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Semisymmetryof Generalized Folkman Graphs

DRAGAN MARUŠIČ† AND PRIMOŽ POTOČNIK

A regular edge- but not vertex-transitive graph is said to besemisymmetric. Thestudy of semisym-
metric graphs was initiated by Folkman, who, among others, gave constructions of several infinite
families such graphs [8]. In this paper a generalization of his construction for orders a multiple of 4
is proposed,giving rise to some new families of semisymmetric graphs. In particular, one associated
with the cyclic group of ordern,n ≥ 5, which belongs to the class of tetracirculants, that is, graphs
admitting an automorphism with precisely four orbits, all of the same length. Semisymmetry proper-
ties of tetracirculants are investigated in greater detail, leading to a classification of all semisymmetric
graphs of order 4p, wherep is a prime.

c© 2001 Academic Press

1. INTRODUCTORYREMARKS

Throughout this paper graphs are assumed to be finite, simple and, unless specified other-
wise, undirected. For the group-theoretic concepts and notation not defined here we refer the
reader to [5, 14]. Given a graphX we let V(X), E(X) and AutX be the vertex set, the edge
set and the automorphism group ofX, respectively. We say thatX is vertex transitiveand
edge transitiveif Aut X acts transitively onV(X) and E(X), respectively. It is easily seen
that an edge- but not vertex-transitive graphX is necessarily bipartite, where the two parts of
the bipartition are orbits of AutX. Moreover, ifX is regular then these two parts have equal
cardinality. A regular edge- but not vertex-transitive graph is calledsemisymmetric. The study
of semisymmetric graphs was initiated by Folkman [8] who gave a construction of several
infinite families of such graphs including, among others, a family of semisymmetric graphs
of order 4p, wherep is an odd prime. The smallest graph in this construction has 20 vertices
and happens to be the smallest semisymmetric graph. Inspired by Folkman’s work the study
of semisymmetric graphs has recently received a wide attention, resulting in a number of pub-
lished articles (see [2, 3, 6, 9–11]). One of the main purposes of this article is to generalize
Folkman’s constructions.

We start by introducing the concept of orbital digraphs. LetH be a transitive permutation
group acting on a setV and letv ∈ V . There is a 1–1 correspondence between the set of
suborbitsof H , that is, the set of orbits of the stabilizerHv on V , and the set oforbitals of
H , that is, the set of orbits in the natural action ofH on V × V , with the trivial suborbit{v}
corresponding to the diagonal{(v, v) : v ∈ V}. For an orbital0 we let S0,v = {w | (v,w) ∈
0} denote the suborbit ofH (relative tov) associated with0. Conversely, for a suborbitS
of H relative tov we let 0S,v be the associated orbital in the above 1–1 correspondence.
The paired orbital0−1 of an orbital0 is the orbital{(v,w) : (w, v) ∈ 0}. If 0−1

= 0

we say that0 is a self-paired orbital. Similarly, for a suborbitS of H relative tov we let
S−1
= S0−1,v denote thepaired suborbitof S. If S−1

= S we say thatS is self-paired. The
orbital digraph EX(H,V;0) of (H,V) relative to0, is the digraph with vertex setV and arc
set0. The underlying undirected graph ofEX(H,V;0) will be called theorbital graph of
(H,V) relative to0 and will be denoted byX(H,V;0). If 0 = 0−1 is a self-paired orbital
then X(H,V;0) admits a vertex- and arc-transitive action ofH . On the other hand, if0 is
not self-paired thenX(H,V;0) admits a vertex- and edge- but not arc-transitive action ofH ,
in short, a1

2-arc-transitive actionof H .
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For a permutationτ of V contained inthe normalizer of the permutation groupH in the
symmetric group SymV we let0τ denote the set{(xτ , yτ ) | (x, y) ∈ 0}. Sinceτ normalizes
H , the set0τ is also an orbital ofH . If v ∈ V is left fixed byτ andS = S0,v, then the set
Sτ = {sτ | s ∈ S} is the suborbitS0τ ,v of H , which corresponds to the orbital0τ relative to
the vertexv.

The following construction, starting with a transitive permutation groupH and its orbital0,
is a generalization of Folkman’s construction of semisymmetric graphs arising from abelian
groups (see [8, Theorem 4]).

DEFINITION 1.1. LetH be a transitive permutation group on a setV , let0 be its orbital, let
k ≥ 2 be an integer and letτ be a permutation ofV contained in the normalizer ofH in SymV
and such thatτ k

∈ H . Let B = {Bx | x ∈ V} andV0 j = {x0 j | x ∈ V}, j ∈ Zk, bek + 1
copies of the setV . LetY(H,V, 0, τ, k) denote the graph with vertex setB∪V00∪· · ·∪V0k−1

and edge set{x0 j By | j ∈ Zk, (x, y) ∈ 0τ
j
}. Furthermore, letV1 j = {x1 j | x ∈ V}, j ∈ Zk,

be k copies of the setV . The generalized Folkman graphF(H,V, 0, τ, k) has vertex set⋃
i, j∈Zk

Vi j and edge set{x0 j y1i | i, j ∈ Zk, (x, y) ∈ 0τ
j
}.

Observe that the generalized Folkman graphF(H,V, 0, τ, k) is obtained from
Y(H,V, 0, τ, k) by expanding eachBx to ak-tuple of verticesx10, x11, . . . , x1k−1 each re-
taining the neighbors’ set ofBx. For the generalized Folkman graphF(H,V, 0, τ, k) it will
be sometimes convenient to specify a suborbitS corresponding to0 rather than0 itself. The
notationF(H,V, S, τ, k) will then be used instead ofF(H,V, 0, τ, k). The same applies to
the graphY(H,V, 0, τ, k).

The generalized Folkman graphs are all regular and bipartite. Furthermore, lettingG =
〈H, τ 〉 we can see that every element ofG induces an automorphism ofF(H,V, 0, τ, k) with
H stabilizing all the setsVi j , i ∈ Z2, j ∈ Zk, andτ stabilizing the setsV1 j and cyclically
permuting the setsV0 j , j ∈ Zk. With abuse of notation, the symbolsH , τ andG will also
denote the corresponding induced actions onF(H,V, 0, τ, k) andY(H,V, 0, τ, k).

For everyx ∈ V the verticesx1 j , j ∈ Zk, have the same neighbors’ sets in the graph
F = F(H,V, 0, τ, k). It follows that for eachx ∈ V the automorphism group AutF contains
a copy of the symmetric groupSk fixing the setsV0 j , j ∈ Zk, pointwise, and acting on the
set{x1 j | j ∈ Zk} by permuting the indicesj ∈ Zk. The group, generated byG and these
automorphisms, acts transitively on the set of edges ofF and has two orbits in its action on
the set of vertices ofF , namely

⋃
j∈Zk

V0 j and
⋃

j∈Zk
V1 j . The generalized Folkman graph

F is therefore a regular bipartite edge-transitive graph with at most two vertex orbits. The fact
that for each vertex in

⋃
j∈Zk

V1 j there are at leastk− 1 other vertices in
⋃

j∈Zk
V1 j sharing

the same set of neighbors inF gives rise to the following simple sufficient condition for the
semisymmetry of generalized Folkman graphs. The proof is straightforward and is omitted.

PROPOSITION1.2. If no k distinct vertices in
⋃

j∈Zk
V0 j have thesame set of neighbors

in the graph Y(H,V, 0, τ, k), then the graphF(H,V, 0, τ, k) is semisymmetric.

One of the main goals of this article is to give constructions of several infinite families of
semisymmetric generalized Folkman graphs (see Section2). Some of these constructions are
immediate generalizationsof the original Folkman’s constructions of semisymmetric graphs
of valency 4 corresponding to abelian groups (Examples2.4 and2.5). The others are new
and arisein the context of alternating groups (Examples2.6 and2.7). We remark that the
generalized Folkman graphs of the last two examples are associated with certain graphs ad-
mitting 1

2-arc-transitive group actions. Namely, letX be a graph admitting a12-arc-transitive
action of a subgroupH of Aut X, and an arc-transitive action of a subgroupG of Aut X,
whereH is of index 2 inG. Then there exists a non-self-paired orbital0 of H such thatX =
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X(H,V(X), 0) and0 ∪ 0−1 is an orbital ofG. Now letτ be an arbitrary element inG \ H .
Then of course0τ = 0−1, τ2

∈ H , and we can construct the generalized Folkman graph
F(H,V(X), 0, τ, 2). Conversely, the generalized Folkman graphF(H,V, 0, τ, 2) gives rise
to a graph admitting a12-arc-transitive action ofH and an arc-transitive action ofG = 〈H, τ 〉
provided0 is not self-paired, and0τ = 0−1 is the paired orbital of0. The above described
connection between these two families of graphs is the content of the sequel to this paper.

In Section3 we give a number of preliminary results onn-polycirculants, thatis, graphs
admitting an automorphism having preciselyn orbits, all of equal size. These results are used
in Section4, which is devoted to the study of semisymmetry properties of 4-polycirculants.
Finally, building on the results from these two sections, we classify (and solve the isomor-
phism problem for) semisymmetric graphs of order 4p, wherep is a prime, in Section5. In
particular,we show that every such graph is a generalized Folkman graph.

2. CONSTRUCTIONS

A sufficient condition for the semisymmetry of a generalized Folkman graph
F(H,V, 0, τ, k) given in Proposition1.2 is that nok verticesin

⋃
j∈Zk

V0 j have the same
neighbors set in the graphY(H,V, 0, τ, k). This gives rise to a particularly transparent condi-
tion whenH contains a regular subgroup, as may be seen in the proposition and its corollary
below.

PROPOSITION2.1. Let R be a group acting on itself by right multiplication, let A be a
subgroupof Aut R, H = 〈R, A〉, and r ∈ R such that S= r A have at least two elements.
Furthermore, letτ be an automorphism of R normalizing H and such thatτ k

∈ H. If Sy 6= S
for y 6= 1 and Sy6= Sτ for all y ∈ R, then the generalized Folkman graphF(H, R, S, τ, k)
is semisymmetric.

PROOF. The stabilizer of the identity element 1∈ R in the action of H on R equalsA.
By definition, S is an orbit ofA and hence a suborbit ofH . The orbital0 arising from the
suborbit S is the set{(y, sy) | y ∈ R, s ∈ S}. The orbital0τ

i
, i ∈ Zk, is then the set

{(y, sy) | y ∈ R, s ∈ Sτ
i
}. Suppose that there arek different vertices in the union

⋃
j∈Zk

V0 j

with the same neighbors set in the graphY = Y(H, R, S, τ, k). Let us assume first that two
of them, sayx0 j and y0 j belong to the sameV0 j . By the definition ofY this implies that
Sτ

i
y = Sτ

i
x and soS(yx−1)τ

−i
= S, contradicting one of the assumptions. We can thus

assume that the neighbors’ sets ofx00 ∈ V00 andy01 ∈ V01, for somex, y ∈ Zn, are the same.
But thenSx= Sτ y and soSτ = Sxy−1, again a contradiction. 2

COROLLARY 2.2. Let R be a group acting on itself by right multiplication, let r∈ R, let
α ∈ Aut R be such that rα

2
= r , and let t= r α. Assume that

(i) there existsτ ∈ Aut R commutingwith α and interchanging r with r−1;
(ii) r 2t−2

6= 1;
(iii) r tr −1t−1

6= 1;
(iv) (r t−1)2 6= 1.

Then the graphF(〈R, α〉, R, {r, t}, τ,2) is semisymmetric.

PROOF. Sinceτ commutes withα it normalizes the group〈R, α〉. Moreover, since it in-
terchangesr andr−1 it also interchangest with t−1. HenceSτ = S−1. SupposeSy = Sτ

for some elementy ∈ R. Then eitherr y = r−1 andty = t−1, or r y = t−1 andty = r−1.
The first case contradicts (ii) whereas the second case contradicts (iii). On the other hand, if
Sy= S for some nonidentity elementy ∈ R, we haver y = t andty = r , contradicting (iv).2
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The semisymmetry of graphs constructed in Examples2.4–2.7may be deduced from the
above two results (and the following simple lemma for graphs in Example2.5).

For x ∈ Zn and A, B ⊆ Zn we define the setsA+ x = {a + x | a ∈ A} and A+ B =
{a+ b | a ∈ A ,b ∈ B}.

LEMMA 2.3. Let p be a prime and A, B ⊆ Zp with |B| ≥ 2. If |A + B| = |A| then
A = Zp.

PROOF. Since|A| = |A + B| = | ∪b∈B (A + b)| we have thatA + b1 = A + b2 for
every pairb1,b2 ∈ B. Choose two distinct elementsb1 andb2 in B and letc = b2 − b1. As
A+ b1 = A+ b2 it follows that A = A+ kc for anyk ∈ Z. Sincec is coprime withp we
have thatA = A+ x for all x ∈ Zp and thereforeA = Zp. 2

EXAMPLE 2.4. This example of semisymmetric graphs of valency 4 arising from abelian
groups isessentially due to Folkman (see [8, Theorem 4]), thus justifying the name general-
ized Folkman graphs. LetA be an abelian group andT an automorphism ofA. Let k > 1 be
an integer andr ∈ A such that 2r 6= 0. Suppose thatTk(r ) ∈ {r,−r } andT i (r ) 6∈ {r,−r }
for 1 ≤ i ≤ k − 1. Furthermore, assume that there iss ∈ A such that 2s= r . Let H be a
permutation group on the setA generated by the translations with elements ofA and a per-
mutation sending eachx ∈ A to −x. Observe that the setS = {−s, s} is a suborbit of the
action ofH on A with respect to the identity element 0∈ A. Moreover,T normalizesH . We
can thus construct the generalized Folkman graphF = F(H, A, T, S, k), which is semisym-
metric. In fact, it is isomorphic to the graph, call itX, with vertex setZ2 × Zk × A, and
edge set{(0, i, x)(1, j, x − b) | i, j ∈ Z2, x ∈ A,b ∈ {0,T i (r )}}, whose semisymmetry was
proved in [8, Theorem 4]. Namely, it is easy to check that8 : F → X, mappingaccording
to the rulex80i = (0, i, x − T i (s)) andx81i = (1, i, x), is a graph isomorphism. Of course, the
semisymmetry ofF may also be proved using Proposition2.1. We leave this to the reader.

We would like to mention that the existence of an elements such that 2s= r is not needed
neither in the definition of the graphX nor in the proof of its semisymmetry (but is essential
in the definition of the corresponding graphF and the graph isomorphism8). Namely, letting
A = Z8, T(x) = 3x andr = 1, the above construction gives us a semisymmetric graphX (on
32 vertices), which does not belong to the family of generalized Folkman graphs, as defined
in this article. (Observe that the subgroup of AutX fixing the four copies ofZ8 does not act
equivalently on these copies.) 2

EXAMPLE 2.5. LetV = Zn, let Sbea nontrivial subgroup of the multiplicative groupZ∗n,
let k ≥ 2 be an integer, anda ∈ Z∗n be such thatak

∈ S, while ai
6∈ S for all 1 ≤ i < k.

Furthermore letτ be an automorphism ofZn mapping eachx ∈ Zn to ax and H = {x 7→
sx+ b | s ∈ S,b ∈ Zn} a subgroup of the group of all affine transformations ofZn. Clearly,
τ normalizesH and S is a suborbit ofH relative to the identity element 0∈ Zn. We can
thus construct the generalized Folkman graphF = F(H,Zn, τ, S, k). If S 6= x + aS for all
x ∈ Zn, andS 6= x+ S for all x ∈ Zn \ {0}, thenF is semisymmetric by Proposition2.1. The
last conditionon a andS is always fulfilled ifn = p ≥ 5 is a prime. Namely,S= x + aεS,
ε ∈ {0,1}, impliesS = x S+ aεS, and by Lemma2.3 we have thatx = 0 andaε ∈ S, a
contradiction. Moreover, it can be easily seen thatF is a connected graph in this case.

In the last section we will prove that, with the sole exception of one of the two semisymmet-
ric graphs of order 20, every semisymmetric graph of order 4p, p ≥ 5 a prime, is isomorphic
to the generalized Folkman graphF(H,Zp, τ, S,2). 2

For convenience we takeSn and An to be the groups of all permutations and all even per-
mutations, respectively, on the setZn.
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EXAMPLE 2.6. Let R= A4, r = (0,1,2) ∈ A4, α ∈ Aut A4 a conjugationby the transpo-
sition (2,3) andτ ∈ Aut A4 a conjugation by the transposition(0,1). Let H be the group
generated byα and the right regular action ofR. For t = r α, the conditions (i)–(iv) of
Corollary 2.2 are easily checked. It follows that forS = {r, t} the generalized Folkman
graphF = F(〈R, α〉, R, S, τ,2) is semisymmetric. Moreover, sincer t−1

= (1,2,3) and
r 2t−2

= (0,2,3) generateA4, it follows thatF is a connected graph of order 48 and va-
lency 4. 2

EXAMPLE 2.7. Let n ≥ 5 be odd, and R = An. Let r = (0,1, . . . ,n − 1),
a = (1,2, . . . , n−1

2 )(n − 1, . . . , n+3
2 , n+1

2 ) and letb be the permutation ofZn mappingi to
−i for eachi . Furthermore letα andτ be conjugations bya andb, respectively, letA = 〈α〉
and letH be the group generated byα and the right regular action ofR. Then the setS= r A

equals{r0, r1, . . . , r n−3
2
}, wherer i = r α

i
for i = 0,1, . . . ,n− 1.

The generalized Folkman graphF(H, R, τ, S) is connected, semisymmetric, of order 2n!,
and has valencyn−1

2 . The proof of its semisymmetry is based on Proposition2.1. Observe
first thatr τ = r−1. Since the permutationsa andb commute, the same holds for the auto-
morphismsτ andα, and soτ normalizesH and mapsr i to r−1

i for everyi ∈ {0, . . . , n−3
2 }. It

remainsto check thatS 6= Sy for all y ∈ R \ {1}, and thatS−1
6= Sy for all y ∈ R. Suppose

first thatS= Sy for somey 6= 1. Let r i andr j be two elements ofS such thatr0 = r i y and
r1 = r j y. It follows thatr−1

i r0 = r−1
j r1 and soai r−1a−i r = a j r−1a− j−1ra. If i < j then

we can rewrite the equation asa−i
= ra j−i r−1a− j−1rar−1. The left-hand side of this equa-

tion fixes 0, which is not the case for its right-hand side. A similar contradiction is obtained
when j < i . The caseS−1

= Syfor somey ∈ R is dealt with in a similar fashion.
To prove thatF is connected it suffices to show that the permutations of the forms1s−1

2 and
s2
1s−2

2 , wheres1, s2 ∈ S, generate the alternating groupR= An. It may be easily checked that
for everyi ∈ {1, . . . , n−3

2 }, thepermutationr0r−1
i is the 5-cycle(0, n−1

2 ,n−1,n− i −1, i ). It
is easily seen that these 5-cycles generate a primitive subgroup ofR. Forn ≥ 11 we may thus
apply the classical result of Marggraf (see [14, Theorem 13.5]) to deduce that this subgroup
is in fact the whole alternating groupR. As for n ∈ {5,7,9}, the proof of the above fact may
be done using as one of the generators also the permutationr 2

0r−2
1 . We leave out the details

of the computations. (Note thatr 2
0r−2

1 = (0,n− 2,n− 3, n−1
2 ,n− 1, n−3

2 ,1) for n ≥ 7 and
r 2
0r−2

1 = (0,3,4) for n = 5.) 2

We note that in the previous examples the corresponding suborbitsS and Sτ are paired
to each other. The corresponding generalized Folkman graphs therefore arise from graphs
admitting a1

2-arc-transitive action ofH and an arc-transitive action of〈H, τ 〉.

3. PRELIMINARY LEMMAS ON POLYCIRCULANTS

Let k ≥ 1 andn ≥ 2 be integers. A graph of orderkn admitting an automorphismπ with
k orbits of lengthn is called a(k,n, π)-polycirculant. In particular, a(2,n, π)-polycirculant,
a (3,n, π)-polycirculant, and a(4,n, π)-polycirculant will be called an(n, π)-bicirculant,
an (n, π)-tricirculant, and an(n, π)-tetracirculant, respectively. (The automorphismπ will
sometimes be omitted from the above notations.)

The generalized Folkman graphF(V, H, 0, τ, k) is a(2k, |V |, π)-polycirculant whenever
the groupH contains a cyclic subgroup〈π〉 of order|V |. For example, the smallest semisym-
metric graph (on 20 vertices) is a tetracirculant. In Section4 we will investigate semisymmetry
properties oftetracirculants. (Note that there are no semisymmetric circulants, bicirculants or
tricirculants.) It is the purpose of this section to prove a number of lemmas that will be needed
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in the next two sections in the analysis of semisymmetry properties of tetracirculants. We start
with thefollowing simple observation.

LEMMA 3.1. Let A and B be subsets ofZn. Thenthe following hold.∑
x∈Zn

|A∩ (B+ x)| = |A| |B|, (1)

∑
x∈Zn\{0}

|A∩ (B+ x)| = |A| |B| − |A∩ B|. (2)

The next two lemmas deal with the structure of bicirculants. We remark that, using the clas-
sification of2-transitive permutation groups, the first one could be proved in a more general
setting, that is, for (regular) bipartite graphs with the setwise stabilizer of one of the two parts
of the bipartition being a 2-transitive permutation group. However, assuming that the graph is
a bicirculant the result can be proved without the classification theorem.

LEMMA 3.2. Let X be a bipartite(n, π)-bicirculant, with the bipartition consisting of the
two orbits ofπ , which is neither totally disconnected nor a complete bipartite graph. If H is
a subgroup ofAut X containingπ , fixing both orbits ofπ and acting2-transitively on one of
them, then H acts faithfully and2-transitively on both orbits ofπ .

PROOF. LetU andW be thetwo orbits ofπ , U being the one on whichH acts 2-transitively,
and letu ∈ U , w ∈ W be two vertices ofX. Defineτ to be a permutation ofV(X) which
interchangesuπ

i
with wπ

−i
for eachi ∈ Zn. It is easy to see thatτ is an automorphism ofX.

Let G denote the setwise stabilizer ofU andW in Aut X. We will first show that the actions
of G on U andW are isomorphic. For anyg ∈ G the permutationgτ = τ−1gτ is clearly
an element ofG which shows that the mappingg 7→ gτ is an automorphism ofG. Also, for
any x ∈ U andg ∈ G we have(xg)τ = (xτ )g

τ
, implying that the pair(g 7→ gτ , x 7→ xτ )

is an isomorphism of the actions ofG on U andW. SinceG acts 2-transitively onU it acts
2-transitively on bothU andW.

Assume now that the action ofH is not faithful on one of the setsU andW, sayU (W
respectively), and letK denote the kernel of this action. IfK was transitive onW (U re-
spectively) the graphX would be either totally disconnected or complete, contradicting our
assumption. On the other hand, ifK was not transitive onW (U respectively) the orbits of
K on W (U respectively) would be blocks of imprimitivity for the action ofG on W (U
respectively) which contradicts the fact thatG acts 2-transitively on bothU andW.

We can thus assume thatH acts faithfully on bothU andW. If the action ofH was primitive
onW it would follow by [14, Theorem 25.3] thatn = p is aprime (by assumptionH contains
a regular cyclic group of ordern). By the well known Burnside theorem on groups of prime
degree [13, Theorem 7.3], the order ofH wouldbe less thanp(p−1), and such a group could
not be 2-transitive onU , a contradiction. The action ofH onW is therefore imprimitive. Since
H contains the cyclic elementπ the blocks of imprimitivityB = {B0, . . . , Bk−1} are orbits
of πk for some divisork of n. We can thus assume thatBi = {w

π i+ jk
| j ∈ Zr \ {0}}, where

r = n/k. Let us denote the corresponding orbits ofπk onU by Ci = {uπ
i+ jk
| j = Zr \ {0}},

and letSi j , i, j ∈ Zk, denote the set of thoses ∈ Zr for whichuπ
i
wπ

j+sk
is an edge ofX. Note

thatSi j is a symbol of the induced bipartite(r, πk)-bicirculantX[Ci , B j ]. Also, S(i+t)( j+t) =

Si j for anyi, j, t ∈ Zk (just applyπ t ). Let K denote the kernel of the action ofH onB. Then
K is not trivial since it containsπk. SinceH is 2-transitive onU , the kernelK is transitive on
U which shows that the cardinalities of the setSi j are independent oni . Combining this fact
by the previous argument we obtain that there existsd such that|Si j | = d for all i, j ∈ Zk.
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Since the action ofH on U is 2-transitive it follows that|N(u,uπ
tk
)| = |N(u,uπ

i+tk
)| for

any i ∈ Zk andt ∈ Zr . This is equivalent to

k−1∑
j=0

|S0 j ∩ (S0 j + t)| =
k−1∑
j=0

|S0 j ∩ (Si j + t)|.

By taking the sum over allt ∈ Zr we get, by Lemma3.1,

k(d2
− d) = kd2

−

k−1∑
j=0

|S0 j ∩ Si j |,

which impliesS0 j = Si j for any i, j ∈ Zk. But then the verticesuπ
i
, i ∈ Zk, share the same

neighbors. The set of all vertices ofU together with this set of neighbors forms a block of
the action ofH onU . But then, sinceH is 2-transitive onU , all vertices ofU have the same
neighbors andX is a complete bipartite graph, contradicting our assumption onX. 2

LEMMA 3.3. Let X be an(n, π)-bicirculant, U,W ⊂ V(X) the orbits ofπ , and H a
subgroup ofAut X which fixes U and W setwise. For u∈ U andw ∈ W let S= {s ∈
Zn | u ∼ wπ

s
}. If S = −S+ c for some c∈ Zn and H acts 2-transitively on U, then

|S| ∈ {0,1,n− 1,n}.

PROOF. Let ui = uπ
i

andwi = wπ
i
. SinceH acts2-transitively onU , it follows that

λ = |N(u0,uk)∩W| = |S∩ (S+ k)| is constant for allk ∈ Zn \ {0}. ReplacingSby−S+ c,
we haveλ = |S∩ (−S+ c+ k)| for all k ∈ Zn \ {0}. Therefore

|S∩ (−S+ c+ k)| =

{
λ if k 6= 0,
|S| if k = 0.

(3)

But letting R be thesetS∩ (S+ n
2) if n is even and the empty set ifn is odd, it follows by [1,

Lemma 2.2]that

|S∩ (−S+ c+ k)| =

{
even if c+ k ∈ (2S\ 2R)C,
odd if c+ k ∈ 2S\ 2R.

(4)

Combining (3) and (4) we see that eitherZn \ {c} ⊆ 2S\ 2R or Zn \ {c} ⊆ 2S\ 2RC. Now
if n is odd then 2S\ 2R = S and soZn \ {c} is either a subset ofS or a subset ofSC. Hence
|S| ∈ {0,1,n − 1,n}. The casen even is somewhat trickier. IfZn \ {c} ⊆ 2S \ 2R, then
n − 1 ≤ |2S\ 2R| ≤ n

2 . Hencen ≤ 2 and the result follows. IfZn \ {c} ⊆ 2S\ 2RC then
either 2S = 2R or 2S = 2R ∪ {2s} for s ∈ S \ R. In the first caseS = R = S+ n

2 .
Thereforeλ = |S| andS is clearly eitherZn or the empty set. In the second caseS is either
R∪ {s} or R∪ {s+ n

2}. In both casesλ|S∩ (S+ n
2)| = |S| − 1. Then by Lemma3.1we have

|S|2 − |S| = (n− 1)(|S| − 1), giving us the quadratic equation|S|2 − n|S| + n− 1 = 0. It
follows that|S| is either 1 orn− 1. 2

We wrap up this section with a lemma which deals with imprimitive groups of degree 2p,
wherep is a prime, and in which bicirculants are present only implicitly. For a permutation
groupG acting on a setV and a subsetB ⊆ V we letG(B) denote the pointwise stabilizer of
B in G.

LEMMA 3.4. Let G be a transitive permutation group acting on a set V of cardinality2p,
and let B be a complete system of imprimitivity of G consisting of blocks of length2. Then
either:
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(i) G has also blocks of length p; or
(ii) for any pair B, B′ ∈ B thereexists g∈ G such that g fixes B pointwise and B′ setwise

but not pointwise.

PROOF. SinceG is a transitive group of degree 2p, there is an elementπ of G of order
p. Let K denote the kernel of the action ofG on B, and letḠ = G/K . We are going to
distinguish two different cases.

CASE 1. K = 1.
ThenG = Ḡ. If G is solvable, thenḠ is a solvable group of degreep, and consequently
〈π〉 = 〈π̄〉 is normal inG. Its two orbits are blocks of lengthp of G.

Suppose thatG = Ḡ is nonsolvable. Then by [14, Theorem 11.7] it is 2-transitive onB.
Let X be anorbital graph ofG on V having at least one edge between two different blocks in
B. Clearly, there are edges inX between any two blocks inB, in view of 2-transitivity ofG.
Moreover, because of arc-transitivity ofX, any pair of blocksB, B′ ∈ B induces isomorphic
bipartite graphsX[B, B′]. We now follow step by step the second paragraph of Case2 in the
proof of[12, Theorem 6.2, p.79] and deduce thatG has alsotwo blocks of lengthp (which are
in fact orbits ofπ ), with the only exception occurring whenX[B, B′] ∼= K2,2. But in this case
X ∼= K p[K 2] and (ii) follows sinceX is an orbital graph ofG. (In this case the subdegrees of
G are 1,1,2p− 2.)

CASE 2. K 6= 1.
Suppose that(ii) is not true. Then there must existB ∈ B ands ∈ Z∗p such thatK(B) ≤

K(Bπs
). But K(B) and K(Bπs

) are conjugate inG (via πs). HenceK(B) = K(Bπs
). With a

repeated conjugation byπs we see thatK(B′) = K(B) for anyB′ ∈ B. It follows thatK(B) = 1
andK ∼= Z2.

If Ḡ is solvable, then〈π̄〉 is normal inḠ. Consequently its preimage〈π, K 〉 ∼= Z2p is
normal inG and therefore〈π〉 is normal inG, giving rise to two blocks of lengthp.

Suppose that̄G is nonsolvable. Again by [14, Theorem 11.7] it is 2-transitive onB. As
in Case1, let X be an orbital graph ofG on V having at least one edge between two dif-
ferent blocks inB. Clearly, there are edges inX between any two blocks inB, in view of
2-transitivity of G. Furthermore, the bipartite graphsX[B, B′] are either all isomorphic to
K2,2 or all isomorphic to 2K2. Now the first case implies thatG has subdegrees 1,1,2p− 2,
contradicting the assumption that (ii) is not satisfied. HenceX[B, B′] ∼= 2K2 and we can then
use [12, Lemma 6.1] to deduce thatG hastwo blocks of lengthp. 2

4. SEMISYMMETRY OF TETRACIRCULANTS

The purpose of this section is to investigate semisymmetry properties of tetracirculants.
Since all semisymmetric graphs are necessarily bipartite, restricting ourselves to those bipar-
tite (n, π)-tetracirculants for which each of the two bipartition sets is a union of two orbits of
π seems natural.

Let n be a positive integer and letS00, S01, S10 and S11 be nonempty subsets ofZn. De-
fine the graphX = T (S00, S01, S10, S11) to have vertex setZn × Z2 × Z2 and edge set
{(x,0, i )(y,1, j ) | i, j ∈ Z2 , y − x ∈ Si j }. We will use shorthand notationsxi j for the
vertex(x, i, j ) ∈ V(X), andVi j = Vi j (X) for the set{xi j | x ∈ Zn}, i, j ∈ Z2. Further-
more, we letU = U (X) = V00 ∪ V01 andW = W(X) = V10 ∪ V11. The permutationπ
defined by the rulexi j

π
= (x + 1)i j is an automorphism ofX having four orbits of length

n. The graphX is therefore an(n, π)-tetracirculant. Conversely, ifX is a bipartite(n, π)-
tetracirculant for which each of the two bipartition sets is a union of two orbits ofπ , then
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V00

V01

V11V10

S00

S10

S01

S11

FIGURE 1. Bipartite tetracirculantT (S00, S01, S10, S11).

X is isomorphic to the graphT (S00, S01, S10, S11) for someSi j ⊆ Zn. Namely, choose four
verticesu00, u01, u10, u11, one from each orbit ofπ , and letxi j denote the vertexui j

π x
for

any x ∈ Zn. For a pairi, j ∈ Z2 let Si j denote the set{s ∈ Zn | u0i ∼ s1 j }. A pair x0i y1 j

is an edge ofX if and only if y − x ∈ Si j (X). The graphX is clearly isomorphic to the
graphT (S00, S01, S10, S11). The quadruple(S00, S01, S10, S11) will be calledthe symbol of X
with respect to the quintuple(u00,u01,u10,u11;π) (or with respect toπ , in short). It will be
useful to have a similar notation for certain bipartite bicirculants. LetX be a bipartite(n, π)-
bicirculant where the bipartition is given by the two orbitsU and V of π . For u ∈ U and
v ∈ V , we letS= {s ∈ Zn | u ∼ vπ

s
} be thesymbol of X with respect to the triple(u, v;π)

(or with respect toπ , in short).
We remark that ann-tetracirculant is a generalized Folkman graph if and only if it is iso-

morphic to the graphT (R, R, T, T) for some subsetsR, T ⊆ Zn. This suggests that such
graphs might be possible candidates for semisymmetric tetracirculants. The proposition be-
low, summarizing a part of Example2.5, deals with the special case whereT is acoset of the
multiplicative subgroupR in Z∗n.

PROPOSITION4.1. Let S be a nontrivial subgroup of theZ∗n and a∈ Z∗n such that a2
∈ S

but a /∈ S. If S 6= x + aS for all x ∈ Zn, and S 6= x + S for all x ∈ Zn \ {0}, then
the tetracirculantT (S, S,aS,aS) is semisymmetric. If n is prime the last two conditions are
always satisfied and, moreover, the corresponding semisymmetric graphs are connected.

It would be interesting to see if there are semisymmetric tetracirculants which are general-
ized Folkman graphs, but not of the form given by the above proposition, and furthermore,
if there are semisymmetric tetracirculants which are not generalized Folkman graphs? We
would like to pose these two questions as open problems.

PROBLEM 4.2. Does there exist a semisymmetricn-tetracirculant withsymbol(R, R, T, T),
whereR andT are subsets ofZn which are not cosets of some subgroup ofZ

∗
n?

PROBLEM 4.3. Is there a semisymmetric tetracirculant which is not a generalized Folkman
graph?

In this section we will give some partial answers to the above two problems. A complete
solution for the special case ofp-tetracirculants is the main ingredient of Section5. Proposi-
tion 4.6 below indicates that under certain extra conditions the answer to Problem4.2 might
be negative. We start by giving two simple lemmas. The proof of the first one is left to the
reader.
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FIGURE 2. Bipartite graphs induced by pairs of blocks.

LEMMA 4.4. Let y, z, w bearbitrary elements ofZn, let a,b, c ∈ Z∗n, and letσ belong to
the dihedral group〈(1243), (23)〉. Then:

(i) T (S1, S2, S3, S4) ∼= T (S1+ y, S2+ w, S3+ y+ z, S4+ z+ w);
(ii) T (S1, S2, S3, S4) ∼= T (aS1, cS2,abS3,bcS4);

(iii) T (S1, S2, S3, S4) ∼= T (S1σ , S2σ , S3σ , S4σ ).

LEMMA 4.5. Let n be a positive integer, and S1, S2 and S3 be arbitrary nonempty subsets
ofZn. Then the graphT (S1, S2, S3, S1) is not semisymmetric.

PROOF. The permutationσ , definedby the rulexσi j = (−x)1−i,1− j , is an automorphism
of T (S1, S2, S3, S1) interchanging the two sets of bipartition, and soT (S1, S2, S3, S1) is not
semisymmetric. 2

For a transitive permutation groupG with an imprimitivity block systemB and a permu-
tationπ we say thatπ andB areorthogonalif each orbit ofπ intersects each block inB in
exactly one point.

PROPOSITION4.6. Let X be a semisymmetric(n, π)-tetracirculant with bipartition(U,W)

and assume that the action ofAut X on U and W has systems of imprimitivityB andC, each
with blocks of length 2, and orthogonal toπU andπW, respectively. Then one of the following
holds:

(j) X ∼= T (R, R, T, T) for somedisjoint subsets R, T ⊆ Zn; or
(jj) for any B ∈ B and C ∈ C the induced subgraph X[B,C] is either totally discon-

nected or isomorphic to K2 + 2K1 and moreover there are pairwise disjoint subsets
S00, S01, S10, S11 ⊆ Zn such that X is isomorphic to the graphT (S00, S01, S10, S11).

PROOF. Let G = Aut X, andlet B = {a,b} andC = {c,d} be blocks ofGW andGU , re-
spectively. Furthermore, let(S00, S01, S10, S11) denote the symbol of the tetracirculantX with
respect to the quintuple(c,d,a,b, π). ThenB = {B0, . . . , Bn−1} andC = {C0, . . . ,Cn−1},
whereBx = {aπ

x
,bπ

x
} andCx = {cπ

x
,dπ

x
} for eachx ∈ Zn.

Consider those bipartite graphsX[Bx,Cy], x, y ∈ Zn, which are not totally disconnected.
Because of edge-transitivity ofX, any two of them are isomorphic (with the corresponding
isomorphism induced by an automorphism ofX). The five possibilities for these graphs are
shown in Figure2. In case (i) the setsSi j , i, j ∈ Z2, are all equal, which by Lemma4.5
contradicts semisymmetry ofX. In case (ii) it follows thatS00 = S01, S10 = S11 andS00 ∩

S10 = ∅, and the graph is of the desired form. In case (iii) it follows thatS00 = S10, S01 = S11
andS00∩ S01 = ∅, and the graph is again of the desired form. In case (iv) we haveS00 = S11
andS10 = S01 which by Lemma4.5contradicts semisymmetry ofX. Finally, in case (v) it is
obvious that the setsSi j , i, j ∈ Z2 are pairwise disjoint. 2

The above result may be strengthened in the special case whenn is a prime as we can see
in Corollary4.8. LetX be a graph andVi , i ∈ Zk, be vertex orbits of a subgroupG of Aut X.
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Furthermore, for eachi = Zk let Bi be acomplete block system for the restrictionGVi of G
onVi (possibly a trivial one). ByX/B0,...,Bk−1 we denote thequotient graph with respect to the
block systemsB0, . . . ,Bk−1, that is, the graph with the vertex set∪i∈ZkBi , where two vertices
(blocks) are adjacent if and only if there is an edge ofX joining a vertex in the first block to
a vertex in the second block. In the notation of the quotient graph we will conveniently omit
the trivial block systems. The action of the groupG on V(X) induces an action ofG on the
set of blocks∪i∈ZkBi . The proof of the following proposition is straightforward and is left to
the reader.

PROPOSITION4.7. The induced action of G≤ Aut X onthe vertex set∪i∈ZkBi of the quo-
tient graph X/B0,...,Bk−1 gives rise to a subgroup of the automorphism groupAut
(X/B0,...,Bk−1).

COROLLARY 4.8. Let X be a semisymmetric(p, π)-tetracirculant, where p is a prime,
and assume thatAut X acts imprimitively with blocks of length 2 on both bipartition sets.
Then X is isomorphic toT (R, R, T, T) for some subsets R, T ⊆ Zp.

PROOF. If X is not isomorphic to someT (R, R, T, T) thencase (jj) in Proposition4.6oc-
curs. LetY denotethe quotient graphX/B, whereB = {B0, . . . , Bp−1} andBx = {x10, x11}

for x ∈ Zp. In other words,Y is obtained fromX by identifying pairs of verticesx10 andx11.
By Lemma4.7every automorphism ofX gives rise to an automorphism ofY. By Lemma3.4,
for every x ∈ Z∗p, there exists an automorphism ofX fixing 000 and interchangingx00 with
x01. Applying the action of the corresponding automorphism ofY, induced by this automor-
phism, we get|(S00∪ S01) ∩ (S00∪ (S01+ x))| = |(S00∪ S01) ∩ (S10∪ (S11+ x))|. Taking
the sum over allx ∈ Z∗p, we see that|(S00∪ S01)|

2
− |(S00∪ S01)| = |S00∪ S01||S10∪ S11| −

|(S00∪S01)∩(S10∪S11)|. Recall that the setsSi j , i, j ∈ Z2, are pairwise disjoint. Furthermore,
|S00| = |S11| and|S01| = |S10|. Hence,|(S00∪ S01)| = |(S00∪ S01)∩ (S10∪ S11)|. Therefore
(S10∪ S11) ⊆ (S00∪ S01), which is clearly not possible, since the setsSi j are nonempty and
pairwise disjoint. This contradiction completes the proof of Corollary4.8. 2

Observing thatthe four orbits of a tetracirculant which is a generalized Folkman graph are
not blocks of imprimitivity of the full automorphism group, we now turn to a considerably
weaker form of Problem4.3.

PROBLEM 4.9. Does there exist a semisymmetric(n, π)-tetracirculants with the four orbits
of π being blocks of its automorphism group?

The following theorem gives a partial answer to the above problem.

THEOREM 4.10. Let X be a semisymmetric(n, π)-tetracirculant and suppose that the or-
bits ofπ are blocks of imprimitivity ofAut X. Then the setwise stabilizer of the four orbits of
π in Aut X acts imprimitively on each of these orbits.

PROOF. Let (S00, S01, S10, S11) denote thesymbol of the tetracirculantX with respect to
the automorphismπ . The graphX can then be identified with the graphT (S00, S01, S10, S11).
We let X j

i denote the bipartite graphX[V0i ,V1 j ], i, j ∈ Z2. Since the orbitsVi j of π are
blocks of AutX andX is edge-transitive, the graphsX j

i , i, j ∈ Z2, are all isomorphic and the
setsSi j are of the same cardinality. Fori ∈ Z2 let Gi denote the setwise stabilizerGVi 0 of Vi 0
in Aut X. ThenH = G0 ∩G1 is the setwise stabilizer of each of the four orbitsVi j in Aut X.
Further,H is of index 2 in bothG0 andG1, the latter being of index 2 in AutX.

Suppose first that the action ofH on one of the orbitsVi j is 2-transitive. By Lemma3.2
we may then assume thatH acts 2-transitively on all Vi j . If H acts equivalently on two
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neighboring orbits ofπ , sayV0i andV1 j for somei, j ∈ Z2, then the corresponding bipartite
graphX j

i (and thus all four of them) has to be isomorphic tonK2 or to Kn,n−nK2. But in both
cases the graphX is clearly vertex-transitive. Since by the classification of simple groups there
are only two inequivalent 2-transitive actions of a given degree (see [4] or [5, Section 7.7]),
it follows that the actions ofH on V00 andV01 are equivalent. (The same is true for the pair
of orbitsV10 andV11.) In particular, we may assume that, for somey ∈ Zn, the stabilizers of
000 andy01 in H coincide. Because of 2-transitivity of the action ofH on V00 we have that
r0 = |N(000, x00) ∩ V10| = |S00 ∩ (S00+ x)| is independent of the choice ofx ∈ Zn \ {0}.
Similarly, in view of the above assumption on the stabilizers,r1 = |N(000, (x+y)01)∩V10| =

|S00 ∩ (S10+ x + y)| is also independent of the choice ofx ∈ Zn \ {0}. Subtracting the first
equation from the second and taking the sum over allx ∈ Zn \ {0}, we get

(n− 1)(r1− r0) = |S00||S10+ y| − |S00∩ (S10+ y)| − (|S00|
2
− |S00|)

= |S00| − |S00∩ (S10+ y)|.

If r1 6= r0, then the left-hand side of the above equality is at leastn− 1 and so|S00| ≥ n− 1.
It follows that X is vertex-transitive, a contradiction. On the other hand, ifr1 = r0 then
S10 + y = S00. For the same reasons as above the numberst0 = |N(000, x00) ∩ V11| and
t1 = |N(000, (x + y)01) ∩ V11| are independent of the choice ofx ∈ Zn \ {0}. Repeating the
above argument we conclude thatt1 = t0 and thereforeS11+ y = S01. By Lemma4.4, (i)
and (iii), it follows that X is isomorphic to the graphT (S00, S00, S01, S01). But this means
that the graphX admits an automorphism interchanging two vertices from different orbitsVi j

and fixing all other vertices, contradicting our assumption on the orbitsVi j being blocks of
imprimitivity of Aut X.

We can now assume that the action ofH on the orbitsVi j is simply primitive. Note thatH
contains a cyclic subgroup of ordern. Therefore (since cyclic groups of composite order are
B-groups [14, Theorem 25.3]), it follows thatn = p is aprime. The action ofH on each of the
four orbitsVi j is faithful for otherwise the kernel of the action ofH on one block would have
to be transitive on one of the adjacent blocks, giving rise to the isomorphismX ∼= K2p,2p. By
the Burnside theorem on groups of prime degree [13, Theorem 7.3], there exists a subgroupS
of Z∗p such thatfor each pairi, j ∈ Z2 the action ofH on Vi j is permutationally isomorphic
with a group{x 7→ ax+ b|a ∈ S,b ∈ Zp} of affine transformations of the fieldZp. Since all
the actions ofH on the setsVi j are equivalent there arey, z, w ∈ Zp, such that the stabilizers
of 000, y10, z01 andw11 in H coincide. By Lemma4.4, it suffices to consider the case where
y = z = w = 0. SinceH actsedge-transitively on all of the graphsX j

i , it follows that each
of Si j is a coset ofS. Let ai j ∈ Si j be such thatSi j = ai j S. Consider the setwise stabilizerG0
of V00 in G. Since the Sylowp-subgroupP = 〈π〉 is characteristic inH andH is of index 2
in G0, it follows that P is normal inG0. Then there exists a subgroupS′ of Z∗p, such that the
action ofG0 on V0i can be identified with the group{x0i 7→ (ax)0i + b|a ∈ S′,b ∈ Zp} of
affine transformations. Moreover, eitherS= S′ or S is of index 2 inS′.

We claim that there exists an involutionτ ∈ G0 fixing vertex 000. First we obtain an involu-
tion by taking an appropriate power of a nonidentity element inG0\H . Since|V00| is odd this
involution fixes a vertex inV00. Conjugating it by a power ofπ gives us the desired involution
τ . In view of the identification of the groupG0 with the above group of affine transformations
we conclude thatτ acts onV0i , i ∈ Z2, either trivially or according to the rulex0i

τ
= (−x)0i ,

x ∈ Zp. We distinguish two possibilities.
Suppose first thatτ ∈ H . Thenτ maps according to the rulexi j

τ
= (−x)i j , implying that

S = −S. By Lemma3.3 the setwise stabilizer ofV0i and V1 j in Aut X j
i actssimply tran-

sitively on each of these sets and must therefore coincide with the restriction ofH on X j
i .
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The mappingφ: X0
0 → X1

0, definedby the rulexφ00 = a−1
00 a01x00 andxφ10 = a−1

00 a01x11, is
a graph isomorphism. By composing it with someα ∈ G0 \ H we get an automorphism of
the graphX0

0 which can be extended to an automorphism ofX. By composing this automor-
phism withα−1, an extension ofφ to some element ofG0 is obtained. But thena−1

00 a01 ∈ S′

and thus(a−1
00 a01)

2
∈ S. Similarly (a−1

00 a10)
2
∈ S, (a−1

01 a11)
2
∈ S, and(a−1

10 a11)
2
∈ S. It

follows that all of the elementsa2
i j belong to the same coset ofS. Since the quotient group

Z
∗
p/S is cyclic there exists an elementb ∈ Z∗p such that each of the cosetsai j S is either

a00S or a00bS. Combining this fact with Lemma4.4, (ii), we deduce thatX is isomorphicto
T (a00S,a00S,a00bS,a00bS) which contradicts the assumption that the orbits ofπ are blocks
of imprimitivity for the group AutX.

Assume now thatτ /∈ H . Since P is normal inG0, we have thatτ normalizesπ and
therefore there existsr ∈ Zp such that eitherxτ10 = (−x + r )11 for all x ∈ Zp or xτ10 =

(x+r )11 for all x ∈ Zp. Sinceτ fixes 00i , i ∈ Z2, we have that for eachi ∈ Z2, τ interchanges
the setsN(00i )∩V10 andN(00i )∩V11. It follows that either−ai 0S+r = ai 1S, for all i ∈ Z2,
or ai 0S+ r = ai 1S, for all i ∈ Z2. Using the fact thatS is a subgroup ofZ∗p, we have in the
first case−ai 0S+ r S = ai 1S, i ∈ Z2, and in the second caseai 0S+ r S = ai 1S, i ∈ Z2.
In both casesr = 0 by Lemma2.3. We conclude that eitherai 0S= ai 1S, for all i ∈ Z2, or
−ai 0S= ai 1S, for all i ∈ Z2. Repeating now the above arguments (used in the previous four
paragraphs for the groupG0) for the groupG1, we end up with eithera0 j S = a1 j S, for all
j ∈ Z2, or−a0 j S= a1 j S, for all j ∈ Z2. Checking out each of the four possibilities for the
quantitiesai j , we have that eitherX = T (a00S,−a00S,a00S,−a00S), which is impossible
sinceX is not vertex-transitive, orX = T (a00S,a00S,−a00S,−a00S), contradicting the fact
that the orbits ofπ are blocks of imprimitivity for the group AutX. 2

In the particular case whenn is a prime, we have the following consequence of the above
theorem.

COROLLARY 4.11. There are no semisymmetric(p, π)-tetracirculants, p a prime, with the
four orbits ofπ being blocks of its automorphism group.

5. SEMISYMMETRIC GRAPHS OFORDER 4p

The results of the previous section (Corollaries4.8 and 4.11) together with the theorem
of Burnside[13, Theorem 7.3], which characterizes simply transitive group actions of prime
degree,enable us to classify semisymmetric graphs of order 4p, wherep is a prime. The first
proposition of this section is an observation that every such graph is a tetracirculant.

PROPOSITION5.1. If X is a semisymmetric graph of order4p, where p is a prime, then
X ∼= T (S00, S01, S10, S11) for some S00, S01, S10, S11 ⊆ Zp, such that|S00| = |S11| and
|S01| = |S10|.

PROOF. The automorphism groupG = Aut X of X has two orbits of length 2p which form
a bipartition ofV(X). Using [14, Theorem 3.4] we deduce that a Sylowp-subgroupP of G
has fourorbits A1, A2, B1 andB2 of lengthp, such that{A1∪ A2, B1∪ B2} is a bipartition of
X. If X was not a connected graph its connected components would be isomorphic semisym-
metric graphs. But this is not possible since there are no semisymmetric graphs of order a
proper divisor of 4p (see [8]). We can thus assume thatX is aconnected graph which implies
that for anyi, j ∈ {1,2}, there is an edge ofX joining Ai andB j .

To prove thatX is a tetracirculant it suffices to show thatP contains an element without
fixed vertices. Suppose thatP contains a nontrivial elementα fixing a vertex. With no loss of
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generality we may assume thatα fixes every vertex inA1 and acts regularly onB1. Conse-
quently,X[A1, B1] is isomorphic toK p,p, and sinceX is a regular graph, the same holds for
the graphX[A2, B2]. Furthermore, if one of the graphsX[Ai , B j ], i 6= j , is isomorphic to
K p,p, then both are. In this caseX ∼= D(Zp,Zp,Zp,Zp), contradicting the semisymmetry
of X by Lemma4.5. Consequently the graphsX[Ai , B j ], i 6= j , arenot isomorphic toK p,p

and henceα acts trivially onB2 and regularly onA2. There existsβ ∈ P acting regularly on
A1. SinceX[A1, B2] is not isomorphic toK p,p, it follows thatβ is not trivial onB2, and must
thus be regular onB2. Moreover, the actions ofβ on A1 and B1 are simultaneously either
regular or trivial and so eitherβ or αβ is an element ofP without fixed vertices. 2

We may now state the main result of this section.

THEOREM 5.2. A graph X of order4p, where p is a prime, is semisymmetric if and only
if one of the following holds.

(i) X is isomorphic to someT (S, S,aS,aS), where S is a nontrivial subgroup ofZ∗p,
a ∈ Z∗p \ S and a2 ∈ S; or

(ii) p = 5 and X is isomorphic toT ({0,2,3},{0,2,3},{0,1,4},{0,1,4}).

The following lemma will be used in the proof of the above theorem.

LEMMA 5.3. LetT = T (S00, S01, S10, S11) be a(p, π)-tetracirculant and U,W the orbits
of π . If all of Si j ⊆ Zp are of the same cardinality and the restriction(Aut T )W of Aut T to
W has 2-blocks, but no p-blocks, then S01 = S00+ y and S11 = S10+ y for some y∈ Zp.
Consequently, there are R, T ⊆ Zp such thatT is isomorphic toT (R, R, T, T).

PROOF. Let G = Aut T . Thereis y ∈ Zp such thatB = {010, y11} is a block ofGW. Then
B = {B0, . . . , Bp−1}, whereBx = {x10, (x + y)11} for eachx ∈ Zp, is a complete system of
imprimitivity of GW. Lemma3.4 implies that, for eachx ∈ Z∗p, thereexists an element ofG
which fixes both 010 andy11, and interchangesx10 with (x + y)11. It follows that

| − S00∩ (x − S00)| + | − S10∩ (x − S10)| = |N(010, x10)|

= |N(010, (x + y)11)| = | − S00∩ (x + y− S01)| + | − S10∩ (x + y− S11)|.

Lettingd = |Si j | and taking the sum over allx ∈ Z∗p, we obtain

2d2
− 2d= | − S00|

2
− | − S00| + | − S10|

2
− | − S10|

= | − S00||y− S01| − | − S00∩ (y− S01)| + | − S10||y− S11|

−| − S10∩ (y− S11)|

= 2d2
− | − S00∩ (y− S01)| − | − S10∩ (y− S11)|.

It follows that 2d= |−S00∩ (y−S01)|+|−S10∩ (y−S11)| and consequentlyS01 = S00+ y
andS11 = S10+ y. 2

PROOF OFTHEOREM 5.2. The fact that the graphs in (i) are semisymmetric is the content
of Proposition4.1, while the graph in (ii) is the bipartite complement of the semisymmetric
graphT ({1,−1},{1,−1},{2,−2},{2,−2}) of order20 and it may be seen that it is indeed
semisymmetric.

Suppose now thatX is a semisymmetric graphX of order 4p, where p is a prime. We
need to show thatX is isomorphic to one of the graphs in (i) and (ii) in the statement of
Theorem5.2. By Proposition5.1 we can identify the graphX with a (p, π)-tetracirculant
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V00 B V01

S00 S10

FIGURE 3. The quotient graphX/B.

T (S00, S01, S10, S11) for somesubsetsS00, S01, S10, S11 ⊆ Zp. There are no semisymmetric
graphs of orders 8 and 12 and precisely two nonisomorphic semisymmetric graphs of order
20 (see [10]). We can therefore assume thatp > 5 for the rest of the proof. As in the previous
section we letV00,V01,V10 andV11 denote the four orbits ofπ , and we letU andW denote
the respective unionsV00 ∪ V01 andV10 ∪ V11. Furthermore, letG = Aut X. The proof will
be carried out in two steps, each giving a further refinement of the information on the symbol
(S00, S01, S10, S11).

STEP 1. X ∼= T (R, R, T, T) for someR, T ⊆ Zp.
We show first thatG is simply transitive on bothU andW. Assume that the action ofG on

U is 2-transitive. Thenr = |N(000, x01)| = |S00∩(S10+x)|+|S01∩(S11+x)| is independent
of the choice ofx ∈ Zp. By Lemma3.1n

pr =
p−1∑
x=0

|N(000, x01)| = |S00||S10| + |S01||S11| = 2|S00||S10|,

and consequentlyS00 = Zp = S11 or S01 = Zp = S10. In both cases we get a contradiction
in view of Lemma4.5. Furthermore, since there are no simply primitive groups of degree 2p,
p ≥ 7, (see[4]), the above action is imprimitive.

If G has 2-blockson bothU andW then Corollary4.8 implies that the symbol ofX is of
thedesired form. Therefore, in view of Corollary4.11we may assume thatG hasp-blocks
on preciselyone of the setsU andW.

Assume thatGU hasp-blocks (and consequentlyGW has 2-blocks but nop-blocks). Then
we can easily show that the cardinalities of the setsS00, S01, S10 and S11 are all equal. By
Lemma5.3, we conclude thatX is isomorphicto T (R, R, T, T) for someR, T ⊆ Zp.

STEP 2. X ∼= T (S, S,aS,aS) whereS is a subgroup ofZ∗p, a ∈ Z∗p \ Sanda2
∈ S.

By Step1, we may identify the graphX with T (R, R, T, T) for someR, T ⊆ Zp. First,
sinceX is semisymmetric (and therefore regular and not vertex-transitive) we have 1< |R| =
|T | < p− 1. If the action ofG onU had blocks of length 2, then by Lemma5.3, X would be
isomorphicto the graphT (R, R, R, R) and hence not semisymmetric by Lemma4.5. There-
fore theaction ofG onU has blocks of lengthp. Also, the action ofG onU is unfaithful with
the corresponding kernelK isomorphic toZp

2 and acting onW with orbits Bx = {x10, x11}.
Let Y = X/B be the quotient graph ofX relative to the imprimitivity block systemB =
{Bx | x ∈ Zp} of GW, that is the graph of order 3p, obtained fromX by identifyingx10 with
x11 for eachx ∈ Zp (see Figure3). By Proposition4.7, every automorphism ofX induces an
automorphismof Y with all the elements ofK giving rise to the identity automorphism ofY.
It is therefore clear that, because of edge-transitivity ofX, the action ofḠ = G/K on Y is
also edge-transitive, having two orbits on vertices:U andB. The setsV00 andV01 are blocks
of the action ofḠ onU . Let H̄ denote the corresponding setwise stabilizer ofV00 andV01 in
Ḡ, fixing V00 andV01 setwise. The actions of̄H onB, V00 andV01 are faithful for otherwise
R= Zp = T , contradicting the semisymmetry ofX.

Suppose first that all of these actions are 2-transitive. If the actions ofH̄ onB and on one of
the setsV0i were equivalent, then|R| would be either 1 orp− 1, which is impossible. Since
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by the classification of simple groups there are only two inequivalent 2-transitive actions of a
given degree (see [4] or [5, Section 7.7]) we can conclude that the actions ofH̄ on V00 and
V01 are equivalent. Therefore there exists an elementy ∈ Zp, such thatH̄000 = H̄y01. We let
r0 = |N(000, x00)| = |R∩(R+x)|, r1 = |N(000, (x+y)01)| = |R∩(T+x+y)|. Subtracting
the two equations and taking the sum over allx ∈ Z∗p, we see that(p − 1)(r1 − r0) =

|R| − |R∩ (T + y)|. If r1 6= r0 then we must have|R| ≥ p− 1, contradicting the assumption
on R. If r1 = r0 we haveR= T + y and, by Lemma4.4, X is isomorphic toT (R, R, R, R)
andhence not semisymmetric, a contradiction.

By Lemma3.2, we may assume that the action ofH̄ is simplytransitive on one, and there-
fore on all of the setsV00, V01 andB. The argument below is just a slight modification of the
argument used in the proof of Theorem4.10. By the Burnside theorem on groups of prime
degree[13, Theorem 7.3] there exists a subgroupS of Z∗p such thatthe actions ofH̄ on V00,
V01 andB are permutationally isomorphic with a group{x 7→ ax + b|a ∈ S,b ∈ Zp} of
affine transformations of the fieldZp. Therefore there arey, z ∈ Zp, such that the stabilizers
of 000, y01, Bz in H̄ coincide. By Lemma4.4, it suffices to consider the casey = 0 = z.
Because ofedge-transitivity of the action of̄H on the graphsY[V0 j ,B], j ∈ Z2, it follows
that bothR andT are cosets ofS. By Lemma4.4, we can assume thatR= SandT = aSfor
somea ∈ Z∗p \ S. To complete the proof of Step2 we need to show thata2 belongs toS.

Let π̄ denotethe automorphism ofY induced by the elementπ of order p with orbitsVi j ,
i, j ∈ Z2. Since P̄ = 〈π̄〉 is characteristic inH̄ and the latter is normal inḠ1 = Ḡ, we
have thatP̄ is normal inḠ. It follows that there exists a subgroupS′ of Z∗p such that the
action ofḠ onB can be identified with the group{Bx 7→ Bax+b|a ∈ S′,b ∈ Zp} of affine
transformations. Moreover, eitherS= S′ or S is of index 2 inS′.

Using a similar argument as in the proof of Theorem4.10we obtain an involution̄τ ∈ Ḡ
fixing thevertexB0 acting onB either trivially or according to the ruleBx 7→ B−x, x ∈ Zp.
We distinguish two possibilities.

If τ̄ ∈ H̄ thenτ̄ interchangesBx with B−x and soS= −S. As in the proof of Theorem4.10,
using Lemma3.3, we conclude that every automorphism ofY[V00,B] can beextended to an
automorphism ofY. The mappingφ : Y[V00,B] → Y[V01,B], defined by the rulexφ00 =

(ax)01, Bφx = Bax, for all x ∈ Zp, is a graph isomorphism, which can be extended to an
element ofḠ. But thena ∈ S′ and soa2

∈ S.
Suppose now that̄τ /∈ H̄ . Note thatτ̄ normalizesπ̄ . Therefore there existsr ∈ Zp such

that τ̄ acts onU by interchangingx00 either with (−x + r )01 for eachx ∈ Zp or with
(x + r )01 for eachx ∈ Zp. Recall thatτ̄ fixes B0 and so it must interchange the sets of
neighborsN(B0) ∩ V00 and N(B0) ∩ V01. It may be deduced that eitherS+ r = −aS or
−S+ r = aS. Multiplying these two equalities bySand using Lemma2.3we see thatr = 0,
and consequentlyaS= −Sand soa2

∈ S, as required. 2

REMARK 5.4. Theorem5.2solves the isomorphism problem for semisymmetric graphs of
order 4p, p a prime. Namely, for a given primep ≥ 7 and a positive integerd there exists
at most one semisymmetric graph of order 4p and valencyd. More precisely, such a graph
exists (and is unique) if and only ifd is an even number dividingp− 1.

While preparing the final version of this article it came to our notice that these graphs were
independently found by Du and Xu [7]. Using the classification of finite simple groups they
prove their existence as part of a larger family of semisymmetric graphs of order 2pq, where
p,q are primes. However, they provide neither the explicit labeling for these graphs nor their
connection to the original Folkman’s construction.
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