Finite Fields and Their Applications $\frac{1}{2}$, 52–68 (2002) doi.10.1006/ffta.2001.0323, available online at http://www.idealibrary.com on **IDE**

Recurrent Methods for Constructing Irreducible Polynomials over GF(2s)

Mels K. Kyuregyan

Institute for Informatics and Automation Problems, Armenian National Academy of Sciences, P. Sevak str. 1, 375044 Yerevan, Armenia E-mail: kyuregm@forof.sci.am

Communicated by Stephen D. Cohen

Received May 17, 1999; revised December 6, 2000; published online July 11, 2001

The paper is devoted to some results concerning the constructive theory of the synthesis of irreducible polynomials over Galois fields $GF(q)$, $q = 2^s$. New methods for the construction of irreducible polynomials of higher degree over *GF*(*q*) from a given one are worked out. The complexity of calculations does not exceed $O(n^3)$ single operations, where *n* denotes the degree of the given irreducible polynomial. Furthermore, a recurrent method for constructing irreducible (including self-reciprocal) polynomials over finite fields of even characteristic is proposed. \circ 2002 Elsevier Science

Key Words: irreducible polynomials; operator; Galois fields; recurrent method; primitive element; root; great common divisor; mapping; exponent.

This paper presents some results on the constructive theory of the synthesis of irreducible polynomials over $GF(2^s)$. The problem of reducibility of polynomials over Galois fields is a case of special interest $[1, 11, 12]$ and plays an important role in modern engineering [\[4, 10,](#page-16-0) [13\]](#page-16-0). In particular, since the binary system of notation is mainly used in computing systems, the problem of the construction of irreducible polynomials over $GF(2^s)$ remains one of the most important ones from practical point of view.

Let $GF(q)$ be the Galois field of order $q = p^s$, where p is a prime and s is a natural number.

The *degree of an element* α *over the field GF(q)* is said to be equal to *k* or α is said to be a *proper element* of the field $GF(q^k)$ if $\alpha \in GF(q^k)$ and $\alpha \notin GF(q^v)$ for any proper divisor *v* of *k*. In this case we write $deg_a(\alpha) = k$.

Similarly, the *degree of a subset* $A = \{a_1, a_2, ..., a_r\} \subset GF(q^k)$ over the field *GF*(*q*) is said to be equal to *k* if for any proper divisor *v* of *k* there exists at

1071-5797/02 \$35.00 (2002 Elsevier Science All rights reserved.

least an element $\alpha_u \in A$ such that $\alpha_u \notin GF(q^v)$. In this case we write $\deg_q [\alpha_1, \alpha_2, \dots, \alpha_r] = k.$

Only monic polynomials, i.e., the polynomials whose leading coefficient is equal to 1, are studied in this paper.

We will use the results obtained by Shwarz in [\[5\]](#page-16-0) and [\[2\]](#page-16-0) to prove the following fact.

THEOREM 1. Let $f(x) = \sum_{u=0}^{n} c_u x^u$ be an irreducible polynomial over $GF(q)$, δ , $\delta_1 \in GF(q)$, $\delta \neq 0$ *and*

$$
x^{(p^{sn}-1)/(p-1)} \equiv 1 \pmod{f(x-\delta_1)}.
$$
 (1)

Then the polynomial

$$
g(x) = x^n f\left(\frac{x^p - \delta_1 x - \delta}{x}\right)
$$

of degree n is irreducible over GF(*q*) *if and only if the following relation holds*

$$
\sum_{u=0}^{sn-1} \delta^{p^u} x^{(p^{ns}-p^{u+1})/(p-1)} \not\equiv 0 \ (\text{mod} \ f(x-\delta_1)). \tag{2}
$$

Otherwise g(*x*) *factors as the product of a p irreducible polynomials of degree n*.

Proof. By using the irreducibility of $f(x)$ over $GF(q)$, we have the following relation over $GF(q^n)$

$$
f(x) = \prod_{u=0}^{n-1} (x - \alpha^{q^u}).
$$
 (3)

Substituting $(x^p - \delta_1 x - \delta)/x$ for *x* in (3) and multiplying both sides by *x*ⁿ, we obtain

$$
g(x) = \prod_{u=0}^{n-1} (x^p - (\delta_1 + \alpha)^{q^u} x - \delta).
$$
 (4)

By [\[5\]](#page-16-0), the polynomial $x^p - (\delta_1 + \alpha)x - \delta$ is irreducible over $GF(q^n)$ if both By [3], the polynomial $x^2 - (b_1 + \alpha)x - b$
the conditions $(\delta_1 + \alpha)^{(p^{sn}-1)/(p-1)} = 1$ and

$$
\frac{\delta}{\delta_1 + \alpha} + \frac{\delta^p}{(\delta_1 + \alpha)^{1+p}} + \frac{\delta^{p^2}}{(\delta_1 + \alpha)^{1+p+p^2}} + \cdots + \frac{\delta^{p^{m-1}}}{(\delta_1 + \alpha)^{1+p+p^2+\cdots+p^{m-1}}}
$$
\n
$$
= \sum_{u=0}^{sn-1} \delta^{p^u} (\delta_1 + \alpha)^{(p^{ns}-p^{u+1})/(p-1)} \neq 0
$$

are satisfied. Then it follows from [\[2\]](#page-16-0) that $q(x)$ is irreducible over $GF(q)$. Hence if both conditions (1) and (2) are satisfied then $g(x)$ is irreducible over *GF*(*q*).

By [\[5\]](#page-16-0) the polynomial $x^p - (\delta_1 + \alpha)x - \delta$ (where $(\delta_1 + \alpha)^{(p^{sn}-1)/(p-1)} = 1$) factors into a product of *p* linear factors (i.e., we have a relation of the form

$$
x^{p} - (\delta_1 + \alpha)x - \delta = \prod_{v=1}^{p} (x - \beta_v)
$$

if and only if

$$
\sum_{u=0}^{sn-1} \delta^{p^u} (\delta_1 + \alpha)^{(p^{ns} - p^{u+1})/(p-1)} = 0.
$$

Then it is evident that

$$
x^{p} - (\delta_{1} + \alpha)^{q^{u}} x - \delta = \prod_{v=1}^{p} (x - \beta_{v}^{q^{u}}).
$$
 (5)

From relations (4) and (5) we have that

$$
g(x) = \prod_{v=1}^{p} \prod_{u=0}^{n-1} (x - \beta_v^{q^u}),
$$

whereas it follows that $g(x)$ factors as the product of p co-factors if and only if both (1) and the condition

$$
\sum_{u=0}^{sn-1} \delta^{p^u} x^{(p^{ns}-p^{u+1})/(p-1)} \equiv 0 \pmod{f(x-\delta_1)}
$$

are satisfied. This completes our proof. \blacksquare

LEMMA 1. Let $f(x) = \sum_{u=0}^{n} c_u x^u$ be an irreducible polynomial over $GF(q)$ *that belongs to the exponent e and has at least one nonzero coefficient* c_1, c_{n-1} . *For a divisor t of* $q-1$ *, suppose that*

$$
x^t \equiv R(x) \pmod{f(x)}
$$

Also, let $\psi(x) = \sum_{u=0}^{n} \psi_u x^u$, where ψ_u is a nontrivial solution of the relation

$$
\sum_{u=0}^{n} \psi_u(R(x))^u \equiv 0 \; (\text{mod } f(x)). \tag{6}
$$

Then the polynomial $\psi(x)$ (*of degree n*) *is irreducible over GF(q) and belongs to the exponent e/(* t *, e).*

Proof. Let α be a root of the equation $f(x) = 0$. By (6), we can easily verify that α^t is the root of $\psi(x)$. It will be sufficient then to show that α^t is the proper element of *GF*(*qⁿ*). So, assume the contrary, namely that deg_q(α ^t) = *d*, where *d* is a proper divisor of *n*. Consider separately two cases.

1. Let $c_1 \neq 0$. Since

$$
\sum_{u=0}^{n-1} \left(\frac{1}{\alpha}\right)^{q^u} = -\frac{c_1}{c_0} \quad \text{or} \quad \frac{1}{\alpha} \sum_{u=0}^{n-1} \left(\frac{1}{\alpha}\right)^{q^u-1} = -\frac{c_1}{c_0}
$$

then, as $t|(q''-1)$, we have $(1/\alpha)^{q''-1} \in GF(q^d)$, which implies that then, as
 $\sum_{u=0}^{n-1} (1/\alpha)^q$ $u_{-1}(q-1)$, we have $(1/\alpha)^2 \in \mathbf{Gr}(q)$,
 $u_{-1} \in GF(q^d)$. Also, in view of the fact that

$$
\alpha = -\frac{c_0}{c_1} \sum_{u=0}^{n-1} \left(\frac{1}{\alpha}\right)^{q^u-1} \in GF(q^d),
$$

we have $deg_a(\alpha) < n$, which is impossible.

ave $\deg_q(\alpha) < n$, which is impossible.

2. Let $c_{n-1} \neq 0$. Then, since $\sum_{u=0}^{n-1} \alpha^{q^u} = -c_{n-1}$ or $\alpha \sum_{u=0}^{n-1} \alpha^{q^u-1} =$ 2. Let $c_{n-1} \neq 0$. Then, sinc
 $-c_{n-1}$ and as $t | (q^u - 1)$, we have

$$
\alpha = -\left(\sum_{u=0}^{n-1} \alpha^{q^u-1}\right)^{-1} c_{n-1} \in GF(q^d)
$$

and therefore $deg_a(\alpha) < n$, which is also impossible. The lemma is proved. \blacksquare

THEOREM 2. Let $\delta \neq 0$ be an arbitrary element in $GF(q)$ and let *f*(x) = $\sum_{u=0}^{n} c_u x^u$ *be any irreducible polynomial over GF(q) with coefficients satisfying the conditions*

$$
\sum_{u=0}^{s-1} \left(\frac{c_1 \delta}{c_0} \right)^{p^u} \neq 0, \quad x^{p-1} \equiv R(x) \pmod{f(x)}, \quad \text{and} \quad \psi(x) = \sum_{u=0}^n \psi_u x^u,
$$

where ψ_u *is a nontrivial solution of the equation*

$$
\sum_{u=0}^{n} \psi_u(R(x))^u \equiv 0 \pmod{f(x)}
$$

Then the polynomial $F(x) = x^n \psi((x^p - \delta^p)/x)$ *is irreducible over GF(q).*

Proof. By Lemma 1, $\psi(x)$ is irreducible over $GF(q)$ and it is then obvious that $\alpha^{p-1} = \theta$ will be a root of $\psi(x)$. Furthermore, by Theorem 1, $F(x)$ is

irreducible over $GF(a)$ if θ and δ satisfy the conditions

$$
\sum_{u=0}^{sn-1} \delta^{p^{u+1}} \theta^{(p^{ns}-p^{u+1})/(p-1)} \neq 0 \quad \text{and} \quad \theta^{(p^{ns}-1)/(p-1)} = 1.
$$

Later we will use the fact that $\theta = \alpha^{p-1}$ to simplify the above given conditions as follows,

$$
\sum_{u=0}^{sn-1} \delta^{p^{u+1}} \alpha^{p^{ns}-p^{u+1}} = \alpha \left(\sum_{u=0}^{s-1} \left(\sum_{v=0}^{n-1} \left(\frac{1}{\delta^{-1} \alpha} \right)^{p^{sv}} \right)^{p^u} \right)^p
$$

and

$$
f(\delta x) = \sum_{u=0}^{n} c_u(\delta x)^u = \sum_{u=0}^{n} h_u x^u,
$$

whereas $h_1 = c_1 \delta$ and by Vieta's theorem

$$
\sum_{u=0}^{s-1} \left(\sum_{v=0}^{n-1} \left(\frac{1}{\delta^{-1} \alpha} \right)^{p^{sv}} \right)^{p^u} = \sum_{u=0}^{s-1} \left(-\frac{c_1 \delta}{c_0} \right)^{p^u} \neq 0.
$$

Besides, $\theta^{(p^{ns}-1)/(p-1)} = \alpha^{p^{ns}-1} = 1$. Thus if $\sum_{u=0}^{s-1} (-c_1 \delta/c_0)^{p^u} \neq 0$, then *F*(*x*) is irreducible over $GF(q)$. The theorem is proved. \blacksquare

Based on the results obtained above we now give a recurrent method for constructing irreducible polynomials over *GF*(2s).

Instructing irreduction polynomials over $GF(2)$.
Let $f(x) = \sum_{u=0}^{n} c_u x^u$ be an polynomial of degree *n* over $GF(2^s)$. Consider the quadratic mapping

$$
f(x) \to x^n f\left(\frac{x^2 + \delta^2}{x}\right) = \tilde{f}(x) \qquad (\delta \in GF(2^s), \ \delta \neq 0)
$$

onto the ring $GF(2^s)$ [x]. Assume that *A* is an operator defined over the ring *GF*(2^s) $\lceil x \rceil$ that maps $f(x)$ onto $Af(x) = f((x^2 + \delta^2)/x)$, where $\delta \in GF(2^s)$ and $\delta \neq 0$, if $f(x) \in GF(2^s)$ [*x*]. Here $A^m f(x)$ (*m* > 1) signifies $A^m f(x) =$ $A(A^{m-1}f(x)).$

We start our study with the simplest case, when $f(x) = x$. Then we have

$$
Ax = \frac{x^2 + \delta^2}{x} = \frac{a_1(x)}{b_1(x)},
$$

where $a_1(x) = x^2 + \delta^2$, $b_1(x) = x$ and

$$
A^{2}x = A \frac{a_{1}(x)}{b_{1}(x)} = \frac{x^{2} A a_{1}(x)}{x^{2} A b_{1}(x)} = \frac{a_{2}(x)}{b_{2}(x)},
$$

where

$$
a_2(x) = x^2 A(a_1(x)) = a_1^2(x) + (\delta b_1(x))^2,
$$

$$
b_2(x) = x^2 A b_1(x) = a_1(x) b_1(x).
$$

Now, for each integer $m > 1$, set $A^m x = (a_m(x)/b_m(x))$, where

$$
a_m(x) = x^{2^{m-1}} A a_{m-1}(x) = a_{m-1}^2(x) + (\delta b_{m-1}(x))^2,
$$

\n
$$
b_m(x) = x^{2^{m-1}} A b_{m-1}(x) = a_{m-1}(x) b_{m-1}(x)
$$
\n(7)

under the initial conditions $a_1(x) = x^2 + \delta^2$ and $b_1(x) = x$.

In this, for $m + 1$, by (7), we have that

$$
A^{m+1}x = A(A^m x) = A \frac{a_m(x)}{b_m(x)} = A \frac{a_{m-1}^2(x) + (\delta b_{m-1}(x))^2}{a_{m-1}(x)b_{m-1}(x)}
$$

=
$$
\frac{(x^{2^{m-1}} A a_{m-1}(x))^2 + (\delta x^{2^{m-1}} A b_{m-1}(x))^2}{(x^{2^{m-1}} A a_{m-1}(x))(x^{2^{m-1}} A b_{m-1}(x))} = \frac{a_m^2(x) + (\delta b_m(x))^2}{a_m(x) b_m(x)}
$$

i.e., $A^{m+1}x = a_{m+1}(x)/b_{m+1}(x)$, where

$$
a_{m+1}(x) = a_m^2(x) + (\delta b_{m+1}(x))^2,
$$

$$
b_{m+1}(x) = a_m(x)b_m(x).
$$

Thus, by induction, for any *m*, we have

$$
A^m x = \frac{a_m(x)}{b_m(x)},
$$

or, in more general form,

$$
Am f(x) = f\left(\frac{a_m(x)}{b_m(x)}\right),
$$

where $a_m(x)$ and $b_m(x)$ are functional sequences defined by (7). But it can be shown easily that

$$
\tilde{f}(x) = x^n A f(x),
$$

where we have

$$
\tilde{f}(x) = (b_1(x))^n f\left(\frac{a_1(x)}{b_1(x)}\right) = f_1(x).
$$

Since $f_1(x)$ is a polynomial of degree 2*n*, then

$$
\tilde{f}_1(x) = x^{2n} A(b_1(x))^n A f\left(\frac{a_1(x)}{b_1(x)}\right)
$$
\n
$$
= x^{2n} (Ab_1(x))^n f\left(\frac{Aa_1(x)}{Ab_1(x)}\right).
$$
\n(8)

From expression (8), in view of (7), we obtain

$$
\tilde{f}_1(x) = (b_2(x))^n f\left(\frac{a_2(x)}{b_2(x)}\right) = f_2(x).
$$

Consider now for any $m > 1$ the following relation:

$$
f_m(x) = (b_m(x))^n f\left(\frac{a_m(x)}{b_m(x)}\right).
$$

In this case

$$
\tilde{f}_m(x) = x^{2^m n} (A(b_m(x)))^n A f\left(\frac{a_m(x)}{b_m(x)}\right).
$$

Moreover, by (7) we have

$$
\tilde{f}_m(x) = (b_{m+1}(x))^n f\left(\frac{a_{m+1}(x)}{b_{m+1}(x)}\right) = f_{m+1}(x),
$$

which is the same as

$$
f_{m+1}(x) = \sum_{u=0}^{n} c_u a_{m+1}^u(x) b_{m+1}^{n-u}(x).
$$

The polynomial $\tilde{f}(x)$ is irreducible over $GF(2^s)$ by Theorem 1, if

$$
\sum_{u=0}^{s-1} \left(\frac{c_1 \delta}{c_0} \right)^{2^u} = 1.
$$
 (9)

Then it should be evident that in the polynomial

$$
\tilde{f}(x) = \sum_{u=0}^{n} c_u (x^2 + \delta^2)^u x^{n-u} = \sum_{u=0}^{2n} h_u^{(1)} x^u = f_1(x)
$$

the coefficients $h_{2n}^{(1)} = c_n = 1$, $h_0^{(1)} = c_n \delta^{2n} = \delta^{2n}$ and the coefficients for the 1st and $(2n - 1)$ th degrees of the variable are

$$
h_1^{(1)} = c_{n-1} \delta^{2(n-1)}, \qquad h_{2n-1}^{(1)} = c_{n-1}.
$$

It may be easily seen that for any m the coefficients in the polynomial

$$
f_m(x) = \tilde{f}_{m-1}(x) = \sum_{u=0}^{2^m n} h_u^{(m)} x^u
$$

are of the following form:

$$
h_0^{(m)} = \delta^{2^m n}; \qquad h_1^{(m)} = c_{n-1} \delta^{2^m n - 2}; \qquad h_{2^m n - 1}^{(m)} = c_{n-1}; \qquad h_{2^m n}^{(m)} = 1.
$$

This property of the coefficients combined with the relation (9) leads us to the conclusion that for any *m* the polynomial

$$
f_m(x) = \sum_{u=0}^{n} c_u a_m^u(x) b_m^{n-u}(x)
$$

is irreducible over $GF(2^s)$, if

$$
\sum_{u=0}^{s-1} \left(\frac{c_1 \delta}{c_0} \right)^{2^u} = 1 \quad \text{and} \quad \sum_{u=0}^{s-1} \left(\frac{c_{n-1}}{\delta} \right)^{2^u} = 1.
$$

Thus the following theorem holds.

THEOREM 3. Let $\delta \neq 0$ *be an element of GF*(2^s) *and* $f(x) = \sum_{u=0}^{n} c_u x^u$ *be any*
unlustble not would so w. GE(28) where each sinter article the conditions *irreducible polynomial over GF*(2s) *whose coe*.*cients satisfy the conditions*

$$
\sum_{u=0}^{s-1} \left(\frac{c_1 \delta}{c_0}\right)^{2^u} = 1 \quad \text{and} \quad \sum_{u=0}^{s-1} \left(\frac{c_{n-1}}{\delta}\right)^{2^u} = 1,
$$

where $a_m(x)$ *and* $b_m(x)$ (*m* > 1) *are sequences of functions defined by the recurrent equations*

$$
a_m(x) = a_{m-1}^2(x) + (\delta b_{m-1}(x))^2,
$$

$$
b_m(x) = a_{m-1}(x)b_{m-1}(x)
$$

under the initial conditions $a_1(x) = x^2 + \delta^2$ *and* $b_1(x) = x$. *Then the polynomial*

$$
F(x) = \sum_{u=0}^{n} c_u a_m^u(x) b_m^{n-u}(x)
$$

of degree ²m*n is irreducible over GF*(2s).

For the case when $f(x) = x + a$ ($a \in GF(2^s)$, $a \neq 0$) we have the following corollaries.

COROLLARY 1. The polynomial $\varphi_m(x) = a_m(x) + ab_m(x)$ (which is the same
as $\varphi_m(x) = x^{2^{m-1}} \varphi_{m-1}((x^2 + \delta^2)/x)$) of degree 2^m is irreducible over $GF(2^s)$ if *both the conditions*

$$
\sum_{u=0}^{s-1} \left(\frac{\delta}{a}\right)^{2^u} = 1 \quad \text{and} \quad \sum_{u=0}^{s-1} \left(\frac{a}{\delta}\right)^{2^u} = 1
$$

are satis,*ed*.

COROLLARY 2. Let s be an odd integer, $\delta \neq 0$ be any element of $GF(2^s)$, and *the sequence of functions* $\varphi_m(x)$ *be defined by*

$$
\varphi_m(x) = a_m(x) + \delta b_m(x),
$$

under the initial condition $\varphi_0 = x + \delta$. Then, the polynomial $\varphi_m(x)$ of degree 2^m *defined by the recurrent relation*

$$
\varphi_m(x) = x^{2^{m-1}} \varphi_{m-1}\left(\frac{x^2 + \delta^2}{x}\right)
$$

(*which is the same as*

$$
\varphi_m(x) = \varphi_{m-1}^2(x) + \delta x \prod_{u=0}^{m-2} \varphi_u^2(x)
$$

is irreducible over GF(2s).

Proof. From $\varphi_m(x) = a_m(x) + \delta b_m(x)$ we obtain

$$
\varphi_m(x) = a_{m-1}^2(x) + (\delta b_{m-1}(x))^2 + \delta a_{m-1}(x) b_{m-1}(x)
$$
\n(10)

and

$$
\varphi_m(x) = \varphi_{m-1}^2(x) + \delta a_{m-1}(x) b_{m-1}(x).
$$

By (7) we have that

$$
b_{m-1}(x) = a_{m-2}(x)b_{m-2}(x) = a_{m-2}(x)a_{m-3}(x)b_{m-3}(x),
$$

and hence

$$
b_{m-1}(x) = a_{m-2}(x)a_{m-3}(x)\cdots a_1(x)b_1(x).
$$
 (11)

Substituting relation (11) in formula (10) and using the fact that $a_u(x) = \varphi_{u-1}^2(x)$ and $b_1(x) = x$, we obtain

$$
\varphi_m(x) = \varphi_{m-1}^2(x) + \delta x \prod_{u=0}^{m-2} \varphi_u^2(x).
$$

But, according to Corollary 1, the polynomial $\varphi_m(x)$ is irreducible over *GF*(2^s), since the conditions $a = \delta$ and the oddness of *s* imply that

$$
\sum_{u=0}^{s-1} \left(\frac{\delta}{a}\right)^{2^u} = \sum_{u=0}^{s-1} 1 = 1 \quad \text{and} \quad \sum_{u=0}^{s-1} \left(\frac{a}{\delta}\right)^{2^u} = 1.
$$

Thus Corollary 2 is proved. \blacksquare

In particular, for $s = 1$ this Corollary 2 matches with Theorem 5 given by Varshamov in [\[8\]](#page-16-0).

It is easy to prove that for $\delta = 1$ the polynomial $\tilde{f}(x)$ is a self-dual polynomial. Indeed,

$$
\tilde{f}^*(x) = x^{2n} \left(\frac{1}{x}\right)^n f\left[\frac{(1/x)^2 + 1}{1/x}\right] = x^n f\left(\frac{x^2 + 1}{x}\right) = \tilde{f}(x);
$$

i.e., $\tilde{f}(x) = \tilde{f}^*(x)$, where $f^*(x) = x^n f(1/x)$. This fact plays an important role in the theory of the synthesis of irreducible self-dual polynomials and allows the construction of irreducible self-dual polynomials of high degrees over *GF*(2s) in explicit form.

COROLLARY 3. Let $f(x) = \sum_{u=0}^{n} c_u x^u$ be an irreducible polynomial over **GGF**(2s) whose coefficients satisfy the conditions

$$
\sum_{u=0}^{s-1} \left(\frac{c_1}{c_0}\right)^{2^u} = 1 \quad \text{and} \quad \sum_{u=0}^{s-1} (c_{n-1})^{2^u} = 1.
$$

¹*hen*, *the self*-*dual polynomial*

$$
F(x) = \sum_{u=0}^{n} c_u a_m^u(x) b_m^{n-u}(x)
$$

of degree ²m*n is irreducible over GF*(2s).

For $s = 1$ this corollary matches with Theorem 4 given by Varshamov in [\[7\]](#page-16-0).

Notice that we have from Theorem 2 that $f(x) \neq \psi(x)$ for $p \neq 2$; i.e., a result analogous to the one in Theorem 3 is not valid for finite fields of odd characteristic.

Now we shall pass to the construction of irreducible polynomials. We will give later a method to construct irreducible polynomials of high degrees over *GF*(2) in explicit form using Varshamov's results obtained in [\[8\]](#page-16-0), thus continuing this work.

We start by introducing Varshamov's operator [\[8\]](#page-16-0)

$$
L^{\theta} f(x) = \frac{1}{\theta(x)} \sum_{u=0}^{n} \sum_{v=0}^{m} a_u \theta_v x^{vq^u},
$$

where $f(x) = \sum_{u=0}^{n} a_u x^u$ and $\theta(x) = \sum_{v=0}^{m} \theta_v x^v$, $a_u, \theta_v \in GF(q)$.

Let $\sum_{\sigma} = \{ f_1(x), f_2(x), ..., f_n\}$ pairwise relatively prime degrees $n_1, n_2, n_3, ..., n_\sigma$ $(n_i > 1)$, respectively, over $GF(2)$; $T = \prod_{i=1}^{\sigma} (2^{n_i} - 1)$; $\varphi(x)$ is an irreducible polynomial of degree *n* over (x) be a set of σ primitive polynomials with very prime degrees $n_1, n_2, n_3, ..., n_\sigma$ ($n_i > 1$), respectively, over
 $\int_{i=1}^{\sigma} (2^{n_i} - 1)$; $\varphi(x)$ is an irreducible polynomial of degree *n* over *GF*(2); $T = \prod_{i=1}^{\infty} (2^{n_i} - 1)$; $\varphi(x)$ is an irreducible polynomial of degree *n* over *GF*(2); gcd(*n*, *T*) = 1; *G_{* σ *}* is the selection of all possible sequences $\varepsilon = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_\sigma)$ of length σ , where $\varepsilon_i = 0$ or 1. Furthermore, let for any $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$
sequence $\varepsilon \in G_{\sigma}$

$$
f(x, \varepsilon, \sum_{\sigma}) = L^x \prod_{i=1}^{\sigma} f_i(x)^{\varepsilon_i},
$$

$$
xf(x, \varepsilon, \sum_{\sigma}) \equiv R^{(\varepsilon)}(x) \pmod{\varphi(x)},
$$

and $\psi^{(\varepsilon)}(x) = \sum_{u=0}^{n} \psi_u^{(\varepsilon)} x^u$, where $\psi_u^{(\varepsilon)}$ is a nontrivial solution of the congruence

$$
\sum_{u=0}^{n} \psi_u^{(\varepsilon)} (R^{(\varepsilon)}(x))^u \equiv 0 \ (\text{mod } \varphi(x)).
$$

Then we have the following theorem.

THEOREM 4. *The polynomials*

The polynomials
\n
$$
F(x) = (\varphi(x))^{(-1)^{\sigma}} \frac{\prod_{\varepsilon \in G_{\sigma}} \psi^{(\varepsilon)}(xf(x, \varepsilon, \Sigma_{\sigma}))}{\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2 \neq (\sigma - |\varepsilon|)}} \psi^{(\varepsilon)}(xf(x, \varepsilon, \Sigma_{\sigma}))}
$$
\n(12)

and $\psi^{(v)}(x)$ *of degree nT and n, respectively (where* $|\varepsilon| = \sum_{i=1}^{\sigma} \varepsilon_i$ *and* $v \in G_{\sigma}$ *), are irreducible over GF* (2).

Proof. For $n = 1$ the validity of the theorem follows directly from [\[8\]](#page-16-0). Therefore we prove the theorem for the case when $n > 1$. By [\[8\],](#page-16-0) the polynomial

$$
H(x) = \frac{\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2 | (\sigma - |\varepsilon|)}} f(x, \varepsilon, \sum_{\sigma})}{\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2 \neq (\sigma - |\varepsilon|)}} f(x, \varepsilon, \sum_{\sigma})}
$$

of degree T is irreducible over $GF(2)$. But gcd $(n, T) = 1$, and therefore $H(x)$ is also irreducible over $GF(2ⁿ)$. Then it should be evident that

$$
H(x) = x^{(-1)^{\sigma}} \frac{\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2|(\sigma - |\varepsilon|)}} x f(x, \varepsilon, \sum_{\sigma})}{\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2 \nmid (\sigma - |\varepsilon|)}} x f(x, \varepsilon, \sum_{\sigma})}.
$$

Therefore, if α is the root of the equation $\varphi(\alpha) = 0$, then by [\[2\]](#page-16-0) since $n > 1$, for Therefore, if α is the root of the equation $\varphi(\alpha) = 0$, then by [2] since $n > 1$, for
the coefficients of the polynomial $H(x - \alpha) = h(x) = \sum_{u=0}^{T} h_u x^u$ we have that the coefficients of the polynomial $H(x - \alpha) = h(x) = \sum_{u=0}^{n} h_u^2$, we have that
deg₂ (h₀, h₁, ..., h_{T-1}) = n. Hence h(x) is irreducible over GF (2ⁿ). Furthermore, since $h^{(v)}(x) = H(x - \alpha^{2^v}) = \sum_{u=0}^{T} h_u^{2^v} x^u$ th $H_1(x) = \prod_{v=0}^{n-1} h^{(v)}(x)$ is irreducible over *GF* (2) by [\[2\]](#page-16-0). Hence e

$$
H_1(x) = \prod_{v=0}^{n-1} (x - \alpha^{2^v})^{(-1)^\sigma} \frac{\prod_{\substack{\varepsilon \in G_\sigma \\ 2|(\sigma - |\varepsilon|)}} (xf(x, \varepsilon, \sum_\sigma) - \beta_{\varepsilon}^{2^v})}{\prod_{\substack{\varepsilon \in G_\sigma \\ 2 \nmid (\sigma - |\varepsilon|)}} (xf(x, \varepsilon, \sum_\sigma) - \beta_{\varepsilon}^{2^v})},
$$

where

$$
f(x, \varepsilon, \Sigma_{\sigma}) = \sum_{v=0}^{r_{\varepsilon}} b_v^{(\varepsilon)} x^{2^v}, \qquad \beta_{\varepsilon} = \sum_{v=0}^{r_{\varepsilon}} b_v^{(\varepsilon)} \alpha^{2^v}, \qquad \text{and} \qquad r_{\varepsilon} = \sum_{i=1}^{\sigma} \varepsilon_i n_i,
$$

or

$$
H_1(x) = \varphi(x)^{(-1)^{\sigma}} \frac{\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2|(\sigma - |\varepsilon|)}} \prod_{\substack{v = 0 \\ v = 0}}^{n-1} (xf(x, \varepsilon, \Sigma_{\sigma}) - \beta_{\varepsilon}^{2^v})}{\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2 \neq (\sigma - |\varepsilon|)}} \prod_{\substack{v = 0 \\ v = 0}}^{n-1} (xf(x, \varepsilon, \Sigma_{\sigma}) - \beta_{\varepsilon}^{2^v}).
$$
(13)

We show now that β_{ε} is a proper element of $GF(2^n)$ for any ε . Assume the contrary, namely that $\deg_2(\beta_\varepsilon) = d$, where *d* is a proper divisor of *n*. Let contrary, namely that deg₂(β_{ε}) = *d*, where *d* is a proper divisor of *n*. Let $\sum_{k} = \{f_{i_1}(x), f_{i_2}(x), \dots, f_{i_k}(x)\}$ be any subset of \sum_{σ} containing *k* elements $f_{i_1}(x)$, $f_{i_2}(x)$, \dots , $f_{i_k}(x)$; then by [\[8\],](#page-16-0) the polynomial

$$
\lambda(x, \sum_{k}) = \frac{\prod_{\substack{\varepsilon \in G_{k} \\ 2|(k-|\varepsilon|)}} f(x, \varepsilon, \sum_{k})}{\prod_{\substack{\varepsilon \in G_{k} \\ 2 \neq (k-|\varepsilon|)}} f(x, \varepsilon, \sum_{k})}
$$

of degree $T_k = \prod_{u=0}^k (2^{n_{i_u}} - 1)$ is irreducible over *GF* (2). Using the fact that or degree $I_k = \prod_{u=0}^{k} (2^u - 1)$ is includible over $\mathbf{G}f'(2)$. Osing the fact that $gcd(L^x g_1(x), L^x g_2(x)) = L^x gcd(g_1(x), g_2(x))$ along with the separability of the expression $f(x, \varepsilon, \sum_k)$ in [\[6\]](#page-16-0), we find that

$$
\gcd(\lambda(x, \sum_k), f(x, \varepsilon, \sum_{\sigma})) = 1,
$$

if $|\varepsilon| < k$, and $gcd(\lambda(x, \sum_k), f(x, \varepsilon, \sum_{\sigma})) = \lambda(x, \sum_k), \text{ if } \sum_k \subset \sum_{|\varepsilon|}$ $|t| = t$ $\{f_{j_1}(x), f_{j_2}(x), \ldots, f_{j_t}(x)\}.$

 $j_1(x), j_2(x), \ldots, j_{j_t}(x)$.
There are exactly $c_{\sigma-k}^{t-k}$ subsets $\sum_{|x|=N}$. There are exactly $c_{\sigma-k}^*$ subsets $\sum_{|z|=t}$ containing \sum_k . This means that $\lambda(x, \sum_k)$ is a divisor of the polynomial $\prod_{|z|=t} f(x, \varepsilon, \sum_{\sigma})$ of multiplicity $c_{\sigma-k}^{t-k}$. $\sum_{k=1}^{\infty}$ containing \sum_{k} . This means that $\lambda(x, \Sigma_k)$ is a divisor of the polynomial $\prod_{|\varepsilon|=t} f(x, \varepsilon, \Sigma_\sigma)$ of inditiplienty $c_{\sigma-k}$.

Hence, if we set $\mu = \sum_{2|\mu} c_{\sigma-k}^{\mu}$ and $\mu_1 = \sum_{2\mu} c_{\sigma-k}^{\mu}$, then $\lambda(x, \Sigma_k)$ will be

a divisor of the polynomials multiplicity μ and μ_1 , if σ is odd and μ_1 and μ , respectively, if σ is even. It D) $f(x, \varepsilon, \sum_{\sigma})$ and $\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2|\sigma| = \varepsilon}}$ $\ddot{ }$) $f(x, \varepsilon, \sum_{\sigma})$ of $\frac{1}{\cdot}$ multiplicity μ and μ_1 , if σ is odd and μ_1 and μ , respectively, if σ is even. It follows from the factorization $(x - 1)^{\sigma-k} = \sum_{u=0}^{\sigma-k} c_{\sigma-k}^u x^u$ that μ is the sum of the coefficients of the even degrees of *x* and μ_1 is the sum of the coefficients of the coefficients of the even degrees of *x* and μ_1 is the sum of the coefficients of odd degrees of *x*. Therefore $\mu - \mu_1 = (1 - 1)^{\sigma - k} = 0$. Hence $\lambda(x, \sum_k)$ occurs with the same multiplicity in $\prod_{\substack{z \in G_\sigma \\ z \nmid (\sigma$ and hence with the multiplicity of zero in their quotient. $\sum_{i=1}^{\infty}$ $f(x,\varepsilon ,\Sigma$ p $\alpha = 0$. Hence $\lambda(x)$
 α) and in $\prod_{\substack{\varepsilon \in G_{\sigma} \\ 2|\sigma|=|\varepsilon}}$ ϵ) $f(x,\varepsilon ,\Sigma$ p σ

Now using the procedure described above, for any ε (for example $|\varepsilon| = t$) and $\varepsilon_{i_1} = \varepsilon_{i_1} = \varepsilon_{i_1} \cdots = \varepsilon_{i_t} = 1$), we obtain

$$
\lambda(x, \sum_{|\varepsilon|=t}) = \frac{L^x \prod_{u=1}^t f_{i_u(x)}}{\prod_{k=1}^{t-1} \prod_{\sum_k \varepsilon} \lambda(x, \sum_k)},
$$

where the polynomials $\lambda(x, \sum_{i=1}^{n}$ where the polynomials $\lambda(x, \sum_{|\varepsilon|})$ and $\lambda(x, \sum_{k})$ or degree $T_t = \prod_{u=1}^{t} (2^u - 1)$
and $T_k = \prod_{u=1}^{k} (2^{n_{i_u}} - 1)$, respectively, are irreducible over *GF* (2). Since) and $\lambda(x, \sum_k)$ of degree $T_t = \prod_{u=1}^t (2^{n_{i_u}} - 1)$ $gcd(n, T_t) = 1$ and $gcd(n, T_k) = 1$, then the polynomials $\lambda(x, \sum_t)$ and $\lambda(x, \sum_k)$ ~ 1 , and ~ 1 , and ~ 1 , ~ 1 gca(*n*, T_t) = 1 and gca(*n*, T_k) = 1, then the polynomials $\lambda(x, \sum_t)$ and $\lambda(x, \sum_k)$
will be also irreducible over *GF* (2ⁿ). Then for the coefficients of the polynomials

$$
\lambda(x - \alpha, \Sigma_t) = \prod_{u=0}^{T_t} \lambda_u x^u,
$$

$$
\lambda(x - \alpha, \Sigma_k) = \prod_{u=0}^{T_k} \lambda'_u x^u
$$
 (14)

by [\[2\]](#page-16-0) since $n > 1$, we have that $deg_2(\lambda_0, \lambda_1, ..., \lambda_{T_n}) = n$ and $\deg_2(\lambda'_0, \lambda'_1, \dots, \lambda'_{T_k}) = n$ and the polynomials (14) are irreducible over *GF* $\alpha_1, \ldots, \alpha_{T_i}$ $\deg_2(\lambda_0, \lambda_1, ..., \lambda_{T_k}) = n$ and the polynomials (14) are fired
(2ⁿ). Besides also using the following easily provable fact that

$$
\lambda(x - \alpha^{2^v}, \Sigma_t) = \prod_{u=0}^{T_t} \lambda_u^{2^v} x^u,
$$

$$
\lambda(x - \alpha^{2^v}, \Sigma_k) = \prod_{u=0}^{T_k} \lambda_u^{2^v} x^u,
$$

we have by [\[8\]](#page-16-0) that the polynomials

$$
F_1(x, \Sigma_t) = \prod_{u=0}^{n-1} \lambda(x - \alpha^{2^u}, \Sigma_t),
$$

$$
F_1(x, \Sigma_k) = \prod_{v=0}^{n-1} \lambda(x - \alpha^{2^v}, \Sigma_k)
$$

are irreducible over *GF* (2). Hence we obtain

$$
F_1(x, \Sigma_t) = \frac{\prod_{v=0}^{n-1} (x L^x \prod_{u=1}^t f_{i_u(x)} - (\Sigma_{u=0}^N V_u \alpha^{2^u})^{2^v})}{\varphi(x) \prod_{k=0}^{t-1} \prod_{\Sigma_k < \Sigma_t} F_1(x, \Sigma_k)},\tag{15}
$$

where $x L^x \prod_{v=0}^t f_{i_v(x)} = \sum_{u=0}^N V_u x^{2^u}$ and $N = \sum_{u=1}^t n_{i_u}$. It should be noted here that, because of the separability of the polynomial $x L^x \prod_{v=0}^t f_v(x) - \sum_{u=0}^N V_u \alpha^{2u}$, the polynomials $\lambda(x - \alpha, \sum_t)$ and $\lambda(x - \alpha, \sum_k)$ $(k < t)$ are different; this implies that for pairwise relative primes $n_1, n_2, ..., n$ $(n_i > 1)$, the polynomials $F_1(x, \sum_t)$ and $F_1(x, \sum_k)$ ($k < t$) are also different.
Thus, if deg₂ ($\sum_{u=0}^{N} V_u \alpha^{2^u}$) = d, then

$$
\prod_{v=0}^{n-1} \left(x - \left(\sum_{u=0}^{N} V_u \alpha^{2^u} \right)^{2^v} \right) = (\psi(x, \Sigma_t))^M,
$$

where $n = dM$ and $M > 1$. Hence, by (15) we have

$$
F_1(x, \Sigma_t) = \frac{\psi(x \Sigma_{t}^x \prod_{u=1}^t f_{i_u(x)}, \Sigma_t)^M}{\varphi(x) \prod_{k=1}^{t-1} \prod_{\Sigma_k \subset \Sigma_t} F_1(x, \Sigma_k)}.
$$

But since the polynomials $\varphi(x)$ and $F_1(x, \sum_k)(\sum_k \subset \sum_t)$ are different and irreducible over *GF*(2), we obtain that

$$
F_1(x, \Sigma_t) = \psi\left(x L^x \prod_{u=1}^t f_{i_u(x)}, \Sigma_t\right)^{M-1} G(x),
$$

which is impossible since $F_1(x, \sum_t)$ is irreducible over $GF(2)$.

Hence $M = 1$ and, for any ε , β_{ε} is a proper element $GF(2^n)$, which in its turn Hence $M = 1$ and, for any ε , β_{ε} is a proper element $GF(2^n)$, which in its turn
determines irreducibility of the polynomials $\psi^{(\varepsilon)}(x) = \prod_{k=0}^{n-1} (x - \beta_{\varepsilon}^{2^k})$ over *GF*(2) for any ε . Thus, in view of (13) the polynomial (12) is irreducible over *GF*(2).

It should now be clear that

$$
\psi^{(\varepsilon)}(R^{(\varepsilon)}(x)) \equiv 0 \pmod{\varphi(x)}
$$

or

$$
\sum_{u=0}^{n} \psi_u^{(s)}(R^{(s)}(x))^u \equiv 0 \pmod{\varphi(x)}
$$

Thus the theorem is proved. \blacksquare

In exactly the same way as in Theorem 1 we can prove the following fact.

In exactly the same way as in Theorem 1 we can prove the
THEOREM 5. Let $\delta \in \{0, 1, 2\} \text{ gcd}(n, 2^{\delta} \prod_{i=1}^{\sigma} (2^{n_i} - 1)) = 1;$

$$
\theta(x) = xL^x(x+1)^{\delta} + 1;
$$

\n
$$
f(\theta, \varepsilon, \sum_{\sigma}) = \theta(x)L^{\theta} \prod_{i=1}^{\sigma} f_i(x)^{\varepsilon_i};
$$

\n
$$
(\theta(x) + 1)L^{\theta+1} \prod_{i=1}^{\sigma} f_i(x)^{\varepsilon_i} \equiv R^{(\varepsilon)}(x) \pmod{\varphi(x)};
$$

\n
$$
\theta(x) + 1 \equiv W(x) \pmod{\varphi(x)};
$$

$$
\psi^{(e)}(x) = \sum_{u=0}^{n} \psi_u^{(e)} x^u
$$
, and $\omega(x) = \sum_{u=0}^{n} \omega_u x^u$;

where $\psi_u^{(e)}$ and ω_u are nontrivial solutions of the congruences

$$
\sum_{u=0}^{n} \psi_u^{(s)}(R^{(s)}(x))^u \equiv 0 \pmod{\varphi(x)}
$$

and

$$
\sum_{u=0}^{n} \omega_u(W(x))^u \equiv 0 \pmod{\varphi(x)},
$$

 r espectively. Then the polynomials $\psi^{(v)}(x)$, $\omega(x)$ of degree n and the polynomial

$$
F(x) = (\omega(\theta(x)))^{(-1)^{\sigma}} \frac{\prod_{\varepsilon \in G_{\sigma}} \psi^{(\varepsilon)}(f(\theta, \varepsilon, \Sigma_{\sigma}))}{\prod_{\varepsilon \in G_{\sigma}} \psi^{(\varepsilon)}(f(\theta, \varepsilon, \Sigma_{\sigma}))}
$$

$$
F(x) = (\omega(\theta(x)))^{(-1)^{\sigma}} \frac{\prod_{\varepsilon \in G_{\sigma}} \psi^{(\varepsilon)}(f(\theta, \varepsilon, \Sigma_{\sigma}))}{\prod_{\varepsilon \in G_{\sigma}} \psi^{(\varepsilon)}(f(\theta, \varepsilon, \Sigma_{\sigma}))}
$$

of degree $2^{\delta}nT$ *are irreducible over GF*(2).

Remark. It follows from [\[9\]](#page-16-0) and [\[3\]](#page-16-0) that if the following two conditions hold,

$$
gcd(nr, q^m - 1) = 1,
$$
 $g(x) = \sum_{v=0}^{m} b_v x^v (g(x) \neq x - 1),$

where $g(x)$ is a primitive polynomial over $GF(q)$, $f(x) = \sum_{u=0}^{n} a_u x^u$ is an irreducible polynomial over $GF(x)$. irreducible polynomial over *GF*(*q*r),

$$
\sigma_q^x(g(x), 0) = \sum_{u=0}^n a_u \left(\sum_{v=0}^m b_v x^{q^v} \right)^u \equiv R(x) \pmod{f(x)},
$$

and $\psi(x) = \sum_{u=0}^{n} \psi_u x^u$, where ψ_u is a nontrivial solution of the congruence

$$
\sum_{u=0}^{n} \psi_u(R(x))^u \equiv 0 \pmod{f(x)},
$$

then the polynomials $\psi(x)$ and $F(x) = (f(x))^{-1}\sigma_{g}^{\psi}(g(x), 0)$ of degree *n* and $n(q^m - 1)$, respectively, are irreducible over $GF(q^r)$.

It is evident now that based on the above remark we may construct It is evident now that based on the above remark we may construct
a polynomial $F(x)$ of degree $nT(T = \prod_{i=1}^{\sigma} (2^{n_i} - 1), \gcd(n, T) = 1)$ irreducible over $GF(2)$ wherever the conditions of Theorem 4 are satisfied.

Thus to construct $F(x)$ the polynomials $F_1(x)$, $F_2(x)$, ..., $F_{\sigma}(x) = F(x)$ are Thus to construct $F(x)$ the polynomials $F_1(x)$, $F_2(x)$, ..., $F_{\sigma}(x) = F(x)$ are Thus to construct $F(x)$ the polynomials $F_1(x)$, $F_2(x)$, ..., $F_\sigma(x) = F(x)$ are
constructed successively. $F_1(x)$ of degree $n(2^{n_1}-1)$ is constructed by means of the polynomials $\varphi(x)$ and $f_1(x)$ (see Theorem 4). $F_2(x)$ is constructed with the the polynomials $\varphi(x)$ and $f_1(x)$ (see Theorem 4). $F_2(x)$ is constructed with the help of $F_1(x)$ and the primitive polynomial $f_2(x), \ldots, F_{\sigma}(x)$ using $F_{\sigma-1}(x)$ and $f_{\sigma}(x)$. Moreover, at the *j*th ($j \leq \sigma$) construction step, a set of $n \prod_{i=1}^{j-1} (2^{n_i} - 1)$ $n_{\sigma}(x)$. Moreover, at the *f*tn $(f \le \sigma)$ construction step, a s
equations in $n \prod_{i=1}^{j-1} (2^{n_i} - 1)$ unknowns is being solved.

Unlike the method described above, Theorems 4 and 5 allow us to construct an irreducible polynomial $F(x)$ of degree nT by solving directly only 2^{σ} systems each of *n* equations in *n* unknowns.

It is worth noting here that Theorems 4 and 5 are only valid over *GF* (2).

ACKNOWLEDGMENTS

The author thanks Professor R. Varshamov for his helpful comments and suggestions made while working over this paper. I also thank the anonymous referees for a careful reading of my manuscript and for their very detailed comments. Their many helpful suggestions and corrections allowed me to improve the paper significantly.

REFERENCES

- 1. A. A. Albert, "Fundamental Concepts of Higher Algebra," University of Chicago Press, 1956.
- 2. M. K. Kyuregyan, On a method for constructing irreducible polynomials over Galois fields, *Dokl. Akad. Nauk Arm. SSR* 83 (1986), 58-61. [In Russian]
- 3. M. K. Kyuregyan, Permutations of Varshamov operator over Galois fields and their applications, *Dokl. Akad. Nauk Arm. SSR* 84 (1987), 159-163. [In Russian]
- 4. R. Peice and P. Egreen, "Communication Technique for Multipath Channels," Prac. 46, 1958.
- 5. S. Shwarz, On a class of polynomials over "nite "elds, *Mat*.-*fyzik*. *casopis SA*< 10 (1960), $68 - 80.$
- 6. R. R. Varshamov, On a method for constructing irreducible polynomials over finite fields, *Dokl. Akad. Nauk Arm. SSR* 79 (1984), 26-28. [In Russian]
- 7. R. R. Varshamov, A general method for constructing irreducible polynomials over Galois fields, *Dokl. Akad. Nauk SSSR* 275 (1984), 1041-1044. [In Russian]
- 8. R. R. Varshamov, On a theorem from the theory of irreducibility of polynomials, *Dokl*. *Akad*. *Nauk SSSR* 156 (1964), 1308-1311. [In Russian]
- 9. R. R. Varshamov, Operator permutations over Galois "elds, *Dokl*. *Akad*. *Nauk SSSR* 221 (1973), 768-771. [In Russian]
- 10. N. Zierler, Linear recurring sequences, *J. Soc. Induct. Appl. Math.* 7 (1959), 31–48.
- 11. R. Lidl and H. Niederreiter, Finite fields, *in* "Encyclopedia of Mathematics and Its Applications: Algebra,'' Vol. 20, Addison-Wesley, London/Amsterdam, Don Mills, Ontario/ Sydney/Tokyo, 1983.
- 12. S. D. Cohen, The explicit construction of irreducible polynomials over "nite "elds, *Designs*, *Codes Cryptogr.* 2 (1992), 169-174.
- 13. A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, &&Applications of Finite Fields,'' Chap. 3, Kluwer Academic Boston/Dordrecht/Lancaster, 1993.