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Abstract

Given a controllable system defined by a pair of matrices(A,B), we investigate the geom-
etry of the set of controllability subspaces. This set is a subset of the set of(A,B)-invariant
subspaces. We prove that, in fact, it is a stratified submanifold and we compute its dimension.
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Introduction

Given a controllable time-invariant multivariable system

ẋ = Ax + Bu

with A ∈ Kn×n andB ∈ Km×n (K denotes the field of real or complex numbers), a
subspaceS of Kn is called acontrollability subspaceif S has the form (following
the notation of [11])

S = 〈A + BF |ImBG〉
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with F ∈ Km×n and G ∈ Km×l . We recall that〈A + BF |ImBG〉 = ImBG +
Im(A + BF)BG + · · · + Im(A + BF)n−1BG. SinceS is (A + BF)-invariant,S
is an(A,B)-invariant subspace. Therefore, the set of controllability subspaces is a
subset of the set of(A,B)-invariant subspaces.

Let Gd(K
n) denote the Grassmann manifold ofd-dimensional linear subspaces

of Kn. We define

Invd(A,B) = {
S ∈ Gd(K

n)|S is (A,B)-invariant
}
,

Ctrd(A,B) = {
S ∈ Gd(K

n)|S is a controllability subspace
}
.

We have that Ctrd(A,B) ⊂ Invd(A,B).
Controllability and(A,B)-invariant subspaces play an important role in geo-

metric control theory (significant references are [6,10,11]). The geometry of the
set Invd(A,B) has been a subject of interest in the last few years (see [2–5,7–9]).
However, most of the above references deal with the dual case, that is to say, the set
of (C,A)-invariant subspaces. Since the mapS 
→ S⊥ is a bijection between the
set of(A,B) and(B t, At)-invariant subspaces, the properties of the set of(B t, At)-
invariant subspaces can be transferred in a natural way to the set of(A,B)-invariant
subspaces. In particular, from [4,5], where the set of(C,A)-invariant subspaces is
stratified by fixing the Brunovsky indices of the restriction of(C,A), one can obtain
a stratification of Invd(A,B).

Nevertheless, this stratification has no relation with controllability subspaces,
which are the object of our study. Here we introduce a new stratification of Invd(A,B)

according to the Brunovsky form of a restriction(A,B) defined directly from the
pair (A,B). Since this restriction need not be controllable, the corresponding strati-
fication is not finite, in general. However, it is the suitable restriction when we deal
with controllability subspaces. In fact, we prove that Ctrd(A,B) is the set of(A,B)-
invariant subspaces of Invd(A,B) such that the restriction of(A,B) to each one of
them is controllable. Therefore, the introduced stratification of Invd(A,B) induces a
finite stratification of Ctrd(A,B) defined by

Ctrd(A,B) =
⋃

(A,B) controllable

Inv(A,B)(A,B) (see Section 2).

We prove that each stratum Inv(A,B)(A,B) is a smooth manifold by describing it as
an orbit spaceM/G,M being a matrix space andG a Lie group acting onM. The
dimension ofM/G is obtained by describing the elements ofM andG.

For convenience, we denote a basis(u1, . . . , up) simply byu if no confussion is
possible. Then iff is a linear map,f (u) means the family(f (u1), . . . , f (up)). If u
is a set of vectors,[u] means the subspace spanned byu.

We will assume throughout the paper that(A,B) is a controllable pair andB a
full rank matrix.
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1. On the restriction of (A, B) to an (A, B)-invariant subspace

The concept of restriction of a pair(A,B) to an(A,B)-invariant subspace has
been studied in [1]. We introduce in this section a different approach which is more
convenient for the applications in Sections 2 and 3. In order to define this restriction
we associate to the pair(A,B) the pair formed by the linear mapf :Kn+m → Kn

defined byf (x, y) = Ax + By and the natural projection mapπ :Kn+m → Kn de-
fined byπ(x, y) = x. Conversely, if for each pair of linear maps(f, π) from an
n + m-dimensional vector spaceK to an n-dimensional vector spaceF with π

surjective we take a basis ofK of the form(u, v) wherev is a basis of the kernel
of π andπ(u) is a basis ofF, then the matrix off with regard to these bases, is
a two block matrix(AB) with A ∈ Kn×n andB ∈ Kn×m. Notice that the matrix of
π with regard to the above bases is(I0). We call(A,B) a matrix representationof
(f, π). In other words,(A,B) is amatrix representationof (f, π) if and only if there
exist isomorphismsφ:K → Kn+m andψ :F → Kn such thatf = ψ−1(AB)φ and
π = ψ−1(I0)φ.

We have the following proposition:

Proposition 1.1. Let (f, π) be as above and(A,B) a matrix representation of
(f, π). Then a pair(A′, B ′) is a matrix representation of(f, π) if and only if(A′, B ′)
is feedback equivalent to(A,B). In particular, there exists a matrix representation
of (f, π) in the Brunovsky canonical form.

Proof. Let (A,B) be the matrix representation of(f, π) with regard to the bases
(u, v) andπ(u) (v is a basis of kerπ). Let (u′, v′) be a basis ofK with v′ a basis
of ker π . The components of the vectors of(u′, v′) with regard to(u, v) arranged by
columns form a matrix of the form(

S 0
F T

)
.

Notice that the columns ofS are the components of the vectors ofπ(u′) with regard
to π(u).

Then (A′, B ′) is the matrix representation of(f, π) with regard to(u′, v′) and
π(u′) if and only if

(AB)

(
S 0
F T

)
= S(A′B ′),

which is equivalent toA′ = S−1AS + S−1BF andB ′ = S−1BT , as we wanted to
prove. �

Since a subspaceS ∈ Kn is (A,B)-invariant if and only if it is(A′, B ′)-invariant
for any pair(A′, B ′) feedback equivalent to(A,B), we can define this notion in terms
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of the pair of linear maps(f, π) associated to(A,B). More precisely, we have the
following proposition.

Proposition 1.2. Let (f, π) be defined byf (x, y) = Ax + By and π(x, y) = x.
Then a subspaceS ofKn is (A,B)-invariant if and only ifS ⊂ π(f−1(S)).

Proof. f−1(S) = {(x, y)|Ax + By ∈ S}. Hence,π(f−1(S) = {x ∈ Kn such that
there existsy ∈ Km with Ax + By ∈ S}. Therefore,S ⊂ π(f−1(S)) if and only
if A(S) ⊂ S + ImB, that is to say, if and only ifS is an(A,B)-invariant subspace.

�

Given a pair of linear maps(f, π) as above, every subspaceS of Kn defines two
pairs of linear maps(f , π) and(f̃ , π̃) which render the following diagram commu-
tative

f , π : π−1(S) ∩ f−1(S) → S
∩ ∩

f, π : Kn+m → Kn

↓ ↓
f̃ , π̃ : Kn+m/(π−1(S) ∩ f−1(S)) → Kn/S,

where the vertical arrows are the natural projections,f andπ are the restrictions
of f andπ to π−1(S) ∩ f−1(S) andf̃ , π̃ , the corresponding maps induced on the
quotients. Remark that, whilẽπ is always surjective,π does not need to be surjective.

Applying Proposition 1.2, we have that ifS is (A,B)-invariant, thenπ is surjec-
tive (and conversely). Therefore, each(A,B)-invariant subspace defines two pairs
of linear maps(f , π) and (f̃ , π̃) of the same type as(f, π). We call (f , π) the
restriction of (f, π) and(f̃ , π̃) the quotient induced map. Since the matrix repre-
sentations of(f , π) and(f̃ , π̃) are feedback equivalent, respectively, it makes sense
to define the Brunovsky indices of(f , π) and the Brunovsky indices of(f , π) as the
Brunovsky indices of any matrix representation(A,B) of these pairs.

Remark 1.3. Let (u, v,w, y) be a basis ofKn+m withw a basis of kerπ ∩ π−1(S)

∩ f−1(S) = ker π ∩ f−1(S), (w, y) a basis of kerπ and(u,w) a basis ofπ−1(S)

∩ f−1(S). Thenπ(u) is a basis ofS, (π(u), π(v)) is a basis ofKn and the matrix
representation of(f, π) with respect to these bases is

(
A X

0 Ã

∣∣∣∣ B Y

0 B̃

)
.

It can be easily seen that(A,B) and(Ã, B̃) are matrix representations of(f , π) and
(f̃ , π̃), respectively.
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We now define a decomposition of Invd(A,B) according to the Brunovsky indices
of (f , π).

Definition 1.4. Let (f, π) be the pair of linear maps defined byf (x, y) = Ax + By

andπ(x, y) = x. Let (A,B) with A ∈ Kd×d andB ∈ Kd×r be a pair in Brunovsky
canonical form. We define

Inv(A,B)(A,B)=
{
S ∈ Invd(A,B)|(f , π) has(A,B)

as matrix representation
}
.

We have that

Invd(A,B) =
⋃
(A,B)

Inv(A,B)(A,B).

In [1] conditions in order to ensure that Inv(A,B)(A,B) /= ∅ are given (see Section
3). We remark that, in contrast with the restriction defined in the dual case, even when
(A,B) is controllable, the pair(A,B) need not be so. Consider, for example

(A,B) =
(
λ 1
0 0

∣∣∣∣ 0 0
0 1

)
, (A,B) = (λ, 0), (Ã, B̃) = (0, 1).

(A,B) and(Ã, B̃) are controllable, but(A,B) is not. Therefore the above union is
infinite in general. In the next section, we prove that the controllability of(A,B)

characterizes the controllability subspaces.

2. The set of controllability subspaces

Let (f, π) be, as in the previous section, the pair of linear maps defined by
f (x, y) = Ax + By andπ(x, y) = x,S ∈ Invd(A,B) and(f , π) the restriction of
(f, π),

f , π :π−1(S) ∩ f−1(S) → S.

Notice that from Proposition 1.1 if a matrix representation of(f , π) is a controllable
pair of matries, any other matrix representation of(f , π) is also controllable. We say
then that(f , π) is controllable. We prove the following theorem.

Theorem 2.1. With the above notation,S is a controllability subspace with regard
to (A,B) if and only if(f , π) is controllable.

Proof. We recall the notation of Remark 1.3:(u, v,w, y) is a basis ofKn+m with
w a basis of kerπ ∩ f−1(S), (w, y) a basis of kerπ = Km and(u,w) a basis of
π−1(S) ∩ f−1(S). Then(π(u), π(v)) is a basis ofKn andπ(u) is a basis ofS.
Let P be then × n-matrix having the vectors(π(u), π(v)) as columns andQ the
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m × m-matrix whose columns are the vectors(w, y). We remark thatP−1(S) is the
subspace spanned by the firstd vectors of the standard basis ofKn.

Assume first thatS is a controllability subspace, that is to say,S =
〈A + BF |ImBG〉. Taking into account thatS is (A + BF)-invariant, the matrix
of A + BF with regard to the basis(π(u), π(v)) has the form

Â = P−1(A + BF)P =
(
A X

0 Ã

)
,

whereA has sized × d. Likewise, the matrix ofB with regard to the basis(w, y)
and(π(u), π(v)) has the form

B̂ = P−1BQ =
(
B Y

0 B̃

)
,

whereB has sized × l with l = dimB−1(S). We have that

(ÂB̂) = P−1(AB)

(
P 0
FP Q

)
so that, according to Proposition 1.1 and Remark 1.3,(Â, B̂) and(A,B) are matrix
representations of(f, π) and(f , π), respectively.

We tackle now the proof that(A,B) is a controllable pair. We have that

P−1(S)=P−1〈A + BF | ImBG〉
=〈Â | Im B̂G〉
= Im (B̂G|ÂB̂G| · · · |Ân−1B̂G).

LetG = (G
G̃

)
. We have that

B̂G =
(
BG + YG̃

B̃G̃

)
.

Since ImB̂G ⊂ P−1S, we have thatB̃G̃ = 0. But B̂ has full rank andn − d �
m − l; henceB̃ is injective andG̃ = 0. Therefore,

(B̂G|ÂB̂G| · · · |Ân−1B̂G) =
(
B AB · · · A

n−1
B

0 0 0 0

)
diag(G, . . . ,G).

Then, dimS = d implies that rank(B|AB| . . . |Ad−1
B) = d, that is to say, the pair

(A,B), which is a matrix representation of(f , π), is controllable.
Conversely, assume that(f , π) is controllable. SinceS is an (A,B)-invariant

subspace(π is surjective) there exists a feedbackF such thatS is (A + BF)-in-
variant. We consider the matrix representations of(f, π) and(f , π) by the matrices
(Â, B̂) and(A,B) as before. SinceP−1(S) is the subspace spanned by the firstd

elements of the standard basis ofKn, the controllability of(A,B) implies that

P−1(S) = Im

(
B AB · · · A

n−1
B

0 0 0 0

)
.
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On the other hand, it is easily checked that if

T = diag

((
Il

0

)
, n. . .,

(
Il

0

))
one has that(

B AB · · · A
n−1

B

0 0 0 0

)
= (B̂|ÂB̂| . . . |Ân−1B̂)T .

Then, if we denoteH = diag(Q, n. . .,Q),

S = ImP(B̂Q−1|ÂP−1P B̂Q−1| . . . |Ân−1P−1P B̂Q−1)HT ,

and definingG = Q
(
Il
0

)
we have thatS = 〈A + BF |ImBG〉; thus the proof of the

theorem is completed. �

Remark 2.2. Theorem 2.1 implies that

Ctrd(A,B) =
⋃

(A,B) controllable

Inv(A,B)(A,B),

which is a finite union. In the following section, we show that each set Inv(A,B)(A,B)

is a smooth manifold.

3. Orbit space structure of the strata

In this section we prove that the decomposition (1) is a finite stratification of
Ctrd(A,B).

Let (A,B) and(A,B) be controllable pairs whereA ∈ Kn×n, B ∈ Kn×m,A ∈
Kd×d andB ∈ Kd×l . We assume without loss of generality that(A,B) and(A,B)
are in the Brunovsky canonical form. We denote byk = (k1, . . . , kr ), k1 � · · · �
kr � 0 with k1 + · · · + kr = n andh = (h1, . . . , hs), h1 � · · · � hs � 0 with h1 +
· · · + hs = d the controllability indices of(A,B) and(A,B), respectively. That is
to say,A = diag{Nk1, . . . , Nkr } beingNi the standard upper nilpotenti × i ma-
trix, B = diag{Ek1, . . . , Ekr } beingEi = (0, . . . ,0, 1)t ∈ Kki and analogously,A =
diag{Nh1, . . . , Nhs } andE = diag{Eh1, . . . , Ehs }.

We also assume thatk andh satisfy the following compatibility conditions given
in [1] (in order to ensure that Inv(A,B)(A,B) is not empty). Letr = (r1, . . . , rk) and
s = (s1, . . . , sh) be the conjugate (or dual) partitions ofk andh, respectively. Then
the conditions are:
1. ri − si � r1 − s1, i = 1, . . . , k, wheresi = 0 for i � h + 1.

2.
∑hp

j=1(rj − sj − p) � 0, wherehp = max{i|ri − si � p}, 0 � p � r1 − s1.
The next results depend on the following lemmas.
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Lemma 3.1. Let (A,B) ∈ Kn×n × Kn×m and (A,B) ∈ Kd×d × Kd×l Brunovsky
pairs of matrices andX ∈ Kn×d . Then the following conditions are equivalent:
1.

{
(In − BB t)XB = 0,
(In − BB t)XA = AX.

2. There exist matrices Y and Z such that

(AB)

(
X 0
Y Z

)
= X(AB).

Besides, if the above conditions hold, we have thatY = B tXA andZ = B tXB.

Proof. Condition 2 implies that{
BZ = XB,

BY = XA − AX.

Now notice thatB tB = I andB tA = 0 because(A,B) is in the Brunovsky canonical
form. Then multiplying the above equalities byB t on the left we obtain

Z = B tXB and Y = B tXA.

ReplacingY andZ in the above equalities, condition 1 follows immediately.
Conversely, takingZ = B tXB andY = B tXA it is clear that (1) implies (2). �

Lemma 3.2. With the notation of the previous lemma, a matrix X is a solution of
Lemma3.1(1) if and only ifX = (Xij )1�i�r,1�j�s with

Xi,j =


x1
i,j · · · x

hj−ki+1
i,j 0 0 · · · 0

0 x1
i,j · · · x

hj−ki+1
i,j 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 x1

i,j · · · x
hj−ki+1
i,j


if ki � hj or 0 otherwise.

Proof. We partitionX into blocksXi,j of sizeki × hj , 1 � i � r, 1 � j � s. An
easy computation shows that(In − BB t)XB = 0 is equivalent to

JiXi,jEj = 0,

1 � i � r, 1 � j � s, where

Ji =


1 0 · · · 0

· · · · · · · · · · · ·
0 · · · 1 0
0 · · · 0 0

 .
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So, ifXi,j = (xp.q)1�p�ki ,1�q�hj we conclude from the above equality thatx1,hj =
· · · = xki−1,hj = 0, that is to say,Xi,j has the form

Xi,j =


∗ · · · ∗ 0
· · · · · · · · · · · ·
∗ · · · ∗ 0
∗ · · · ∗ ∗

 .

Proceeding analogously, we see that(In − BB t)XA = AX is equivalent to

JiXi,jNj = NiXi,j ,

1 � i � r, 1 � j � s, so thatXi,j satisfies
x2,1 · · · x2,hj
· · · · · · · · ·
xki ,1 · · · xki ,hj

0 · · · 0

 =


0 x1,1 · · · x1,hj−1

· · · · · · · · · · · ·
0 xki−1,1 · · · xki−1,hj−1

0 · · · · · · 0

 ,

where, according to (1),x2,hj = · · · = xki ,hj = x1,hj−1 = · · · = xki−1,hj−1 = 0.
Now the lemma follows easily. �

Corollary 3.3. With the above notation, if X has full rank, thenB tXB has full rank,
too.

Proof. Note thatB tXB is the matrix whose entries are the right-bottom corner of
the blocksXi,j of X. Since the entries of the last column ofXi,j are all 0 with the
possible exception of the last one, we have that ifX has full rank, thenB tXB has
also full rank. �

The following theorem characterizes the elements of Inv(A,B)(A,B).

Theorem 3.4. S ∈ Inv(A,B)(A,B) if and only ifS = ImX, where X is a full rank
matrix satisfying{

(In − BB t)XB = 0,
(In − BB t)XA = AX.

Proof. We have thatS ∈ Inv(A,B)(A,B) if and only if there exist matricesX, Y,Z
with S = ImX making the following diagram commutative:

Kd+l (A,B)→ Kd

↓
(
X 0
Y Z

)
X ↓

Kn+m (A,B)→ Kn

,
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where

X and

(
X 0
Y Z

)
have full rank. Notice that

Im

(
X 0
Y Z

)
= π−1(S) ∩ f−1(S).

Then, applying Lemma 3.1 and Corollary 3.3 the theorem follows.�

The above theorem leads to the following definition.

Definition 3.5. Given (A,B) ∈ Kn×n × Kn×m and (A,B) ∈ Kd×d × Kd×l Bru-
novsky pairs of matrices, we define

M(A,B)(A,B) = {
X ∈ Kn×d |(In − BB t)XB = 0 and(In − BB t)XA = AX

whereX has full rank
}

G(A,B) = M(A,B)(A,B)

If no confusion is possible, we denoteM(A,B)(A,B) andG(A,B) by M andG, re-
spectively.

We remark thatM is a submanifold ofKn×m. In fact, it is an open subset of a
linear subvariety ofKn×m. We have the following proposition.

Proposition 3.6. With the above notation we have:
1. G is a Lie subgroup of Gl(d) acting freely onM on the right by matrix multipli-

cation.
2. The orbit spaceM/G has a differentiable structure such that the projection

π :M → M/G is a submersion.
3. dimM/G = dimM − dim G

Proof. Let X,X′ ∈ G. According to Lemma 3.1 this is equivalent to the existence
of Y,Z andY ′, Z′ such that

(AB)

(
X 0
Y Z

)
= X(AB), (AB)

(
X′ 0
Y ′ Z′

)
= X′(AB)

andX,X′, B t
XB = Z,B

t
X′B = Z′ have full rank.

Since(
X 0
Y Z

)(
X′ 0
Y ′ Z′

)
=
(

XX′ 0
YX′ + ZY ′ ZZ′

)
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has full rank and verifies

(AB)

(
XX′ 0

YX′ + ZY ′ ZZ′
)

= XX′(AB),

it follows thatXX′ ∈ G. By a similar reasoning we conclude that ifX ∈ G, then
X−1 ∈ G. Obviously,Id ∈ G. Hence,G is a Lie subgroup ofGl(d).

Let T ∈ G andX ∈ M. The proof thatXT ∈ M follows the same pattern as
above and is left to the reader. Finally ifXT = X with X ∈ M andT ∈ G, then
sinceX has full rank,T = Id . So, (1) is true.

The proofs of (2) and (3) are the same as those given in Theorem 4.5 of [4].�

We now state the main result of this section.

Theorem 3.7. The mapφ:M → Grd(K
n) defined byX 
→ ImX induces a sub-

mersionφ̃ : M/G → Grd(K
n) having imageInv(A,B)(A,B). Moreover, with the

differentiable structure induced byφ, Inv(A,B)(A,B) is a submanifold ofGrd(Kn)

of dimensiondimM − dimG.

Proof. The image ofφ is Inv(A,B)(A,B) according to Theorem 3.4. Moreover,φ̃ is

well defined because ImX = ImXG for any matrixG of G. For the injectivity ofφ̃
applying Lemma 3.1, we have that ifX ∈ M andXG ∈ M with G ∈ Gl(d), then
G ∈ G. The rest of the proof is similar to that of [5]. �

Notice that from the above theorem we have that

Inv(A,B)(A,B)∼=M(A,B)(A,B)/G(A,B)

In Lemma 3.2 the elements ofM(A,B)(A,B) andG(A,B) are described in terms of
h andk (with the additional full rank condition). Hence, taking into account that the
number of free parameters inXi,j ishj − ki + 1 if ki � hj and 0 otherwise, we have
the following proposition.

Proposition 3.8.

dim Inv(A,B)(A,B)=
∑

1�j�s,1�i�r
sup{hj − ki + 1, 0}

−
∑

1�j,i�s
sup{hj − hi + 1, 0}

Example 3.9. Let k = (4, 3, 3, 1, 1) andh = (3, 3, 1). Then the strata of control-
lability subspaces Inv(A,B)(A,B) are represented by the matrices
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
x1 0 0 x9 0 0 0
0 x1 0 0 x9 0 0
0 0 x1 0 0 x9 0
x2 0 0 x10 0 0 0
0 x2 0 0 x10 0 0
0 0 x2 0 0 x10 0
x3 x4 x5 x11 x12 x13 x17

x6 x7 x8 x14 x15 x16 x18


and dim Inv(A,B)(A,B) = 7.

In a similar way to [9] one has another matrix representation of a controllability
subspace in terms of the conjugate partitions ofk andh obtained by reordering the
bases ofKn andS. As in [9], this representation is more suitable to obtain a canon-
ical representative of each controllability subspace (see Example 3.11). Besides, a
more compact formula for the dimension of Inv(A,B)(A,B) can be obtained.

We index the usual basisv of Kn by (v1,1, . . . , v1,k1, . . . , vr,1, . . . , vr,kr ) (we re-
call that(A,B) is in the Brunovsky canonical from andki are the size of the nilpotent
blocks). Given a matrixX ∈ M(A,B)(A,B), its columns form a basis of the sub-
spaceS = ImX ∈ Inv(A,B)(A,B). Let u = (u1,1, . . . , u1,h1, . . . , us,1, . . . us,hs ) be
this basis. We reorder the bases ofKn andS in the following way (see Example
3.11). If r ands are the dual partitions ofk andh, respectively,

v 
→ v = (v1,k1, . . . , vr1,kr , . . . , v1,k1−i , . . . , vri+1,kr−i , . . . , v1,1, . . . , vrk,1)

u 
→ u = (u1,h1, . . . , us1,hs , . . . , u1,h1−i , . . . , usi+1,hs−i , . . . , u1,1, . . . , ush,1).

We denote byY the matrix whose columns are the components ofu with regard to
v. We have the following proposition, whose proof is similar to that of (2.5) [9].

Proposition 3.10. Y can be partioned into blocksYi,j ∈ Kri×sj , 1 � i � k, 1 �
j � h with
1. Yi,j = 0 if i > j

2. Y1,j = (
Z
j
α

)
1�α�h−j+1, whereZj

α is a r1 × (sh−α+1 − sh−α+2)-matrix with the
first rh−j−α+3 rows zero(1 � j � h).

3. Yi+1,j+1 is obtained fromYi,j by removing the lastri − ri+1 rows and the last
sj − sj+1 columns.

We denote byM∗(r, s) the matricesY described in Proposition 3.10 andG∗(s) =
M∗(s, s). We have that the mapY 
→ V YU−1 with U andV being the permuta-
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tion matrices corresponding to the rearrangement of the bases that we have consid-
ered is a bijection betweenM∗(r, s) andM(k, h). Moreover, we can easily see that
G∗(s) acts onM∗(r, s), and we have a similar proposition to Proposition 3.6 for
M∗(r, s)/G∗(s) so that the mapY 
→ V YU−1 induces a diffeomorphism

M∗(r, s)/G∗(s)∼=M(k, h)/G(h).

Example 3.11. As in Example 3.9, considerk = (4, 3, 3, 1, 1) andh = (3, 3, 1),
so thatr = (5, 3, 3, 1) ands = (3, 2, 2). We arrange the basis ofK12 andS(∼=K7)

in the following way:

v1,1, v1,2, v1,3, v1,4
v2,1, v2,2, v2,3,

v3,1, v3,2, v3,3,

v4,1,

v5,1


→
v1,4, v2,3, v3,3, v4,4, v5,1,

v1,3, v2,2, v3,2,

v1,2, v2,1, v3,1,

v1,1

u1,1, u1,2, u1,3,

u2,1, u2,2, u2,3,

v3,1


→
u1,3, u2,3, u3,1,

u1,2, u2,2,

u1,1, u2,1

Then, with regard to the new bases, the matrix of Example 3.9 is

Y =



0 0 0 0 0 0 0
x1 x9 0 0 0 0 0
x2 x10 0 0 0 0 0
x5 x13 x17 x4 x12 x3 x11
x8 x16 x18 x7 x15 x6 x14

0 0 0 0 0 0 0
0 0 0 x1 x9 0 0
0 0 0 x2 x10 0 0
0 0 0 0 0 0 0
0 0 0 0 0 x1 x9
0 0 0 0 0 x2 x10

0 0 0 0 0 0 0


Remark 3.12. Notice that in this representation, all the parameters are in the upper
blocks ofY and the remaining blocks are obtained from the previous ones by remov-
ing rows and columns according to Proposition 3.10(3). Moreover,Y1,1 = B tXB,
soY1,1 has full rank (see Proposition 3.2 and Corollary 3.3). Due to this and to the
form of the blocks ofY , one can eliminate parameters by making left elementary
transformations in a similar way to [9]. The next example shows how a canoncial
representative of the controllability subspace representated byY can be obtained, as
in [9].
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Example 3.13. We consider the matrix representation of the controllability sub-
spaces of the previous example. Then making linear combinations of its columns
one can easily check that we can reduce this matrix to the following matrix:

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
x y z t u v w

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0



,

which is of the form given in Proposition 3.10. We remark that the number of param-
eters of the above matrix coincide with the dimension of Inv(A,B)(A,B) and, in fact,
we can show that it parametrizes an open dense set of Inv(A,B)(A,B) in a similar
way of [9].

We end this section with a more compact formula for the dimension of
Inv(A,B)(A,B) in terms of the conjugate partitions ofk andh, r ands. This formula
is obtained by counting the parameters ofM∗(r, s) andG∗(s).

Corollary 3.14. With the above notation, we have

dim Inv(A,B)(A,B) =
h∑
i=1

si((r1 − s1) − (ri+1 − si+1)).
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