this equation is similar to the corresponding one in flat
Euclidean space with D = 0 [26] and the flow drives the system to
the symmetric phase under mild assumptions on ηκ and gκ . For
instance, Eq. (24) becomes

˙̄ρκ = (2 − ηκ)

{
ρ̄κ + Ad

[
N − 1 + 3 + 2ρ̄κ gκ

(1 + 2ρ̄κλκ)2

]}
. (26)

We conclude that the NPRG flow equations in the LPA’ generi-
cally predict that spontaneously broken O (N) symmetries are ra-
diatively restored in dS space in any dimension and for all values
of N . This results from an effective dimensional reduction due to
strong superhorizon fluctuations.1 Our findings support the previ-
ous results of Refs. [13,19,25]. This assumes, in particular, a smooth
and small enough anomalous dimension ηκ . There are examples in
flat space where this is not the case, such as for the Kosterlitz–
Thouless transition [26]. It is of great interest to investigate this
possibility in the present case [39]. Also of interest is the (numeri-
cal) study of the transition from the ultraviolet, where one should
recovers the Minkowski flow, to the IR where strong superhori-
zon fluctuations come into play. Finally, it is important to study
the role of possible dS symmetry breaking terms allowed by the
p-representation along the flow.
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1 It is interesting to note that a similar dimensional reduction phenomenon, with
d + 1 → 1 + 1, has been observed for fermionic degrees of freedom in spaces of
constant negative curvature; see, e.g., [37,38].
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