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Abstract

Given a controllable system defined by a pair of matricesB), we investigate the geom-
etry of the set of controllability subspaces. This set is a subset of the ¢at 8f)-invariant
subspaces. We prove that, in fact, it is a stratified submanifold and we compute its dimension.
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Introduction

Given a controllable time-invariant multivariable system
X = Ax + Bu

with A € K" andB € K"™*" (K denotes the field of real or complex numbers), a
subspace” of K" is called acontrollability subspacé & has the form (following
the notation of [11])

% = (A+ BF|Im BG)
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with F € K™ and G € K"*!. We recall that(A + BF|Im BG) = Im BG +
IM(A+ BF)BG + ---+Im(A + BF)""1BG. Since is (A + BF)-invariant,.¥
is an(A, B)-invariant subspace. Therefore, the set of controllability subspaces is a
subset of the set afA, B)-invariant subspaces.

Let G4(K™) denote the Grassmann manifolddtlimensional linear subspaces
of K". We define

Invg(A, B) = {% € G4(K™)|.¥ is (A, B)-invariant,
Ctry(A, B) = | € G4(K")|.¥ is a controllability subspade

We have that Cir(A, B) C Inv,(A, B).

Controllability and (A, B)-invariant subspaces play an important role in geo-
metric control theory (significant references are [6,10,11]). The geometry of the
set Iny; (A, B) has been a subject of interest in the last few years (see [2-5,7-9]).
However, most of the above references deal with the dual case, that is to say, the set
of (C, A)-invariant subspaces. Since the m#p— . is a bijection between the
set of (A, B) and(B!, AY-invariant subspaces, the properties of the sBof A')-
invariant subspaces can be transferred in a natural way to the &t Bf-invariant
subspaces. In particular, from [4,5], where the set@fA)-invariant subspaces is
stratified by fixing the Brunovsky indices of the restriction(6f A), one can obtain
a stratification of Iny(A, B).

Nevertheless, this stratification has no relation with controllability subspaces,
which are the object of our study. Here we introduce a new stratification pf AnB)
according to the Brunovsky form of a restriction, B) defined directly from the
pair (A, B). Since this restriction need not be controllable, the corresponding strati-
fication is not finite, in general. However, it is the suitable restriction when we deal
with controllability subspaces. In fact, we prove thatC#, B) is the set of A, B)-
invariant subspaces of IpvA, B) such that the restriction @fd, B) to each one of
them is controllable. Therefore, the introduced stratification gf (Av B) induces a
finite stratification of Ct§(A, B) defined by

Ctry(A, B) = U Inv s 5,(A, B) (see Section2
(A, B) controllable

We prove that each stratum lavg, (A, B) is a smooth manifold by describing it as
an orbit space# /%, ./ being a matrix space ari@ a Lie group acting on#Z. The
dimension of/# /% is obtained by describing the elements4fand¥%.

For convenience, we denote a bagis, .. ., u,) simply byu if no confussion is
possible. Then iff is a linear mapf (1) means the family f (u1), ..., f(up)). If u
is a set of vectordu] means the subspace spanned:by

We will assume throughout the paper thidt B) is a controllable pair an® a
full rank matrix.
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1. Ontherestriction of (A, B) toan (A, B)-invariant subspace

The concept of restriction of a pair, B) to an(A, B)-invariant subspace has
been studied in [1]. We introduce in this section a different approach which is more
convenient for the applications in Sections 2 and 3. In order to define this restriction
we associate to the paid, B) the pair formed by the linear map: K**" — K"
defined byf (x, y) = Ax + By and the natural projection map K" — K" de-
fined by 7 (x, y) = x. Conversely, if for each pair of linear magg, =) from an
n + m-dimensional vector spac#” to ann-dimensional vector spac& with =
surjective we take a basis of” of the form (u, v) wherev is a basis of the kernel
of = andx () is a basis of#, then the matrix off with regard to these bases, is
a two block matrix(AB) with A € K™*" andB € K*"™. Notice that the matrix of
7 with regard to the above bases(i€). We call (A, B) a matrix representatiomf
(f, 7). In other words(A, B) is amatrix representationf (£, =) if and only if there
existisomorphisme: # — K"t" andy: # — K" such thatf = ¢ ~1(AB)¢ and
n =y H10)¢.

We have the following proposition:

Proposition 1.1. Let (f, 7) be as above andA, B) a matrix representation of
(f, 7). Then apainA’, B’) is a matrix representation dff, =) if and only if(A’, B)

is feedback equivalent o4, B). In particular, there exists a matrix representation
of (f, 7) in the Brunovsky canonical form.

Proof. Let (A, B) be the matrix representation of, =) with regard to the bases
(u, v) andrw (1) (v is a basis of kerr). Let (u’, v') be a basis of#” with v’ a basis
of ker =. The components of the vectors(@f, v’) with regard to(u, v) arranged by
columns form a matrix of the form

S 0

F T)°
Notice that the columns of are the components of the vectorsmi:’) with regard
tow(u).

Then (A’, B') is the matrix representation &ff, =) with regard to(x’, v") and
7 (u') if and only if

(AB) <§, ?) = S(A'B’),

which is equivalent td’ = S~1AS + S~1BF and B’ = S~1BT, as we wanted to
prove. [

Since a subspac® < K" is (A, B)-invariant if and only if itis(A’, B")-invariant
forany pair(A’, B") feedback equivalent tod, B), we can define this notion in terms
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of the pair of linear mapsf, =) associated tgA, B). More precisely, we have the
following proposition.

Proposition 1.2. Let (f, #) be defined byf(x,y) = Ax + By and n(x, y) = x.
Then a subspac€ of K" is (A, B)-invariant if and only it ¢ 7 (f~1(%)).

Proof. f=1(%) = {(x, y)|Ax + By € <}.Hencen (f~1(¥) = {x € K" such that

there existyy € K™ with Ax + By € #}. Therefore,¥ c n(f~1(%)) if and only

if A(¥) C &+ Im B, thatis to say, ifand only if# is an(A, B)-invariant subspace.
U

Given a pair of linear map&f, ) as above, every subspageof K" defines two
pairs of linear mapsf, 7) and( f, 7) which render the following diagram commu-
tative

f.: 1) n L) — A%
N N
fim: Kntm — K"
\ \

fiz: K"/ Yan Yy - K'Y,

where the vertical arrows are the natural projectiohsind= are the restrictions

of fandr tor~1(¥) N f~1(¥) and f, 7, the corresponding maps induced on the

quotients. Remark that, whifeis always surjectiver does not need to be surjective.
Applying Proposition 1.2, we have that# is (A, B)-invariant, thenr is surjec-

tive (and conversely). Therefore, each, B)-invariant subspace defines two pairs

of linear maps(f, 7) and (f, #) of the same type a&f, 7). We call (f, 7) the

restriction of (£, ) and (f, #) the quotient induced magSince the matrix repre-

sentations of f, 7) and( f, #) are feedback equivalent, respectively, it makes sense

to define the Brunovsky indices of , 7) and the Brunovsky indices ¢f , 7) as the

Brunovsky indices of any matrix representatioh B) of these pairs.

Remark 1.3. Let(u, v, w, y) be abasis okt with w a basis of ketr N 7 ~1(%)
N4 =kern N 1), (w, y) abasis of ketr and(u, w) a basis ofr ~1(%)
N f~1(%). Thenx(u) is a basis of?, (7 (1), 7 (v)) is a basis ok and the matrix
representation off, =) with respect to these bases is

A X|B Y
0 A|lO0 B)

It can be easily seen thed, B) and(A, B) are matrix representations of, 7) and
(f, ), respectively.
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We now define a decomposition of ¢4, B) according to the Brunovsky indices

of (f, 7).

Definition 1.4. Let(f, 7) be the pair of linear maps defined lpyx, y) = Ax + By
andr(x, y) = x. Let (4, B) with A € K?*? andB € K?*" be a pair in Brunovsky
canonical form. We define

Inv i 5, (A, B)={9 € Invy(A, B)|(f. ) has(A, B)
as matrix representatiyn

We have that

Inv (A, B) = U Inv 5 3 (A, B).
(A,B)
In [1] conditions in order to ensure that lavg) (A, B) # Y are given (see Section
3). We remark that, in contrast with the restriction defined in the dual case, even when
(A, B) is controllable, the paifA, B) need not be so. Consider, for example

(A,B):(é é‘g 2) (A,B) = (1,0, (A, B)=(0,1).

(A, B) and(A, B) are controllable, butA, B) is not. Therefore the above union is
infinite in general. In the next section, we prove that the controllabilityAfB)
characterizes the controllability subspaces.

2. Theset of controllability subspaces

Let (f, ) be, as in the previous section, the pair of linear maps defined by
f(x,y) = Ax + By andn (x,y) = x, ¥ € Invy(A, B) and(f, 7) the restriction of
(f, 7,
fma dHn i) - .
Notice that from Proposition 1.1 if a matrix representatioq ff7) is a controllable

pair of matries, any other matrix representatior pf7) is also controllable. We say
then that( f, ) is controllable We prove the following theorem.

Theorem 2.1. With the above notatign is a controllability subspace with regard
to (A, B) ifand only if(f, ) is controllable.

Proof. We recall the notation of Remark 1.8, v, w, y) is a basis ofK”™" with
w a basis of ketr N f~1(¥), (w, y) a basis of kerr = K™ and (1, w) a basis of
71PN f~HP). Then(x(u), 7 (v)) is a basis ofk” andx (u) is a basis of#.
Let P be then x n-matrix having the vectorér (1), 7 (v)) as columns and) the
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m x m-matrix whose columns are the vectats, y). We remark thaP ~1(%) is the
subspace spanned by the fidgstectors of the standard basis Kf.

Assume first that¥ is a controllability subspace, that is to say, =
(A + BF|Im BG). Taking into account tha¥ is (A + B F)-invariant, the matrix
of A + BF with regard to the basiér (1), 7 (v)) has the form

~ (A X

A=P (A—l—BF)P_(O 1)
where A has sized x d. Likewise, the matrix ofB with regard to the basiw, y)
and(w (1), w(v)) has the form

P _ B li

B=P'BO= < 0 B) ,
whereB has sizel x [ with I = dimB~1(%). We have that

~ 1 P 0

(AB) = P~1(4B) (FP Q)
so that, according to Proposition 1.1 and Remark @43,8) and(A, B) are matrix
representations aff, =) and(f, ), respectively.

We tackle now the proof th&#, B) is a controllable pair. We have that

P Y#)=P YA+ BF | Im BG)
=(A|ImBG)
=Im (BG|ABG|---|A" 1BG).

LetG = (E) We have that
- BG +YG
Bo = (BOTYC)
BG
Since IMBG C P~ we have that3G = 0. But B has full rank and: — d >
m — [; henceB is injective andG = 0. Therefore,
B AB -.- A"'B

(BG|ABG|---|A"1BG) =
0 0 0 0

) diag(G, ..., G).
Then, dim¥ = d implies that ranK B|A B] . ... |Zd_1§) = d, that is to say, the pair
(A, B), which is a matrix representation of , 77), is controllable.

Conversely, assume thaf, 7) is controllable. Since” is an (A4, B)-invariant
subspacér is surjective) there exists a feedbagksuch that¥ is (A + B F)-in-
variant. We consider the matrix representationsfofr) and(f, 7) by the matrices
(Z, §) and (A, B) as before. Sinc®~1(%) is the subspace spanned by the first
elements of the standard basiskof, the controllability of(A, B) implies that

_n_l_

Pl —im(B AB - A"B)
0 0 O© 0
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On the other hand, it is easily checked that if

T = diag ((Z) (g))

one has that

J— - _nil_
(g AoB N AOB>=(B|AB|...|A”—1B)T.

Then, if we denoteéd = diag(Q, ."., Q),
S =ImP@BQ AP tPBO .. |A" P lPBO YHT,

and definingG = Q(g) we have that” = (A + BF|Im BG); thus the proof of the
theorem is completed. (O

Remark 2.2. Theorem 2.1 implies that

Cty(A.B)= | J  Invzp A, B).
(A, B) controllable

which is a finite union. In the following section, we show that each S(—E‘j;!ﬁy(A, B)
is a smooth manifold.

3. Orbit space structure of the strata

In this section we prove that the decomposition (1) is a finite stratification of
Ctry(A, B).

Let (A, B) and (A, B) be controllable pairs wherg € K"*" B € K" A e
K44 andB e K**!. We assume without loss of generality tliat, B) and(A, B)
are in the Brunovsky canonical form. We denoteioy: (k1, ..., k), k1 > --- >
k >0withk1+---+k- =nandh = (h1, ..., hg), h1 > -+ > hy > 0 with =y +

.-+ hy = d the controllability indices of A, B) and (A, B), respectively. That is
to say, A = diag{Ny,, ..., Nk, } being N; the standard upper nilpotentx i ma-
trix, B = diag{Ex,, - - ., Ex,} beingE; = (0, ..., 0, 1)! € K% and analogouslyd =
diag{Nn,, ..., Ni} andE = diag{Ep,, ..., En,}.

We also assume thatandh satisfy the following compatibility conditions given
in [1] (in order to ensure that | B(A. B) is not empty). Let = (r1, ..., rx) and
s = (s1, ..., s,) be the conjugate (or dual) partitionsofind#, respecuvely Then
the condltlons are:

1. ri—s;<rp—s1,i=1 ...,k wheres; =0fori > h + 1.

2. Zh” 1(rj —sj — p) > 0,whereh, = maxXi|r; —s; > p},0< p <rp—s1.
The next results depend on the following Iemmas
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Lemma3.l. Let(A, B) € K" x K™ and (A, B) € K%*? x K4*! Brunovsky
pairs of matrices an( € K"*4_Then the following conditions are equivalent
1 {(ln —BBYXB =0,
(I, — BBHXA = AX.
2. There exist matrices Y and Z such that

wn (y 9)=x@n.

Besidesif the above conditions hoJdve have that = B'XA andZ = B'XB.

Proof. Condition 2 implies that

BZ =XB,
BY = XA — AX.

Now notice thaiB'B = I andB'A = 0 becaus€A, B) is in the Brunovsky canonical
form. Then multiplying the above equalities By on the left we obtain

Z=B'XB and Y = B'XA.

Replacingy andZ in the above equalities, condition 1 follows immediately.
Conversely, taking = B'X B andY = B'X A itis clear that (1) implies (2). O
Lemma 3.2. With the notation of the previous lemmamatrix X is a solution of

Lemma3.1(1) ifand only if X = (X;;)1<i<r1<j<s With

1 hj—k,'-i-l

X X . Ok . o .. 0
1 . jmkit e
Xi;= 0 X; X 0 0
1 hj—k,'+1
0 0 0 X X

if k; <h; or Ootherwise

Proof. We partitionX into blocksX; ; of sizek; x h;, 1 <i <r,1<j<s. An
easy computation shows thdj, — BBY)X B = 0 is equivalent to

JiXijE; =0,

1<i<r,1<j<s,where
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So, if Xi,j = (Xp.g)1<p<ki.1<q<n; WE conclude from the above equality that,, =
- =xk,-1.h; =0, that is to sayX; ; has the form

ke ok 0
X =
LI x ... % 0

Proceeding analogously, we see tiiat— BBY)X A = AX is equivalent to

JiXi jN;= NiXi;,
1<i <1< j<s,sothatX; ; satisfies
X21 o X2 0  x11 - xim-1
X1 gl | O xg-11 o X1 )]
o .. 0 0 0
where, according to (L)xzs; =+ = Xk.n; = X181 ="+ = Xg;—1,h,-1 = 0.

Now the lemma follows easily. OJ

Corollary 3.3. With the above notatigrif X has full rank thenBtX B has full rank
too.

Proof. Note thatB'X B is the matrix whose entries are the right-bottom corner of
the blocksX; ; of X. Since the entries of the last columnXf ; are all 0 with the
possible exception of the last one, we have tha ifias full rank, thenB'X B has
also full rank. O

The following theorem characterizes the elements o(f;\i’@\;(A, B).

Theorem34. & ¢ Inv(z’g)(A, B) if and only if ¥ = Im X, where X is a full rank
matrix satisfying

(I, — BBYXB =0,

(I, — BBYXA = AX.

Proof. We have that” Invz 5,(A, B) if and only if there exist matriceX, Y, Z
with . = Im X making the foIIowmg diagram commutative:

K+ (4.5) K4
X 0

(EY) x

K AP gn
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where
X 0
X and (Y Z)
have full rank. Notice that
X 0\_ 1
Im (Y Z) =7 ()N fTH(S).
Then, applying Lemma 3.1 and Corollary 3.3 the theorem followg]
The above theorem leads to the following definition.

Definition 3.5. Given (A, B) € K" x K™ and (A, B) € K4 x K%l Bru-
novsky pairs of matrices, we define

Mz 5(A,B) ={X € K"™4|(1, — BBYXB =0and(l, — BBYXA = AX
whereX has full ran}
g(z’g) = %(X,E) (Z, E)

If no confusion is possible, we denaw(zj)(A, B) andfé(z’g) by .# and¥, re-
spectively.

We remark that/# is a submanifold ofk”>*™. In fact, it is an open subset of a
linear subvariety ok, We have the following proposition.

Proposition 3.6. With the above notation we have

1. %is a Lie subgroup of Gtl) acting freely on# on the right by matrix multipli-
cation.

2. The orbit space# /% has a differentiable structure such that the projection
. M — M |9 is asubmersion.

3. dm#/% =dim.# —dim ¥

Proof. Let X, X’ € 4. According to Lemma 3.1 this is equivalent to the existence
of Y, Z andY’, Z’ such that

@AB) (’; 2) —X(@B). @B (}; 3) — X'@B)

andX, X', B'XB = Z, B'X'B = 7' have full rank.
Since

X 0\(x o0\ _ [ xx 0
vy z)\v z)=\yx' +zv z7
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has full rank and verifies

—— xXx’' 0 jp——

(A B) <YX/ +ZY ZZ/) = XX'(AB),

it follows that XX’ € 4. By a similar reasoning we conclude thatXfe ¢, then
~1 ¢ @. Obviously,l; € 4. Hence is a Lie subgroup 0&1(d).

Let T € 9 and X € .. The proof thatXT e .# follows the same pattern as
above and is left to the reader. FinallyXfT = X with X € .# andT € ¥, then
sinceX has full rank,T = 1;. So, (1) is true.

The proofs of (2) and (3) are the same as those given in Theorem 4.5 of [4].

We now state the main result of this section.

Theorem 3.7. The mapg: .# — Gry(K™) defined byX +— Im X induces a sub-
mersiong : M|G — Grqg(K™) having imagelnv(zf)(A, B). Moreover with the
differentiable structure induced hy, Inv(zj)(A, B) is a submanifold oG r;(K™)
of dimensiordim.Z — dim#%.

Proof. The image ofp is Inv(zf)(A, B) according to Theorem 3.4. Moreoverjs

well defined because I = Im X G for any matrixG of %. For the injectivity ofp
applying Lemma 3.1, we have thatif € .# and XG € .# with G € GI(d), then
G € %. The rest of the proof is similar to that of [5].

Notice that from the above theorem we have that
|I"IV(Z’§) (A, B)= %(K,E) (A, B)/g(Z,E)

In Lemma 3.2 the elements o 7 3/ (A, B) and¥ ; 3, are described in terms of

h andk (with the additional full rank condition). Hence taking into account that the
number of free parameters¥y jish; — k; + 1if k; < h; and O otherwise, we have
the following proposition.

Proposition 3.8.

diminvg 5 (A. B)= Y suph; —k +1,0}

1<<s, I<i<r
— > sugh; —hi +1,0}

1<j,i<s

Example3.9. Letk = (4,3,3,1,1) andh = (3, 3, 1). Then the strata of control-
lability subspaces "M,E)(Av B) are represented by the matrices
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0O 0O 0] O 0 0 0
0O 0O 0] O 0 0 0
0O 0O 0] O 0 0 0
0O 0O 0] O 0 0 0
x1 O O] xg 0 0 0
0 x1 O 0 X9 0 0
0 0O x1| O 0 X9 0
x2 0 O|lxypo O 0 0
0 x O 0 xi0 O 0
0 O x| O 0O x10| O
X3 X4 X5 | X11 X12 X13 | X17
X6 X7 X8 | X14 X15 X16 | X18

and dim Inyz 5/ (A, B) = 7.

In a similar way to [9] one has another matrix representation of a controllability
subspace in terms of the conjugate partitiong ahd/ obtained by reordering the
bases o” and.#. As in [9], this representation is more suitable to obtain a canon-
ical representative of each controllability subspace (see Example 3.11). Besides, a
more compact formula for the dimension of !ng) (A, B) can be obtained.

We index the usual basisof K" by (v1,1, ..., V1kgs---» Urls - - Urk,) (WeE re-
call that(A, B) is in the Brunovsky canonical from atgare the size of the nilpotent
blocks). Given a matrixX € .# z 5 (A, B), its columns form a basis of the sub-
space¥ =ImX € Inv(A B) (A, B) Letu = (w11, ..., UL py, .-, Us 1, ... Ushy) DE
this basis. We reorder the basesif and.¥ in the foIIowmg way (see Example
3.11). Ifr ands are the dual partitions df andh, respectively,

V> U= (ULkys v Urpkpr oo s Ulkg—is -+ s Uripgkp—is - o s VL1, - o5 Upp 1)

ur E = (ul,h15 R uSl,hw R ul,hlfl'v R MSH,l,hxfiv R ul,l’ R “s;,,l)-

We denote by the matrix whose columns are the components wifith regard to
v. We have the following proposition, whose proof is similar to that of (2.5) [9].

Proposition 3.10. Y can be partioned into blockg ; € K"*%/, 1 <i <k, 1<

j < hwith

1. Yi,j :Olfl > ]

2. Y1, = (Zl{,)lgagh_ﬁl, whereZy is ary x (Sp—q41 — Sh—at2)-Matrix with the
firstr),_j_qy3 rOWS ZErO(1 < j < h).

3. Yiy1,j+1 is obtained from¥; ; by removing the last; — r; ;1 rows and the last
sj — sj4+1 columns.

We denote by#*(r, s) the matrices described in Proposition 3.10 afd (s) =
AM*(s,s). We have that the map — VYU ! with U and V being the permuta-



F. Puerta, X. Puerta / Linear Algebra and its Applications 351-352 (2002) 585-599 597

tion matrices corresponding to the rearrangement of the bases that we have consid-
ered is a bijection betwee®*(r, s) and.# (k, h). Moreover, we can easily see that
%*(s) acts on.Z*(r, s), and we have a similar proposition to Proposition 3.6 for
M*(r, 5)/%*(s) so that the mayy — VYU ! induces a diffeomorphism

M (1, 8) ]G (s) = Mk, h) /G (h).

Example3.11. As in Example 3.9, considdr= (4,3,3,1,1) andh = (3,3, 1),
sothatr = (5, 3,3, 1) ands = (3, 2, 2). We arrange the basis &2 and.¥ (= K")
in the following way:

V1,1, V1,2, V1,3, V1 4

V1,4, V2,3, V3,3, V4,4, V51,
V2,1, V2,2, V2,3,

V1,3, V2,2, V3,2,

V3,1, V3,2, V33, =

V1,2, V2,1, V31,
V4,1,

v1,1
U5,1
u1,17 u1,27 Ml,35 ul,3’ u2,3’ M3’]_,
uz1,uU22,u23, H— U12,U22,
V31 Ui, u21

Then, with regard to the new bases, the matrix of Example 3.9 is

0 0 0|0 0 0 0
X1 X9 0 0 0 0 0
x2 x10 O 0 0 0 0
X5  X13  X17 | X4 X12 | X3 X11
Xg X1 X18 | X7 X15 | X6 X14
Y — 0 0 0|0 0 0 0
—10 0 O |x31 x9 | O 0
0 0 O | x2 x10| O 0

0 0 0|0 0 0 0

0 0 0 0 0 | x1 x9

0 0 01O 0 | x2 x10

0 0 0|0 0 0 0

Remark 3.12. Notice that in this representation, all the parameters are in the upper
blocks ofY and the remaining blocks are obtained from the previous ones by remov-
ing rows and columns according to Proposition 3.10(3). Moredetr,= B'X B,

so Y11 has full rank (see Proposition 3.2 and Corollary 3.3). Due to this and to the
form of the blocks ofY, one can eliminate parameters by making left elementary

transformations in a similar way to [9]. The next example shows how a canoncial
representative of the controllability subspace representatéddan be obtained, as

in [9].
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Example 3.13. We consider the matrix representation of the controllability sub-
spaces of the previous example. Then making linear combinations of its columns
one can easily check that we can reduce this matrix to the following matrix:

o

cNoNeollol Neoll oo Ne N

OoroOoooogf oooo

OO0 O0OrOOR OO0 O

elloNeoNelloNeoNek il oNaol o)
[elleNeoNelloNoNe ol N oNoe)
[clfcNoNelloNeoNolhN NoNoNe}
O|OFLr OO0 00O OO0O0

o

which is of the form given in Proposition 3.10. We remark that the number of param-
eters of the above matrix coincide with the dimension of;t%(A, B) and, in fact,
we can show that it parametrizes an open dense set pj)m(/A, B) in a similar
way of [9].

We end this section with a more compact formula for the dimension of
Invz 5 /(A, B) in terms of the conjugate partitions bfaindh, r ands. This formula
is obtained by counting the parameters#f (r, s) and™*(s).

Corollary 3.14. With the above notatigrwe have

h

dimInvg 3 (A, B) = Y si((r1 — 51) — (rip1 — si11)).
i=1
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