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Semisymmetryof Generalized Folkman Graphs

DRAGAN MARUSICT AND PRIMOZ POTOENIK

A regular edge- but not vertex-transitive graph is said tedraisymmetric. Thetudy of semisym-
metric graphs was initiated by Folkman, who, among others, gave constructions of several infinite
families such graphs [8]. In this paper a generalization of his construction for orders a multiple of 4
is proposedgiving rise to some new families of semisymmetric graphs. In particular, one associated
with the cyclic group of orden, n > 5, which belongs to the class of tetracirculants, that is, graphs
admitting an automorphism with precisely four orbits, all of the same length. Semisymmetry proper-
ties of tetracirculants are investigated in greater detail, leading to a classification of all semisymmetric
graphs of order g, wherep is a prime.

(© 2001 Academic Press

1. INTRODUCTORYREMARKS

Throughout this paper graphs are assumed to be finite, simple and, unless specified other-
wise, undirected. For the group-theoretic concepts and notation not defined here we refer the
reader to [5, 14]. Given a grapk we letV (X), E(X) and AutX be the vertex set, the edge
set and the automorphism group Xf respectively. We say tha{ is vertex transitiveand
edge transitivef Aut X acts transitively oriV (X) and E(X), respectively. It is easily seen
that an edge- but not vertex-transitive grapls necessarily bipartite, where the two parts of
the bipartition are orbits of AuX. Moreover, if X is regular then these two parts have equal
cardinality. A regular edge- but not vertex-transitive graph is calladisymmetric. The study
of semisymmetric graphs was initiated by Folkman [8] who gave a construction of several
infinite families of such graphs including, among others, a family of semisymmetric graphs
of order 4p, wherep is an odd prime. The smallest graph in this construction has 20 vertices
and happens to be the smallest semisymmetric graph. Inspired by Folkman’s work the study
of semisymmetric graphs has recently received a wide attention, resulting in a number of pub-
lished articles (see [2, 3, 6,9-11]). One of the main purposes of this article is to generalize
Folkmans constructions.

We start by introducing the concept of orbital digraphs. Hebe a transitive permutation
group acting on a sé&¥ and letv € V. There is a 1-1 correspondence between the set of
suborbitsof H, that is, the set of orbits of the stabilizek, on V, and the set obrbitals of
H, that is, the set of orbits in the natural actiontbfon V x V, with the trivial suborbit{v}
corresponding to the diagonfl, v) : v € V}. For an orbitall we letS-, = {w | (v, w) €
I'} denote the suborbit off (relative tov) associated with™. Conversely, for a suborbB
of H relative tov we letT's, be the associated orbital in the above 1-1 correspondence.
The paired orbital"~! of an orbitalT" is the orbital{(v, w) : (w,v) € T}.f 't =T
we say thafl" is a self-paired orbital. Similarly, for a suborbi of H relative tov we let
st= S--1,, denote thepaired suborbitof S. If S1 = Swe say thaSis self-paired. The
orbital digraph X(H, V;T) of (H, V) relative toT", is the digraph with vertex s&t and arc
setI". The underlying undirected graph of(H, V; T') will be called theorbital graph of
(H, V) relative tol" and will be denoted byX(H, V; T'). If ' = I' "1 is a self-paired orbital
then X(H, V; I') admits a vertex- and arc-transitive actiontdf On the other hand, if is
not self-paired theiX (H, V; I') admits a vertex- and edge- but not arc-transitive actiod of
in short, a%-arc-transitive actiorof H.
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For a permutatiorr of V contained inthe normalizer of the permutation grodp in the
symmetric group Syt we letl’* denote the s€ft(x”, y*) | (X, y) € I'}. Sincer normalizes
H, the setl"" is also an orbital oH. If v € V is left fixed byt andS = &, then the set
S* = {s' | s € S} is the suborbitS-- , of H, which corresponds to the orbitBF relative to
the vertexv.

The following construction, starting with a transitive permutation grblugnd its orbital,
is a generalization of Folkman'’s construction of semisymmetric graphs arising from abelian
groups (see [8, Theorem 4]).

DEeFINITION 1.1. LetH be atransitive permutation group on a¥etetI' be its orbital, let
k > 2 be an integer and letbe a permutation of contained in the normalizer &f in SymV
and such that € H. Let B = {Bx | x € V} andVoj = {Xoj | X € V}, j € Zk, bek + 1
copies ofthe se¥. LetY (H, V, I, 7, k) denote the graph with vertex $8UVpoU- - - UVok—1
and edge s€lXoj By | j € Zk, (X, y) € I'*’}. Furthermore, leVij = {X1j | X € V}, ] € Z,
be k copies of the seV. The generalized Folkman grap¥(H, V, T, 7, k) has vertex set
Ui.jez Vii and edge seixoj yai | i, j € Zi, (X, y) € rey.

Observe that the generalized Folkman gragh(H,V, T, t,k) is obtained from
Y(H, V,T, 1, k) by expanding eacBy to ak-tuple of verticesxig, X11, ..., X1k—1 €ach re-
taining the neighbors’ set d3y. For the generalized Folkman gragh(H, V, T, 7, K) it will
be sometimes convenient to specify a suboBibrresponding td" rather thar itself. The
notationF(H, V, S, t, k) will then be used instead of(H, V, T, 7, k). The same applies to
the graphY(H, V, T, 7, k).

The generalized Folkman graphs are all regular and bipartite. Furthermore, Bttiag
(H, T) we can see that every elemeni®fnduces an automorphism &f(H, V, T, 7, k) with
H stabilizing all the set¥j, i € Z, | € Zg, andr stabilizing the set¥;; and cyclically
permuting the set¥pj, j € Zx. With abuse of notation, the symbadt$, ¢ and G will also
denote the corresponding induced actionsfagtd, V, I, z, k) andY(H, V, T, 7, k).

For everyx e V the verticesx;j, j € Zk, have the same neighbors’ sets in the graph
F =F(H,V,T, t, k). It follows that for eachx € V the automorphism group A contains
a copy of the symmetric grou§ fixing the setsVp;, j € Zx, pointwise, and acting on the
set{xyj | J € Zx} by permuting the indice$ € Zx. The group, generated iy and these
automorphisms, acts transitively on the set of edge® ahd has two orbits in its action on
the set of vertices of, namelylJ; ., Voj andJcz, Vaj. The generalized Folkman graph
F is therefore a regular bipartite edge-transitive graph with at most two vertex orbits. The fact
that for each vertex it J; .z, V1 there are at lea&t — 1 other vertices ift J; .5, V1j sharing
the same set of neighbors #f gives rise to the following simple sufficient condition for the
semisymmetry of generalized Folkman graphs. The proof is straightforward and is omitted.

PROPOSITIONL.2. If no k distinct vertices in J; .z, Voj have thesame set of neighbors
in the graph YH, V, T, 7, k), then the grapl#F(H, V, T, 7, k) is semisymmetric.

One of the main goals of this article is to give constructions of several infinite families of
semisymmetric generalized Folkman graphs (see Seg}idBome of these constructions are
immediate generalizatiordf the original Folkman'’s constructions of semisymmetric graphs
of valency 4 corresponding to abelian groups (Exampldsand2.5). The others are new
and arisein the context of alternating groups (Exampz$ and2.7). We remark that the
generalized Blkman graphs of the last two examples are associated with certain graphs ad-
mitting %—arc-transiti‘e group actions. Namely, let be a graph admitting é—arc—transiti‘e
action of a subgroupd of Aut X, and an arc-transitive action of a subgro@pof Aut X,
whereH is of index 2 inG. Then there exists a non-self-paired orbltadbf H such thatX =
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X(H, V(X), ) andI’ UT' "1 is an orbital ofG. Now letz be an arbitrary element i@ \ H.
Then of coursd™™ = I'"1, 72 € H, and we can construct the generalized Folkman graph
F(H,V(X), T, 1, 2). Conversely, the generalized Folkman graptH, V, T, t, 2) gives rise
to a graph admitting é-arc-transiti‘e action ofH and an arc-transitive action & = (H, )
providedI is not self-paired, anéi® = 'L is the paired orbital of". The above described
connection between these two families of graphs is the content of the sequel to this paper.
In Section3 we give a number of preliminary results arpolycirculants, thats, graphs
admitting an automorphism having precisalgrbits, all of equal size. These results are used
in Section4, which is devoted to the study of semisymmetry properties of 4-polycirculants.
Finally, building on the results from these two sections, we classify (and solve the isomor-
phism problem for) semisymmetric graphs of ordgx #herep is a prime, in Sectio®. In
particularwe show that every such graph is a generalized Folkman graph.

2. CONSTRUCTIONS

A sufficient condition for the semisymmetry of a generalized Folkman graph
F(H,V,T, 7,k given in PropositiorlL.2 is that nok verticesin | J;z, Voj have the same
neighbors set in the grapi(H, V, T, , k). This gives rise to a particularly transparent condi-
tion whenH contains a regular subgroup, as may be seen in the proposition and its corollary
below.

PROPOSITION2.1. Let R be a group acting on itself by right multiplication, let A be a
subgroupof AutR, H = (R, A), and r € R such that S= r” have at least two elements.
Furthermore, letr be an automorphism of R normalizing H and such thate H. If Sy S
fory # 1land Sy# S for all y € R, then the generalized Folkman gragtiH, R, S, 7, k)
is semisymmetric.

PrROOF The stabilizer of the identity elementd R in the action of H on R equalsA.
By definition, S is an orbit of A and hence a suborbit ¢. The orbitall" arising from the
suborbitS is the set{(y,sy) | y € R,s € S}. The orbital '™, i € Z, is then the set
{(y,sy)|ye R;se s Suppose that there akeifferent vertices in the unioh)jeZk Voj
with the same neighbors set in the graph= Y(H, R, S, 7, k). Let us assume first that two
of them, sayxo; andyp; belong to the sam&p;. By the definition ofY this implies that
S'y = §'x and soS(yx~1)*' = S, contradicting one of the assumptions. We can thus
assume that the neighbors’ setxgf € Voo andyo1 € Vo1, for somex, y € Z,, are the same.
But thenSx= S’y and soS* = Sxy 1, again a contradiction. |

COROLLARY 2.2. Let 2R be a group acting on itself by right multiplication, letr R, let
a € Aut R be such that¥” =r, and lett=r“. Assume that
(i) there exista € Aut R commutingvith & and interchanging r with T1;
(i) r2t=2£1;
(i) rtr ~1t-1 £ 1;
(iv) (rt~ 12 £1.
Then the grapt¥ ((R, ), R, {r, t}, 7, 2) is semisymmetric.

PROOF Sincet commutes withx it normalizes the groupR, «). Moreover, since it in-
terchanges andr 1 it also interchanges with t 1. HenceS" = S~1. SupposeSy = &°
for some elemeny € R. Then eithery = r~t andty = t, orry = t~1 andty = r 1.
The first case contradicts (ii) whereas the second case contradicts (iii). On the other hand, if
Sy= Sfor some nonidentity elemegte R, we hava'y =t andty = r, contradicting (iv).O
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The semisymmetry of graphs constructed in Examglds-2.7may be deduced from the
aboe two results (and the following simple lemma for graphs in Exar@B¢.

Forx € Z, andA, B C Z, wedefinethe setd\ + x = {a+x |a € AjandA+ B =
fat+blae A,be B}

LEMMA 2.3. Let p be a prime and AB C Zp with |[B] > 2. If |[A+ B| = |A]| then

PROOFE Since|A| = |A+ B| = | Upes (A + b)| we have thatA + b; = A + by for
every pairby, by € B. Choose two distinct elemenitis andb, in B and letc = by, — bs. As
A+ b; = A+ by it follows that A = A 4 kcfor anyk € Z. Sincec is coprime withp we
have thatA = A+ x for all X € Z and thereforeA = Zj,. O

EXAMPLE 2.4. This example of semisymmetric graphs of valency 4 arising from abelian
groups isessentially due to Folkman (see [8, Theorem 4]), thus justifying the name general-
ized Folkman graphs. LeA be an abelian group arid an automorphism oA. Letk > 1 be
an integer and € A such that 2 # 0. Suppose thatX(r) e {r, —r} andT'(r) & {r, —r}
for 1 <i < k — 1. Furthermore, assume that theresis A such that 2s=r. LetH be a
permutation group on the sétgenerated by the translations with element#\adnd a per-
mutation sending eack € A to —x. Observe that the s& = {—s, s} is a suborbit of the
action ofH on A with respect to the identity elementDA. Moreover,T normalizesH. We
can thus construct the generalized Folkman gtaph F(H, A, T, S, k), which is semisym-
metric. In fact, it is isomorphic to the graph, call)t, with vertex setZ, x Zx x A, and
edge sef(0,i,X)(1,j,x—b) |i, | € Zo, x € A, b € {0, T (r)}}, whose semisymmetry was
proved in [8, Theorem 4]. Namely, it is easy to check tivat 7 — X, mappingaccording
to the rulexg = (0,i, x — T'(s)) andx® = (1,i, x), is a graph isomorphism. Of course, the
semisymmetry ofF may also be proved using Propositidri. We leave this to the reader.

We would like to mention that the existence of an elemestich that 2s=r is not needed
neither in the definition of the grapk nor in the proof of its semisymmetry (but is essential
in the definition of the corresponding grahand the graph isomorphis@). Namely, letting
A =Zg, T(X) = 3x andr = 1, the above construction gives us a semisymmetric gkafim
32 vertices), which does not belong to the family of generalized Folkman graphs, as defined
in this article. (Observe that the subgroup of Aufixing the four copies of.g does not act
equivalently on these copies.) O

EXAMPLE 2.5. LetV = Zjp, let Sbea nontrivial subgroup of the multiplicative grod,
letk > 2 be an integer, and € Z be such thag® € S, whilea ¢ Sforalll <i < k.
Furthermore let be an automorphism df, mapping eachkx € Z, toax andH = {X —
sx+b|se S be Zy}asubgroup of the group of all affine transformationZgf Clearly,
7 normalizesH and S is a suborbit ofH relative to the identity element @ Z,,. We can
thus construct the generalized Folkman grépk= F(H, Zn, 7, S, k). If S# x + aSfor all
X € Zn, andS # x + Sfor all x € Zn \ {0}, thenF is semisymmetric by Propositichl. The
last conditionona andSis always fulfilled ifn = p > 5is a prime. Namelys = x 4+ a*S,
€ € {0,1}, impliesS = xS+ a¢S, and by Lemma&.3 we have thak = 0 anda € S, a
contradiction. Moreover, it can be easily seen thas a connected graph in this case.

In the last section we will prove that, with the sole exception of one of the two semisymmet-
ric graphs of order 20, every semisymmetric graph of orgergl> 5 a prime, is isomorphic
to the generalized Folkman gragi(H, Zp, 7, S, 2). O

For convenience we tak®, and A, to be the groups of all permutations and all even per-
mutations, respectively, on the $&f.
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EXAMPLE 2.6. LetR = A4,r = (0,1, 2) € A4, @ € Aut A4 a conjugatiorby the transpo-
sition (2,3) andt € Aut A4 a conjugation by the transpositi@f, 1). Let H be the group
generated by and the right regular action dR. Fort = r%, the conditions (i)—(iv) of
Corollary 2.2 are easily checked. It follows that f@ = {r,t} the generalized Folkman
graphF = F((R,a), R, S, 7, 2) is semisymmetric. Moreover, sincé~1 = (1,2, 3) and
r’t=2 = (0,2, 3) generateAy, it follows that F is a connected graph of order 48 and va-

lency 4. ]
EXAMPLE 2.7. Letn > 5 beodd, andR = A, Letr = (0,1,...,n — 1),
a=(12,....,%5hmn-1,.., 53 ) and letb bethe permutation of., mappingi to

—i for eachi. Furthermore letr andt be conjugations by andb, respectively, lefA = («)
and letH be the group generated byand the right regular action &. Then the se§ =r*
equalsfro,r1, ..., rn-s}, whererj = re fori =0,1,...,n— 1.

The generalized Folkman graphi(H, R, 7, S) is connected, semisymmetric, of ordert 2n
and has valency’5t. The proof of its semisymmetry is based on Propositibt. Observe
first thatr® = r—iz. Since the permutatiorss andb commute, the same holds for the auto-
morphismsr andea, and sor normalizesH and maps; to ri_1 for everyi € {0, ..., ”%3}. It
remainsto check thaS # Syforall y € R\ {1}, and thatS! # Syfor all y € R. Suppose
first thatS = Syfor somey # 1. Letr; andrj be two elements o6 such thatg = rjy and
ri = rjy. It follows thatr, *ro = rj_lrl and soa'rta~ir = alr~la-i-ra.Ifi < j then
we can rewrite the equation as' = ral~'r~la—/~Irar—1. The left-hand side of this equa-
tion fixes 0, which is not the case for its right-hand side. A similar contradiction is obtained
whenj < i. The cas&s ! = Syfor somey e Ris dealt with in a similar fashion.

To prove thatF is connected it suffices to show that the permutations of the (@sg‘nl and
sfsgz, wheres;, s, € S, generate the alternating groR®= A,. It may be easily checked that
foreveryi € {1, ..., 53}, thepermutatiorror; is the 5-cyclg0, "5%, n—1,n—i —1,i). It
is easily seen that these 5-cycles generate a primitive subgradrpraifrn > 11 we may thus
apply the classical result of Marggraf (see [14, Theorem 13.5]) to deduce that this subgroup
is in fact the whole alternating grouR. As forn € {5, 7, 9}, the proof of the above fact may
be done using as one of the generators also the permutétipﬁ. We leave out the details
of the computations. (Note thegr; 2 = (0,n —2,n — 3,751 n— 1,22 1)forn > 7 and
rér;?=(0,3,4)forn=5.) O

We note that in the previous examples the corresponding sub@lzited S are paired
to each other. The corresponding generalized Folkman graphs therefore arise from graphs
admitting a%-arc-transiti‘e action ofH and an arc-transitive action 0, ).

3. PRELIMINARY LEMMAS ON POLYCIRCULANTS

Letk > 1 andn > 2 be integers. A graph of ord&n admitting an automorphisma with
k orbits of lengthn is called a(k, n, r)-polycirculant. In particular, &, n, 7r)-polycirculant,
a (3, n, )-polycirculant, and g4, n, 7)-polycirculant will be called ann, rr)-bicirculant,
an (n, r)-tricirculant, and ar(n, r)-tetracirculant, respectively. (The automorphisnwill
sometimes be omitted from the above notations.)

The generalized Folkman gragh(V, H, T, 7, k) is a(2k, |V|, 7)-polycirculant whenever
the groupH contains a cyclic subgrougr) of order|V|. For example, the smallest semisym-
metric graph (on 20 vertices) is a tetracirculant. In Sectiare will investigate semisymmetry
properties otetracirculants. (Note that there are no semisymmetric circulants, bicirculants or
tricirculants.) It is the purpose of this section to prove a number of lemmas that will be needed
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in the next two sections in the analysis of semisymmetry properties of tetracirculants. We start
with thefollowing simple observation.

LEMMA 3.1. Let A and B be subsets %@f,. Thenthe following hold.

Y IAN(B+x)|=|AlB], @

X€Zn

> IAN(B+x)|=|Al|B|—|ANB. @)
XeZn\(0)

The next two lemmas deal with the structure of bicirculants. We remark that, using the clas-
sification of2-transitive permutation groups, the first one could be proved in a more general
setting, that is, for (regular) bipartite graphs with the setwise stabilizer of one of the two parts
of the bipartition being a 2-transitive permutation group. However, assuming that the graph is
a bicirculant the result can be proved without the classification theorem.

LEMMA 3.2. Let X be a bipartiten, r)-bicirculant, with the bipartition consisting of the
two orbits ofr, which is neither totally disconnected nor a complete bipartite graph. If H is
a subgroup ofAut X containingr, fixing both orbits ofr and acting2-transitively on one of
them, then H acts faithfully ar@ttransitively on both orbits of .

PROOF LetU andW be thetwo orbits ofr, U being the one on whicH acts 2-transitively,
and letu € U, w € W be two vertices oiX. Definer to be a permutation o¥ (X) which
interchanges™ with w™ ' for eachi € Z,. It is easy to see thatis an automorphism oX.
Let G denote the setwise stabilizer dfandW in Aut X. We will first show that the actions
of G onU andW are isomorphic. For ang € G the permutatiory® = t~1gr is clearly
an element ofs which shows that the mappirg+— g° is an automorphism d&. Also, for
anyx € U andg € G we have(x9)? = (x")9", implying that the pailg — g%, x — x%)
is an isomorphism of the actions & on U andW. SinceG acts 2-transitively otJ it acts
2-transitively on botitJ andW.

Assume now that the action ¢ is not faithful on one of the setd andW, sayU (W
respectively), and leK denote the kernel of this action. K was transitive onV (U re-
spectively) the graptX would be either totally disconnected or complete, contradicting our
assumption. On the other hand Kf was not transitive oW (U respectively) the orbits of
K on W (U respectively) would be blocks of imprimitivity for the action & on W (U
respectively) which contradicts the fact ti@atacts 2-transitively on bottd andW.

We can thus assume thidtacts faithfully on bottJ andW. If the action ofH was primitive
onW it would follow by [14, Theorem 25.3] that = p is aprime (by assumptioRl contains
a regular cyclic group of order). By the well known Burnside theorem on groups of prime
degree [13, Theorem 7.3], the ordertdfwould be less thamp(p — 1), and such a group could
not be 2-transitive o), a contradiction. The action ¢ onW is therefore imprimitive. Since
H contains the cyclic element the blocks of imprimitivity’3 = {By, ..., Bk—1} are orbits
of X for some divisoik of n. We can thus assume thgt = {w™ ' | j € Z: \ {0}}, where
r = n/k. Let us denote the corresponding orbitsd§fonU by C; = {(u™ ™ | j = Z; \ {0},
and letSj, i, j € Z, denote the set of thoses Z; for which u™ w s an edge oK. Note
that§; is a symbol of the induced bipartite, 7¥)-bicirculantX[C;, Bj]. Also, Sitt)(j+t =
Sj foranyi, j,t € Zx (just applyr'). LetK denote the kernel of the action bf on 3. Then
K is not trivial since it containg . SinceH is 2-transitive orlJ, the kernekK is transitive on
U which shows that the cardinalities of the §gtare independent on Combining this fact
by the previous argument we obtain that there exdsssich thaiS;| = d for all i, | € Z.
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Since the action oH on U is 2-transitve it follows that|N (u, u”tk)| = |N(u, ur

anyi € Zg andt € Z,. This is equivalent to

)| for

k—1 k-1
D 1S N (Soj + DI =D 1S N (S + D).

j=0 j=0

By taking the sum over atl € Z; we get, by Lemm&.1,
k-1
k(d? —d) =kd* — ) " |Sj N S,
j=0

which impliesS; = §j for anyi, j € Zg. But then the vertices” , i € Zy, share the same
neighbors. The set of all vertices of together with this set of neighbors forms a block of
the action ofH onU. But then, sinceH is 2-transitive orlJ, all vertices ofU have the same
neighbors anK is a complete bipartite graph, contradicting our assumptioX .on o

LEMMA 3.3. Let X be an(n, r)-bicirculant, U, W c V(X) the orbits ofz, and H a
subgroup ofAut X which fixes U and W setwise. Fora& U andw € W let S= {s €
Zn | U~ w”s}. If S = —S+ c for some ce Z, and H acts 2-transitively on U, then
S| €{0,1,n—1,n}.

PROOE Letu; = u™ and wp = w™ . SinceH acts2-transitively onU, it follows that
A = |N(ug, ux) "W| = |SN (S+Kk)| is constant for alk € Z, \ {0}. ReplacingSby —S+c,
we haver = |SN (—S+ ¢+ k)| for all k € Z, \ {0}. Therefore

A ifk#0,

But letting R be thesetSN (S+ 5) if nis even and the empty setiifis odd, it follows by [1,
Lemma 2.2}that

. c
even ifc+ke (2S\2R)%, (4)

N(— k)| =
SO (=S+ctbl {odd if c+k e 25\ 2R,

Combining (3) and (4) we see that eith&f \ {c} € 2S\ 2R or Zy \ {c} < 2S\ 2R®. Now
if nis odd then B\ 2R = Sand soZy \ {c} is either a subset & or a subset oB°. Hence
S| € {0,1,n — 1,n}. The casen even is somewhat trickier. £, \ {c} C 2S\ 2R, then
n—1<2S\2R| < g Hencen < 2 and the result follows. IZ, \ {c} < 2S\ 2R then
either 5 = 2R or 2S = 2R U {2s} for s € S\ R. In the first caséSs = R = S+ %
Thereforer = |S| and Sis clearly eitherZ,, or the empty set. In the second c&es either
RU{s} or RU{s+ J}. Inboth case&|SN (S+ J)| = |S| — 1. Then by Lemm&.1we have
IS|2 — |S| = (n — 1)(|S| — 1), giving us the quadratic equati¢§2 — n|S|+n—1=0. It
follows that|S| is either 1 om — 1. ]

We wrap up this section with a lemma which deals with imprimitive groups of degpee 2
wherep is a prime, and in which bicirculants are present only implicitly. For a permutation
groupG acting on a se¥ and a subseB C V we letG(B) denote the pointwise stabilizer of
BinG.

LEMMA 3.4. Let G be a transitive permutation group acting on a set V of cardinality
andlet B be a complete system of imprimitivity of G consisting of blocks of lehgiihen
either:
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(i) G has also blocks of length p; or
(i) for any pair B, B’ € B thereexists ge G such that g fixes B pointwise and &twise
but not pointwise.

PROOF. SinceG is a transitive group of degreep2there is an element of G of order
p. Let K denote the kernel of the action & on B, and letG = G/K. We are going to
distinguish two different cases.

Casel. K=1.

ThenG = G. If G is solvable, therG is a solvable group of degrge and consequently
() = () is normal inG. Its two orbits are blocks of lengtp of G.

Suppose thaG = G is nonsolvable. Then by [14, Theorem 11.7] it is 2-transitivelfon
Let X be anorbital graph ofG onV having at least one edge between two different blocks in
B. Clearly, there are edges X between any two blocks i, in view of 2-transitivity ofG.
Moreover, because of arc-transitivity &f, any pair of blocksB, B’ € B induces isomorphic
bipartite graphs<[B, B’]. We now follow step by step the second paragraph of Qasehe
proof of[12, Theorem 6.2, p.79] and deduce tiahas alsawo blocks of lengthp (which are
in fact orbits ofr), with the only exception occurring whef[B, B'] = K3 ». But in this case
X = Kp[Kz] and (ii) follows sinceX is an orbital graph o6. (In this case the subdegrees of
Garell,2p—2)

CAse2. K #1.

Suppose thatii) is not true. Then there must exi& € B ands € Zj such thatK(g) <
Kgs)- But K(g) andK g-s, are conjugate irG (via 7°). HenceKg), = K gs,. With a
repeated conjugation by® we see thaK gy = K(g) for any B’ € B. It follows thatK gy = 1
andK = Zo.

If G is solvable, then7) is normal inG. Consequently its preimager, K) = Zp 1s
normal inG and therefordsn) is normal inG, giving rise to two blocks of lengtip.

Suppose thaG is nonsolvable. Again by [14, Theorem 11.7] it is 2-transitive/&inAs
in Casel, let X be an orbital graph ofs on V having at least one edge between two dif-
ferent blocks inB. Clearly, there are edges K between any two blocks i, in view of
2-transitivity of G. Furthermore, the bipartite grapt B, B'] are either all isomorphic to
K22 or all isomorphic to Kz. Now the first case implies th& has subdegrees 1,2p — 2,
contradicting the assumption that (ii) is not satisfied. HEXgB, B'] = 2K, and we can then
use [12, Lemma 6.1] to deduce thathastwo blocks of lengthp. O

4. SEMISYMMETRY OF TETRACIRCULANTS

The purpose of this section is to investigate semisymmetry properties of tetracirculants.
Since all semisymmetric graphs are necessarily bipartite, restricting ourselves to those bipar-
tite (n, 7r)-tetracirculants for which each of the two bipartition sets is a union of two orbits of
7 seems natural.

Let n be a positive integer and 1&, S1, S0 and S 1 be nonempty subsets @f,. De-
fine the graphX = 7 (S0, S1, S10, S11) to have vertex se¥, x Zp x Zp and edge set
{(x,0,0)(y,1,)) |'i,] € Zz, y—x € §j}. We will use shorthand notations; for the
vertex (x, 1, ) € V(X), andVij = Vjj(X) for the set{xjj | X € Zn}, i, ] € Zy. Further-
more, we letd = U(X) = Voo U Vo1 andW = W(X) = ViU Vy1. The permutationr
defined by the ruleij™ = (x + 1);j is an automorphism oX having four orbits of length
n. The graphX is therefore an(n, &r)-tetracirculant. Conversely, X is a bipartite(n, 7)-
tetracirculant for which each of the two bipartition sets is a union of two orbits,dhen
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FIGURE 1. Bipartite tetracirculan? (So, 1, S10, S11)-

X is isomorphic to the grapti (Spo, So1. S10, S11) for someS; € Zn. Namely, choose four
verticesugo, Uo1, U1, U11, One from each orbit ofr, and letx; denote the verte)slij”X for
anyx € Zn. For a pair, j € Z let §; denote the sefls € Zn | Ug ~ S1j}. A pair Xgi Y1
is an edge ofX if and only if y — x € §j(X). The graphX is clearly isomorphic to the
graph7 (S0, S1, S10, S11)- The quadrupléSyo, So1, S0, S11) Will be calledthe symbol of X
with respect to the quintupl@igg, Uo1, U1, U11; 7r) (Or with respect tor, in short). It will be
useful to have a similar notation for certain bipartite bicirculants. X &e a bipartiten, 7)-
bicirculant where the bipartition is given by the two orbitsandV of =. Foru € U and
veV,weletS={seZy|u~ v”s} be thesymbol of X with respect to the triple, v; )
(or with respect tor, in short).

We remark that am-tetracirculant is a generalized Folkman graph if and only if it is iso-
morphic to the grapl? (R, R, T, T) for some subset®, T C Z,. This suggests that such
graphs might be possible candidates for semisymmetric tetracirculants. The proposition be-
low, summarizing a part of Exampke5, deals with the special case whérés acoset of the
multiplicative subgrougR in Z;,.

PROPOSITION4.1. Let S be a nontrivial subgroup of tt#&: and a€ Z sud that & € S
buta¢ S.If S# x+aS forall x e Zy, and S# x + S for all x € Z, \ {0}, then
the tetracirculant7 (S, S, aS aS) is semisymmetric. If n is prime the last two conditions are
always satisfied and, moreover, the corresponding semisymmetric graphs are connected.

It would be interesting to see if there are semisymmetric tetracirculants which are general-
ized Folkman graphs, but not of the form given by the above proposition, and furthermore,
if there are semisymmetric tetracirculants which are not generalized Folkman graphs? We
would like to pose these two questions as open problems.

PrROBLEM 4.2. Does there exist a semisymmetritetracirculant wittsymbol(R, R, T, T),
whereR andT are subsets ¢, which are not cosets of some subgrouZg?

PrROBLEM 4.3. Isthere a semisymmetric tetracirculant which is not a generalized Folkman
graph?

In this section we will give some partial answers to the above two problems. A complete
solution for the special case pftetracirculants is the main ingredient of Sect@rProposi-
tion 4.6 below indicates that under certain extra conditions the answer to Prebimight
be ngative. We start by giving two simple lemmas. The proof of the first one is left to the
reader.
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FIGURE 2. Bipartite graphs induced by pairs of blocks.

LEMMA 4.4. Lety, z, w bearbitrary elements oZ,, let a b, c € Z;, and leto belong to
the dihedral group((1243), (23)). Then:

) 78, 92SW=ET(S+Y, S +w, S+Y+Z S +2+w);
(i) 7(S, © S8, S =7(@8, ¢, abSg, bes);
(i) 7(S1, $. S8, S) =T (S, S0, S, Spo).
LEMMA 4.5. Let n be a positive integer, and S5 and S3 be arbitrary nonempty subsets
of Zn. Then the graply (S, &, S, ) is hot semisymmetric.

PrROOFE The permutatiorr, definedby the rulexﬁ = (—X)1-i,1—j, is an automorphism
of 7(S1, &, S, S) interchanging the two sets of bipartition, andB¢S;, S, S, &) is not
semisymmetric. O

For a transitive permutation group with an imprimitivity block system3 and a permu-
tationr we say thatr and B areorthogonalif each orbit ofr intersects each block if in
exactly one point.

PROPOSITION4.6. Let X be a semisymmetiia, 77 )-tetracirculant with bipartition(U, W)
and assume that the action Afit X on U and W has systems of imprimitivByandC, each
with blocks of length 2, and orthogonal4d’ andz ", respectively. Then one of the following
holds:

() X=T7T(R, R, T, T) for somedisjoint subsets RT C Zp; or

(jj) for any B € B and C € C theinduced subgraph M8, C] is either totally discon-
nected or isomorphic to £+ 2K1 and moreover there are pairwise disjoint subsets
S0, 01, S10, S11 € Zp such that X is isomorphic to the gragh( S0, S1, S10, S11)-

PROOF LetG = Aut X, andlet B = {a, b} andC = {c, d} be blocks ofGW andGY, re-
spectively. Furthermore, 1€&0, So1, S10, S11) denote the symbol of the tetracirculaXwith
respect to the quintuplee, d, a, b, ). ThenB = {By, ..., Bn—1} andC = {Cy, ..., Ch_1},
whereBy = {a" ", b™ } andCy = {c™", d™"} for eachx € Zp.

Consider those bipartite grapi§ By, Cy1, X, y € Zn, Which are not totally disconnected.
Because of edge-transitivity of, any two of them are isomorphic (with the corresponding
isomorphism induced by an automorphism>)f. The five possibilities for these graphs are
shown in Figure2. In case (i) the set§j, i, ] € Zp, are all equal, which by Lemma.5
contradicts semisymmetry of. In case (ii) it follows thatSy = S1, S1o = Si1and S N
S0 = @, and the graph is of the desired form. In case (iii) it follows t&gt= S0, S01 = Si1
and S N SH1 = 9, and the graph is again of the desired form. In case (iv) we Bgye- S
and S0 = S1 which by Lemmad.5 contradicts semisymmetry of. Finally, in case (v) it is
obvious that the setS;, i, j € Z; are pairwise disjoint. O

The above result may be strengthened in the special casemisemprime as we can see
in Corollary4.8. LetX be a graph an¥i, i € Z, be vertex orbits of a subgroup of Aut X.
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Furthermore, for each= Zy let B, be acomplete block system for the restricti@ of G

onV; (possibly atrivial one). BX/5,. .5, , we denote theguotient graph with respect to the
block system§By, ..., Bk_1, that is, the graph with the vertex se¢t.z, Bi, where two vertices
(blocks) are adjacent if and only if there is an edgeXgbining a vertex in the first block to

a vertex in the second block. In the notation of the quotient graph we will conveniently omit
the trivial block systems. The action of the groGpon V (X) induces an action o on the

set of blocksJ; ¢z, Bi. The proof of the following proposition is straightforward and is left to
the reader.

ProOPOSITION4.7. The induced action of G Aut X onthe vertex set); 7, Bi of the quo-
tient graph Xp, .5, dives rise to a subgroup of the automorphism groApt
(X/Bo,....Bc_1)-

COROLLARY 4.8. Let X be a semisymmetri, r)-tetracirculant, where p is a prime,
and assume thaAut X acts imprimitively with blocks of length 2 on both bipartition sets.
Then X is isomorphic td (R, R, T, T) for some subsets,R C Zp.

PrRooFE If X is notisomorphic to som& (R, R, T, T) thencase (jj) in Propositiod.6 oc-
curs. LetY denotethe quotient graplX/B, where3 = {By, ..., Bp_1} andBx = {X10, X11}
for x € Zp. In other wordsy is obtained fromX by identifying pairs of verticegio andxus.
By Lemmad.7 every automorphism oX gives rise to an automorphism %f By Lemma3.4,
for every x € Zj, there exists an automorphism Xffixing Ogo and interchangingoo with
Xo1- Applying the action of the corresponding automorphisny pinduced by this automor-
phism, we get(Soo U S1) N (S0 U (So1 + X)| = [(So U S1) N (S10 U (S11 + X))|. Taking
the sum over alk € Z}, we see thal S0 U So1) 1% — [(SooU Son)| = [SooU Soal[S10U Sial —
[(S0US1)N(S10US11)|. Recall that the setS;, i, j € Z», are pairwise disjoint. Furthermore,
[Sool = [S11] and|So1| = [Sol- Hence | (Soo U S1)| = [(Soo U S1) N (S10U S11)|. Therefore
(S10U S11) € (S0 U S), which is clearly not possible, since the s§sare nonempty and
pairwise disjoint. This contradiction completes the proof of Coroltas; |

Observing thathe four orbits of a tetracirculant which is a generalized Folkman graph are
not blocks of imprimitivity of the full automorphism group, we now turn to a considerably
weaker form of Problerd..3.

PrROBLEM 4.9. Does there exist a semisymmetiic v )-tetracirculants with the four orbits
of 7 being blocks of its automorphism group?

The following theorem gives a partial answer to the above problem.

THEOREM4.10. Let X be a semisymmetrin, )-tetracirculant and suppose that the or-
bits of = are blocks of imprimitivity oAAut X. Then the setwise stabilizer of the four orbits of
7 in Aut X acts imprimitively on each of these orbits.

PROOFE Let (S0, 1, S10, S11) denote thesymbol of the tetracirculanX with respect to
the automorphisnmr. The graphX can then be identified with the gragi( S0, S1, S10, S11)-
We let XiJ denote the bipartite grapK([Voi, V1jl, i, ] € Zp. Since the orbits/j of = are
blocks of AutX andX is edge-transitive, the graph@' i, ] € Zy, are all isomorphic and the
sets§; are of the same cardinality. FDe Z; let Gj denote the setwise stabiliz€iy, of Vig
in Aut X. ThenH = Go N Gy is the setwise stabilizer of each of the four orbifsin Aut X.
Further,H is of index 2 in bothGg andG1, the latter being of index 2 in AX.

Suppose first that the action &f on one of the orbitd/j; is 2-transitive. By Lemm&.2
we may then assume thit acts 2-transitiely on all Vij. If H acts equivalently on two
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neighboring orbits ofr, sayVy andVy; for somei, j € Zy, then the corresponding bipartite
graphxiJ (and thus all four of them) has to be isomorphiaité, or to K, n —n K. But in both
cases the grapX is clearly vertex-transitive. Since by the classification of simple groups there
are only two inequivalent 2-transitive actions of a given degree (see [4] or [5, Section 7.7]),
it follows that the actions dfl on Vyg andVp1 are equivalent. (The same is true for the pair
of orbits Vg0 andVi1.) In particular, we may assume that, for soyne Z,, the stabilizers of

Opo andyps in H coincide. Because of 2-transitivity of the actiontdfon Voo we have that

ro = [N(Ooo, X00) N V1ol = |Soo0 N (Soo + X)| is independent of the choice &fe Zy, \ {0}.
Similarly, in view of the above assumption on the stabilizerss |N (0o, (X+Y)01) NV1o| =

|Soo N (S10 + X + Y)| is also independent of the choicexk Z,, \ {0}. Subtracting the first
equation from the second and taking the sum ovex allZ,, \ {0}, we get

(N — 1)1 —ro) = ool S10+ Y| — 100 N (S10+ V)| — (100l — |Sool)
= 1So0l — 1S00 N (S0 + Y)I.

If r1 # ro, then the left-hand side of the above equality is at leastl and sg S| > n — 1.
It follows that X is vertex-transitive, a contradiction. On the other handif= rg then
S0+ Y = So. For the same reasons as above the numtgess |N (Ogo, Xo0) N V11| and
t1 = IN(Ogo, (X 4+ Y)o1) N V11| are independent of the choicexfe Z, \ {0}. Repeating the
above argument we conclude that= to and therefores; + y = $1. By Lemmad.4, (i)
and (iii), it follows that X is isomorphic to the grapi (S0, So0, So1, S1). But this means
that the graptX admits an automorphism interchanging two vertices from different ovhjits
and fixing all other vertices, contradicting our assumption on the owhjtbeing blocks of
imprimitivity of Aut X.

We can now assume that the actiontbfon the orbitsvij is simply primitive. Note that
contains a cyclic subgroup of order Therefore (since cyclic groups of composite order are
B-groups [14, Theorem 25.3]), it follows that= pis aprime. The action oH on each of the
four orbitsV;; is faithful for otherwise the kernel of the action Ef on one block would have
to be transitive on one of the adjacent blocks, giving rise to the isomorpkistrK,p 2. By
the Burnside theorem on groups of prime degree [13, Theorem 7.3], there exists a subgroup
of Z, such thafor each paiti, j € Z the action ofH onVj; is permutationally isomorphic
with a group{x — ax + bja € S, b € Zy} of affine transformations of the fieldy. Since all
the actions oH on the setd/;; are equivalent there asg z, w € Zp, such that the stabilizers
of Opo, Y10, Zo1 andws1 in H coincide. By Lemmat.4, it suffices to consider the case where
y = z=w = 0. SinceH actsedge-transitively on all of the graphq’, it follows that each
of §j isacoset ofS. Leta;; € §;j be such tha§j = a; S. Consider the setwise stabiliz€p
of Voo in G. Since the Sylowp-subgroupP = (rr) is characteristic irH andH is of index 2
in Gy, it follows that P is normal inGg. Then there exists a subgro&pof Z’,g, such that the
action ofGo on Vo can be identified with the groufxo — (ax)oi + bla € S, b € Zp} of
affine transformations. Moreover, eith8= S or Sis of index 2 inS.

We claim that there exists an involutiane G fixing vertex @o. First we obtain an involu-
tion by taking an appropriate power of a nonidentity eleme@dn H. Since|Vgo| is odd this
involution fixes a vertex ifVpg. Conjugating it by a power of gives us the desired involution
7. In view of the identification of the grou@ with the above group of affine transformations
we conclude that acts onVg;, i € Zy, either trivially or according to the rubey ™ = (—X)qi,

X € Zp. We distinguish two possibilities.

Suppose first that € H. Thent maps according to the rulg;* = (—x)jj, implying that

S = —S. By Lemmag3.3 the setwise stabilizer 0¥ and Vyj in Aut XiJ actssimply tran-

sitively on each of these sets and must therefore coincide with the restrictidnoof XiJ.
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The mappingp: X3 — X3, definedby the rulexg’0 = ag-a01X00 and xfo = 8ggao1X1y, IS
a graph isomorphism. By composing it with some= Gg \ H we get an automorphism of
the graphxg which can be extended to an automorphismXoBy composing this automor-
phism witha—1, an extension o to some element dBg is obtained. But theao_olaOl €S
and thus(aggao1)? € S. Similarly (ag, 10?2 € S, (@y;a11? € S, and(agai)? € S. It
follows that all of the elementaaizj belong to the same coset 8f Since the quotient group
Zy/Sis cyclic there exists an elemehte Zj such that each of the cosedg S is either
apoS or aggh S Combining this fact with Lemma4.4, (ii), we deduce thaX is isomorphicto

T (apoS, agoS, apgbh S aggh S which contradicts the assumption that the orbits @fre blocks

of imprimitivity for the group AutX.

Assume now that ¢ H. SinceP is normal inGg, we have that normalizesr and
therefore there exists € Zy such that eithexj, = (—x + )11 for all x € Zp or x{, =
(x+r)11forallx € Zy. Sincer fixes @y, i € Zy, we have that for eadhe Z,, T interchanges
the setdN (0gi ) N V10 andN (Ogi ) N V11. It follows that eitherajgS+r = 1S, for alli € Zo,
oraopS+r = &1S, foralli € Z;. Using the fact thaSis a subgroup oZ’E, we have in the
first case—ajoS+rS = @1S,i € Z», and in the second caspS+rS = a1S,1 € Zo.

In both cases = 0 by Lemma2.3. We conclude that eithergS = @1 S, foralli € Zy, or
—a0S=g;1S, foralli € Z,. Repeating now the above arguments (used in the previous four
paragraphs for the grou@o) for the groupG:, we end up with eitheagj S = ay; S, for all

J € Zp, or—agjS= &S, forall j € Z,. Checking out each of the four possibilities for the
guantitiesa;j, we have that eitheX = 7 (agoS, —agoS, agoS, —appS), which is impossible
sinceX is not vertex-transitive, oK = 7 (agoS, agoS, —agoS, —apoS), contradicting the fact
that the orbits ofr are blocks of imprimitivity for the group AuX. |

In the particular case whemis a prime, we have the following consequence of the above
theorem.

COROLLARY 4.11. There are no semisymmet(ip, r)-tetracirculants, p a prime, with the
four orbits ofz being blocks of its automorphism group.

5. SEMISYMMETRIC GRAPHS OFORDER4p

The results of the previous section (Corollar#e8 and4.11) together with the theorem
of Burnside[13, Theorem 7.3], which characterizes simply transitive group actions of prime
degreegnable us to classify semisymmetric graphs of orgerwherep is a prime. The first
proposition of this section is an observation that every such graph is a tetracirculant.

ProPOSITIONS. 1. If X is a semisymmetric graph of orddp, where p is a prime, then
X = T (S0, S1. S10, S11) for some &, So1, S0, S11 € Zp, such that| Sl = [S1| and
[So1l = [S10l-

PROOFE The automorphism group = Aut X of X has tw orbits of length » which form
a bipartition ofV (X). Using [14, Theorem 3.4] we deduce that a SylpwsubgroupP of G
has fourorbits A;, A2, B1 andB; of lengthp, such thaf A; U A, B1 U By} is a bipartition of
X. If X was not a connected graph its connected components would be isomorphic semisym-
metric graphs. But this is not possible since there are no semisymmetric graphs of order a
proper divisor of $ (see [8]). We can thus assume tbxais aconnected graph which implies
that for anyi, j € {1, 2}, there is an edge of joining A; andB;.

To prove thatX is a tetracirculant it suffices to show thBtcontains an element without
fixed vertices. Suppose thBtcontains a nontrivial elementfixing a vertex. With no loss of
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generality we may assume thaffixes every vertex inA; and acts regularly oB;. Conse-
quently, X[ Az, B1] is isomorphic toK p p, and sinceX is a regular graph, the same holds for
the graphX[ Ay, By]. Furthermore, if one of the grap§[A;, Bjl,i # j, is isomorphic to
Kp,p, then both are. In this cas¢ = D(Zp, Zp, Zp, Zp), contradicting the semisymmetry
of X by Lemma4.5. Consequently the grapdg A;, Bj1,i # j, arenot isomorphic toKp
and hencex acts trivially onB; and regularly onA;. There exist® € P acting regularly on
As. SinceX[Ay, Ba]is notisomorphic td< p, it follows thatg is not trivial onBp, and must
thus be regular om3,. Moreover, the actions g8 on A; and B; are simultaneously either
regular or trivial and so eithes or o8 is an element oP without fixed vertices. O

We may now state the main result of this section.

THEOREMS5.2. A graph X of ordedp, where p is a prime, is semisymmetric if and only
if one of the following holds.

(i) X is isomorphic to som& (S, S, aS aS), where S is a nontrivial subgroup @&,
acZ;\Sand& e S;or
(i) p =5and X is isomorphic tqd ({0, 2, 3}, {0, 2,3},{0, 1,4},{0,1,4}).

The following lemma will be used in the proof of the above theorem.

LEMMA 5.3. Let7 = 7 (S0, So1, S0, S11) be a(p, 7)-tetracirculant and U W the orbits
of . Ifall of §; € Zp are of the same cardinality and the restrictioaut 7)W of Aut 7 to
W has 2-blocks, but no p-blocks, thefy S So + y and 91 = S+ y for some ye Zp.
Consequently, there are,R C Zp such that7 is isomorphic ta7 (R, R, T, T).

PROOF. LetG = Aut7. Thereis y € Zp such thatB = {019, y11} is a block ofGW. Then
B = {Bo, ..., Bp_1}, whereBy = {x10, (X + y)11} for eachx € Zp, is a complete system of
imprimitivity of GW. Lemma3.4implies that, for eaclx e Z*, thereexists an element ab
which fixes both @y andyi1, and interchanges; o with (x + y)11. It follows that

| —S0N X — S|+ | — S10N (X — S10)| = IN(O10, X10)]
=|NOwp, X+ Y1)l =1—S0NX+y—S)|+]1—-SoNX+y— Sl

Lettingd = |S;j | and taking the sum over atl € Z}, we obtain

202 — 2d = | — Sol® — | — Sool + | — Stol? — | — St
=—=Solly— Sl =1 —SoN Yy — S|+ | — Swolly — Sl
~| = SN (y - S
=20 — | — SN (Y — S| — | — SN (y — Sl

It follows that 2d= | — SoN (Y — S|+ | — S1oN (Y — S11)| and consequentl$p; = So+ Y
andSy = So+y. o

PROOF OFTHEOREM5.2. The fact that the graphs in (i) are semisymmetric is the content
of Propositiord.1, while the graph in (ii) is the bipartite complement of the semisymmetric
graph7 ({1, -1}, {1, -1}, {2, -2}, {2, —2}) of order20 and it may be seen that it is indeed
semisymmetric.

Suppose now thaK is a semisymmetric grapX of order 4p, wherep is a prime. We
need to show thaK is isomorphic to one of the graphs in (i) and (ii) in the statement of
Theorem5.2. By Propositiorb.1 we can identify the graptX with a (p, =)-tetracirculant
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FIGURE 3. The quotient graplX/z.

7 (S0, So1. S10. S11) for somesubsetsso, 1, Sio, S11 € Zp. There are no semisymmetric
graphs of orders 8 and 12 and precisely two nonisomorphic semisymmetric graphs of order
20 (see [10]). We can therefore assume that 5 for the rest of the proof. As in the previous
section we leVpg, Vo1, V1o and V71 denote the four orbits of, and we letJ andW denote
the respective uniongyo U Vo1 andVig U V11. Furthermore, leG = Aut X. The proof will
be carried out in two steps, each giving a further refinement of the information on the symbol
(S0, S015 S10, S10-

StEPl. X=T(R,R, T, T) forsomeR, T C Z.

We show first thaG is simply transitive on botkd andW. Assume that the action & on
U is 2-transitive. Then = |N(Ogo, Xo1)| = |So0N (S10+X) |+ |S1N(S11+X)| is independent
of the choice ok € Zp. By Lemma3.1n

p-1
pr= Z IN (G0, Xo1) | = [Sool|Siol + |S01lIS11] = 2]So0l| S0l
x=0
.and consequentl§yy = Zp = Si1 0r 1 = Zp = So. In both cases we get a contradiction
in view of Lemma4.5. Fur{)hermore, since there are no simply primitive groups of degree 2
p > 7, (sed4]), the above action is imprimitive.

If G has 2-blockn bothU andW then Corollary4.8 implies that the symbol oX is of
the desired form. Therefore, in view of Corollady11we may assume th& has p-blocks
on preciselyone of the setd) andW.

Assume thaGY hasp-blocks (and consequentyV has 2-blocks but np-blocks). Then
we can easily show that the cardinalities of the ®ts S1, S10 and Si; are all equal. By
Lemma5.3, we conclude thaX is isomorphido 7 (R, R, T, T) for someR, T C Zj.

STEP2. X =7(S, S aS aS) whereSis a subgroup oZy, a € Zj \ Sanda? € S.

By Stepl, we may identify the graplX with 7(R, R, T, T) for someR, T C Z,. First,
sinceX is semisymmetric (and therefore regular and not vertex-transitive) we havidrl =
|T| < p— 1. If the action ofG onU had blocks of length 2, then by Lemrba3, X would be
isomorphicto the grapt7 (R, R, R, R) and hence not semisymmetric by Lem#&. There-
fore theaction of G onU has blocks of lengtip. Also, the action ofs onU is unfaithful with
the corresponding kern&l isomorphic toZS and acting o'W with orbits By = {X10, X11}-

LetY = X/B be the quotient graph oX relative to the imprimitivity block systen8 =
{Bx | X € Zp} of GW, that is the graph of orderB obtained fromX by identifyingx;o with
x11 for eachx € Zp, (see Figure3). By Propositiord.7, every automorphism of induces an
automorphisnof Y with all the elements oK giving rise to the identity automorphism %t
It is therefore clear that, because of edge-transitivitKothe action ofG = G/K onY is
also edge-transitive, having two orbits on vertiddsandB. The sets/pp andVp; are blocks
of the action ofG onU. Let H denote the corresponding setwise stabilize¥gfand Vo1 in
G, fixing Voo and Vo1 setwise. The actions dfl on B, Vg and Vo1 are faithful for otherwise
R =Zp =T, contradicting the semisymmetry .

Suppose first that all of these actions are 2-transitive. If the actiodsaf B and on one of
the setsVp were equivalent, thefR| would be either 1 op — 1, which is impossible. Since
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by the classification of simple groups there are only two inequivalent 2-transitive actions of a
given degree (see [4] or [5, Section 7.7]) we can conclude that the actidAsoafVoo and

Vo1 are equialent. Therefore there exists an element Z,, such thatHg,, = Hy,,. We let

ro = [N(Qoo, X00)| = [RN(R+X)|,r1 = [N(Ogo, (X+Y)on)| = [RN(T +x+Yy)|. Subtracting

the two equations and taking the sum overxalk ZT)’ we see thatp — 1)(r1 — rg) =

IR — RN (T 4+ y)|. If r1 # ro then we must haviR| > p — 1, contradicting the assumption
onR.Ifry =rpwe haveR = T + y and, by Lemma.4, X is isomorphic to7 (R, R, R, R)
andhence not semisymmetric, a contradiction.

By Lemma3.2, we may assume that the actiontbiis simplytransitive on one, and there-
fore on all of the set¥po, Vo1 andB. The argument below is just a slight modification of the
argument used in the proof of Theoreh10. By the Burnside theorem on groups of prime
degre€[13, Theorem 7.3] there exists a subgrdbipf Z}, such thathe actions oH on Voo,
Vo1 and B are permutationally isomorphic with a grogp — ax + bla € S b € Zp} of
affine transformations of the fieldy,. Therefore there arg, z € Z, such that the stabilizers
of Opo, Yo1, Bz in H coincide. By Lemmal.4, it suffices to consider the cage= 0 = z
Because obdge-transitivity of the action dfi on the graph¥'[Voj, Bl, j € Z», it follows
that bothR andT are cosets 08. By Lemma4.4, we can assume thBt= SandT = aSfor
somea € Zj, \ S. To complete the proof of Stepwe need to show that belongs tcS.

Let 7 denotethe automorphism of induced by the element of order p with orbits Vij,

i,] € Zy. SinceP = (&) is characteristic irH and the latter is normal i, = G, we
have thatP is normal inG. It follows that there exists a subgro@ of Zy such that the
action of G on B can be identified with the groufBy — Baxypla € S, b € Zp)} of affine
transformations. Moreover, eith&= S or Sis of index 2 inS.

Using a similar argument as in the proof of TheorérhOwe obtain an involutiorr € G
fixing the vertex Bp acting onB3 either trivially or according to the rulBy — B_x, X € Zp.
We distinguish two possibilities.

If T € H thent interchange®y with B_y and soS = —S. As in the proof of Theorem. 10,
using LemmaB.3, we conclude that every automorphism¥iiVgo, 5] can beextended to an
automorphism ofY. The mappingp : Y[Voo, Bl — Y[Vo1, B], defined by the ruIeQJ")0 =
(ax)o1, B§§S = Bax, for all x € Zp, is a graph isomorphism, which can be extended to an
element ofG. But thena € S and saa? € S.

Suppose now that ¢ H. Note thatr normalizest. Therefore there exists e Zp such
that T acts onU by interchangingxog either with (—x + r)o; for eachx e Zp or with
(X 4+ r)o1 for eachx e Z,. Recall thatt fixes Bp and so it must interchange the sets of
neighborsN (Bp) N Voo and N(Bg) N Vpi. It may be deduced that eith&+r = —aSor
—S+r = aS Multiplying these two equalities b and using Lemm&.3we see that = 0,
and consequentlgS = —Sand saa? € S, as required. O

REMARK 5.4. Theorenb.2solves the isomorphism problem for semisymmetric graphs of
order 4p, p aprime. Namely, for a given prim@ > 7 and a positive integed there exists
at most one semisymmetric graph of ordgr @d valencyd. More precisely, such a graph
exists (and is unique) if and only dfis an even number dividing — 1.

While preparing the final version of this article it came to our notice that these graphs were
independently found by Du and Xu [7]. Using the classification of finite simple groups they
prove their existence as part of a larger family of semisymmetric graphs of optgnzhere
p, g are primes. However, they provide neither the explicit labeling for these graphs nor their
connection to the original Folkman’s construction.
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