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The paper is devoted to some results concerning the constructive theory of the
synthesis of irreducible polynomials over Galois "elds GF(q), q"2s. New methods for
the construction of irreducible polynomials of higher degree over GF(q) from a given
one are worked out. The complexity of calculations does not exceed O (n3) single
operations, where n denotes the degree of the given irreducible polynomial. Further-
more, a recurrent method for constructing irreducible (including self-reciprocal)
polynomials over "nite "elds of even characteristic is proposed. ( 2002 Elsevier Science
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This paper presents some results on the constructive theory of the synthesis
of irreducible polynomials over GF (2s). The problem of reducibility of poly-
nomials over Galois "elds is a case of special interest [1, 11, 12] and plays an
important role in modern engineering [4, 10, 13]. In particular, since the
binary system of notation is mainly used in computing systems, the problem
of the construction of irreducible polynomials over GF(2s) remains one of the
most important ones from practical point of view.

Let GF(q) be the Galois "eld of order q"ps, where p is a prime and s is
a natural number.

The degree of an element a over the ,eld GF(q) is said to be equal to k or a is
said to be a proper element of the "eld GF(qk) if a3GF(qk) and a NGF (qv) for
any proper divisor v of k. In this case we write deg

q
(a)"k.

Similarly, the degree of a subset A"Ma
1
, a

2
,2, a

r
)LGF (qk) over the "eld

GF(q) is said to be equal to k if for any proper divisor v of k there exists at
52
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least an element a
u
3A such that a

u
NGF (qv). In this case we write

deg
q
[a

1
, a

2
,2, a

r
N"k.

Only monic polynomials, i.e., the polynomials whose leading coe$cient is
equal to 1, are studied in this paper.

We will use the results obtained by Shwarz in [5] and [2] to prove the
following fact.

THEOREM 1. ¸et f (x)"+ n
u/0

c
u
xu be an irreducible polynomial over GF (q),

d, d
1
3GF(q), dO0 and

x(psn~1)@(p~1),1 (mod f (x!d
1
)). (1)

¹hen the polynomial

g (x)"xn f A
xp!d

1
x!d

x B
of degree n is irreducible over GF (q) if and only if the following relation holds

sn~1
+
u/0

dpux(pns~pu`1)@(p~1)I0 (mod f (x!d
1
)). (2)

Otherwise g(x) factors as the product of a p irreducible polynomials of degree n.

Proof. By using the irreducibility of f (x) over GF(q), we have the follow-
ing relation over GF(qn )

f (x)"
n~1
<
u/0

(x!aqu ). (3)

Substituting (xp!d
1
x!d)/x for x in (3) and multiplying both sides by xn,

we obtain

g (x)"
n~1
<
u/0

(xp!(d
1
#a)qux!d). (4)

By [5], the polynomial xp!(d
1
#a)x!d is irreducible over GF (qn) if both

the conditions (d
1
#a)(psn~1)@(p~1)"1 and

d
d
1
#a

#

dp

(d
1
#a)1`p

#

dp2

(d
1
#a)1`p`p2

#2#

dpsn~1

(d
1
#a)1`p`p2`

2

`psn~1

"

sn~1
+
u/0

dpu (d
1
#a)(pns~pu`1)@(p~1)O0
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are satis"ed. Then it follows from [2] that g (x) is irreducible over GF (q).
Hence if both conditions (1) and (2) are satis"ed then g (x) is irreducible over
GF(q).

By [5] the polynomial xp!(d
1
#a)x!d (where (d

1
#a)(psn~1)@(p~1)"1)

factors into a product of p linear factors (i.e., we have a relation of the form

xp!(d
1
#a)x!d"

p
<
v/1

(x!b
v
))

if and only if

sn~1
+
u/0

dpu(d
1
#a)(pns~pu`1)@(p~1)"0.

Then it is evident that

xp!(d
1
#a)qux!d"

p
<
v/1

(x!bqu
v

). (5)

From relations (4) and (5) we have that

g (x)"
p
<
v/1

n~1
<
u/0

(x!bqu
v

),

whereas it follows that g (x) factors as the product of p co-factors if and only if
both (1) and the condition

sn~1
+
u/0

dpux(pns~pu`1)@(p~1),0 (mod f (x!d
1
))

are satis"ed. This completes our proof. j

LEMMA 1. ¸et f (x)"+n
u/0

c
u
xu be an irreducible polynomial over GF(q)

that belongs to the exponent e and has at least one nonzero coe.cient c
1
, c

n~1
.

For a divisor t of q!1, suppose that

xt,R(x) (mod f (x)).

Also, let t (x)"+n
u/0

t
u
xu, where t

u
is a nontrivial solution of the relation

n
+
u/0

t
u
(R (x))u,0 (mod f (x)). (6)
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¹hen the polynomial t(x) (of degree n) is irreducible over GF(q) and belongs to
the exponent e/(t, e).

Proof. Let a be a root of the equation f (x)"0. By (6), we can easily verify
that at is the root of t(x). It will be su$cient then to show that at is the proper
element of GF(qn ). So, assume the contrary, namely that deg

q
(at )"d, where

d is a proper divisor of n. Consider separately two cases.
1. Let c

1
O0. Since

n~1
+
u/0
A
1

aB
qu
"!

c
1

c
0

or
1

a
n~1
+
u/0
A
1

aB
qu~1

"!

c
1

c
0

then, as t D (qu
!1), we have (1/a)qu~13GF (qd), which implies that

+n~1
u/0

(1/a)qu~13GF(qd). Also, in view of the fact that

a"!

c
0

c
1

n~1
+
u/0
A
1

aB
qu~1

3GF (qd ),

we have deg
q
(a)(n, which is impossible.

2. Let c
n~1

O0. Then, since +n~1
u/0

aqu"!c
n~1

or a +n~1
u/0

aqu~1"

!c
n~1

and as t D (qu!1), we have

a"!A
n~1
+
u/0

aqu~1B
~1

c
n~1

3GF (qd)

and therefore deg
q
(a)(n, which is also impossible.

The lemma is proved. j

THEOREM 2. ¸et dO0 be an arbitrary element in GF (q) and let
f (x)"+n

u/0
c
u
xu be any irreducible polynomial over GF(q) with coe.cients

satisfying the conditions

s~1
+
u/0
A
c
1
d

c
0
B
pu
O0, xp~1,R(x) (mod f (x)), and t (x)"

n
+
u/0

t
u
xu,

where t
u
is a nontrivial solution of the equation

n
+
u/0

t
u
(R (x))u,0 (mod f (x)).

¹hen the polynomial F(x)"xnt((xp!dp)/x) is irreducible over GF (q).

Proof. By Lemma 1, t (x) is irreducible over GF (q) and it is then obvious
that ap~1"h will be a root of t (x). Furthermore, by Theorem 1, F(x) is
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irreducible over GF (q) if h and d satisfy the conditions

sn~1
+
u/0

dpu`1h(pns~pu`1)@(p~1)O0 and h(pns~1)@(p~1)"1.

Later we will use the fact that h"ap~1 to simplify the above given conditions
as follows,

sn~1
+
u/0

dpu`1apns~pu`1
"aA

s~1
+
u/0
A
n~1
+
v/0
A

1

d~1aB
psv

B
pu

B
p

and

f (dx)"
n
+
u/0

c
u
(dx)u"

n
+
u/0

h
u
xu,

whereas h
1
"c

1
d and by Vieta's theorem

s~1
+
u/0
A
n~1
+
v/0
A

1

d~1aB
psv

B
pu

"

s~1
+
u/0
A!

c
1
d

c
0
B
pu
O0.

Besides, h(pns~1)@(p~1)"apns~1"1. Thus if +s~1
u/0

(!c
1
d/c

0
)pu

O0, then F (x) is
irreducible over GF (q). The theorem is proved. j

Based on the results obtained above we now give a recurrent method for
constructing irreducible polynomials over GF (2s).

Let f (x)"+n
u/0

c
u
xu be an polynomial of degree n over GF (2s). Consider

the quadratic mapping

f (x)Pxn f A
x2#d2

x B"fJ (x) (d3GF (2s), dO0)

onto the ring GF(2s) [x]. Assume that A is an operator de"ned over the
ring GF (2s) [x] that maps f (x) onto A f (x)"f ((x2#d2 )/x), where d3GF (2s)
and dO0, if f (x)3GF(2s) [x]. Here Am f (x) (m'1) signi"es Am f (x)"
A(Am~1 f (x)).

We start our study with the simplest case, when f (x)"x. Then we have

Ax"
x2#d2

x
"

a
1
(x)

b
1
(x)

,
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where a
1
(x)"x2#d2, b

1
(x)"x and

A2x"A
a
1
(x)

b
1
(x)

"

x2Aa
1
(x)

x2Ab
1
(x)

"

a
2
(x)

b
2
(x)

,

where

a
2
(x)"x2A (a

1
(x))"a2

1
(x)#(db

1
(x))2,

b
2
(x)"x2Ab

1
(x)"a

1
(x)b

1
(x).

Now, for each integer m'1, set Amx"(a
m
(x)/b

m
(x)), where

a
m
(x)"x2m~1Aa

m~1
(x)"a2

m~1
(x)#(db

m~1
(x))2,

b
m
(x)"x2m~1Ab

m~1
(x)"a

m~1
(x)b

m~1
(x)

(7)

under the initial conditions a
1
(x)"x2#d2 and b

1
(x)"x.

In this, for m#1, by (7), we have that

Am`1x"A (Amx)"A
a
m
(x)

b
m
(x)

"A
a2
m~1

(x)#(db
m~1

(x))2

a
m~1

(x)b
m~1

(x)

"

(x2m~1Aa
m~1

(x))2#(dx2m~1Ab
m~1

(x))2

(x2m~1Aa
m~1

(x))(x2m~1Ab
m~1

(x))
"

a2
m
(x)#(db

m
(x))2

a
m
(x)b

m
(x)

i.e., Am`1x"a
m`1

(x)/b
m`1

(x), where

a
m`1

(x)"a2
m
(x)#(db

m`1
(x))2,

b
m`1

(x)"a
m
(x)b

m
(x).

Thus, by induction, for any m, we have

Amx"
a
m
(x)

b
m
(x)

,

or, in more general form,

Am f (x)"f A
a
m
(x)

b
m
(x)B ,
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where a
m
(x) and b

m
(x) are functional sequences de"ned by (7). But it can be

shown easily that

fJ (x)"xnA f (x),

where we have

fJ (x)"(b
1
(x))n f A

a
1
(x)

b
1
(x)B"f

1
(x).

Since f
1
(x) is a polynomial of degree 2n, then

fJ
1
(x)"x2nA(b

1
(x))nA f A

a
1
(x)

b
1
(x)B

"x2n(Ab
1
(x))n f A

Aa
1
(x)

Ab
1
(x)B .

(8)

From expression (8), in view of (7), we obtain

fJ
1
(x)"(b

2
(x))n f A

a
2
(x)

b
2
(x)B"f

2
(x).

Consider now for any m'1 the following relation:

f
m
(x)"(b

m
(x))n f A

a
m
(x)

b
m
(x)B .

In this case

fJ
m
(x)"x2mn(A (b

m
(x)))nA f A

a
m
(x)

b
m
(x)B .

Moreover, by (7) we have

fJ
m
(x)"(b

m`1
(x))n f A

a
m`1

(x)

b
m`1

(x)B"f
m`1

(x),

which is the same as

f
m`1

(x)"
n
+
u/0

c
u
au
m`1

(x)bn~u
m`1

(x).
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The polynomial fJ (x) is irreducible over GF (2s) by Theorem 1, if

s~1
+
u/0
A
c
1
d

c
0
B
2u

"1. (9)

Then it should be evident that in the polynomial

fJ (x)"
n
+
u/0

c
u
(x2#d2)uxn~u"

2n
+
u/0

h(1)
u

xu"f
1
(x)

the coe$cients h(1)
2n
"c

n
"1, h(1)

0
"c

n
d2n"d2n and the coe$cients for the

1st and (2n!1)th degrees of the variable are

h(1)
1
"c

n~1
d2(n~1), h(1)

2n~1
"c

n~1
.

It may be easily seen that for any m the coe$cients in the polynomial

f
m
(x)"fJ

m~1
(x)"

2mn
+
u/0

h(m)
u

xu

are of the following form:

h(m)
0

"d2mn ; h(m)
1

"c
n~1

d2mn~2 ; h(m)
2mn~1

"c
n~1

; h(m)
2mn

"1.

This property of the coe$cients combined with the relation (9) leads us to the
conclusion that for any m the polynomial

f
m
(x)"

n
+
u/0

c
u
au
m
(x)bn~u

m
(x)

is irreducible over GF (2s), if

s~1
+
u/0

A
c
1
d

c
0
B
2u

"1 and
s~1
+
u/0

A
c
n~1
d B

2u

"1.

Thus the following theorem holds.

THEOREM 3. ¸et dO0 be an element of GF(2s) and f (x)"+n
u/0

c
u
xu be any

irreducible polynomial over GF(2s) whose coe.cients satisfy the conditions

s~1
+
u/0
A
c
1
d

c
0
B
2u

"1 and
s~1
+
u/0
A
c
n~1
d B

2u

"1,
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where a
m
(x) and b

m
(x) (m'1) are sequences of functions de,ned by the

recurrent equations

a
m
(x)"a2

m~1
(x)#(db

m~1
(x))2,

b
m
(x)"a

m~1
(x)b

m~1
(x)

under the initial conditions a
1
(x)"x2#d2 and b

1
(x)"x. ¹hen the poly-

nomial

F (x)"
n
+
u/0

c
u
au
m
(x)bn~u

m
(x)

of degree 2mn is irreducible over GF (2s).

For the case when f (x)"x#a (a3GF(2s), aO0) we have the following
corollaries.

COROLLARY 1. ¹he polynomial u
m
(x)"a

m
(x)#ab

m
(x) (which is the same

as u
m
(x)"x2m~1u

m~1
((x2#d2 )/x)) of degree 2m is irreducible over GF (2s) if

both the conditions

s~1
+
u/0
A
d
aB

2u

"1 and
s~1
+
u/0
A
a

dB
2u

"1

are satis,ed.

COROLLARY 2. ¸et s be an odd integer, dO0 be any element of GF(2s), and
the sequence of functions u

m
(x) be de,ned by

u
m
(x)"a

m
(x)#db

m
(x),

under the initial condition u
0
"x#d. ¹hen, the polynomial u

m
(x) of degree 2m

de,ned by the recurrent relation

u
m
(x)"x2m~1u

m~1 A
x2#d2

x B
(which is the same as

u
m
(x)"u2

m~1
(x)#dx

m~2
<
u/0

u2
u
(x))

is irreducible over GF(2s).
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Proof. From u
m
(x)"a

m
(x)#db

m
(x) we obtain

u
m
(x)"a2

m~1
(x)#(db

m~1
(x))2#da

m~1
(x)b

m~1
(x) (10)

and

u
m
(x)"u2

m~1
(x)#da

m~1
(x)b

m~1
(x).

By (7) we have that

b
m~1

(x)"a
m~2

(x)b
m~2

(x)"a
m~2

(x)a
m~3

(x)b
m~3

(x),

and hence

b
m~1

(x)"a
m~2

(x)a
m~3

(x) ) ) ) ) ) a1
(x)b

1
(x). (11)

Substituting relation (11) in formula (10) and using the fact that
a
u
(x)"u2

u~1
(x) and b

1
(x)"x, we obtain

u
m
(x)"u2

m~1
(x)#dx

m~2
<
u/0

u2
u
(x).

But, according to Corollary 1, the polynomial u
m
(x) is irreducible over

GF(2s), since the conditions a"d and the oddness of s imply that

s~1
+
u/0
A
d
aB

2u

"

s~1
+
u/0

1"1 and
s~1
+
u/0
A
a

dB
2u

"1.

Thus Corollary 2 is proved. j

In particular, for s"1 this Corollary 2 matches with Theorem 5 given by
Varshamov in [8].

It is easy to prove that for d"1 the polynomial fJ (x) is a self-dual
polynomial. Indeed,

fJ *(x)"x2n A
1

xB
n
f C

(1/x)2#1

1/x D"xn f A
x2#1

x B"fJ (x);

i.e., fJ (x)"fJ * (x), where f *(x)"xn f (1/x). This fact plays an important role in
the theory of the synthesis of irreducible self-dual polynomials and allows the
construction of irreducible self-dual polynomials of high degrees over GF (2s)
in explicit form.
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COROLLARY 3. ¸et f (x)"+n
u/0

c
u
xu be an irreducible polynomial over

GF(2s) whose coe.cients satisfy the conditions

s~1
+
u/0
A
c
1

c
0
B
2u

"1 and
s~1
+
u/0

(c
n~1

)2u
"1.

¹hen, the self-dual polynomial

F(x)"
n
+
u/0

c
u
au
m
(x)bn~u

m
(x)

of degree 2mn is irreducible over GF (2s).

For s"1 this corollary matches with Theorem 4 given by Varshamov
in [7].

Notice that we have from Theorem 2 that f (x)Ot (x) for pO2; i.e., a result
analogous to the one in Theorem 3 is not valid for "nite "elds of odd
characteristic.

Now we shall pass to the construction of irreducible polynomials. We will
give later a method to construct irreducible polynomials of high degrees over
GF(2) in explicit form using Varshamov's results obtained in [8], thus
continuing this work.

We start by introducing Varshamov's operator [8]

¸h f (x)"
1

h(x)

n
+
u/0

m
+
v/0

a
u
h
v
xvqu,

where f (x)"+n
u/0

a
u
xu and h (x)"+m

v/0
h
v
xv, a

u
, h

v
3GF(q).

Let + p"M f
1
(x), f

2
(x),2, fp(x)N be a set of p primitive polynomials with

pairwise relatively prime degrees n
1
, n

2
, n

3
,2, np (n

i
'1), respectively, over

GF(2); ¹"<p
i/1

(2ni!1); u (x) is an irreducible polynomial of degree n over
GF(2); gcd(n, ¹ )"1; Gp is the selection of all possible sequences
e"(e

1
, e

2
,2, ep ) of length p, where e

i
"0 or 1. Furthermore, let for any

sequence e3Gp

f (x, e, +
p
)"¸x

p
<
i/1

f
i
(x)ei,

x f (x, e, +
p
),R(e)(x) (modu(x)),
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and t(e)(x)"+n
u/0

t(e)
u

xu, where t(e)
u

is a nontrivial solution of the congruence

n
+
u/0

t(e)
u

(R(e)(x))u,0 (modu(x)).

Then we have the following theorem.

THEOREM 4. ¹he polynomials

F (x)"(u(x))(~1)p
<e|Gp

2 D(p~De D)
t(e)(x f (x, e, + p))

<e|Gp
2P(p~De D)

t(e)(x f (x, e, +
p
))

(12)

and t(v)(x) of degree n¹ and n, respectively (where DeD"+p
i/1

e
i
and v3Gp ), are

irreducible over GF (2).

Proof. For n"1 the validity of the theorem follows directly from [8].
Therefore we prove the theorem for the case when n'1. By [8], the
polynomial

H(x)"
<e|Gp

2 D(p~De D)
f (x, e, +

p
)

<e|Gp
2P(p~DeD)

f (x, e, +
p
)

of degree ¹ is irreducible over GF (2). But gcd (n, ¹ )"1, and therefore H(x)
is also irreducible over GF (2n). Then it should be evident that

H(x)"x(~1)p
<e|Gp

2 D(p~De D)
x f (x, e, +

p
)

<e|Gp
2P(p~DeD)

x f (x, e, +
p
)
.

Therefore, if a is the root of the equation u (a)"0, then by [2] since n'1, for
the coe$cients of the polynomial H (x!a)"h (x)"+T

u/0
h
u
xu we have that

deg
2

(h
0
, h

1
,2, h

T~1
)"n. Hence h(x) is irreducible over GF (2n). Further-

more, since h(v)(x)"H (x!a2v)"+T
u/0

h2v

u
xu then the polynomial

H
1
(x)"<n~1

v/0
h(v)(x) is irreducible over GF (2) by [2]. Hence

H
1
(x)"

n~1
<
v/0

(x!a2v )(~1)p
<e|Gp

2 D(p~De D)
(x f (x, e, +

p
)!b2v

e )

< e|Gp
2P(p~DeD)

(x f (x, e, +
p
)!b2v

e )
,

where

f (x, e, +
p
)"

re
+
v/0

b(e)
v

x2v, be"
re
+
v/0

b(e)
v

a2v, and re"
p
+
i/1

e
i
n
i
,
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or

H
1
(x)"u(x)(~1)p

<e|Gp
2 D(p~De D)

<n~1
v/0

(x f (x, e, +
p
)!b2v

e )

< e|Gp
2P(p~De D)

<n~1
v/0

(x f (x, e, + p )!b2v

e )
. (13)

We show now that be is a proper element of GF (2n) for any e. Assume the
contrary, namely that deg

2
(be)"d, where d is a proper divisor of n. Let

+
k
"M f

i1
(x), f

i2
(x),2, f

ik
(x)N be any subset of +p containing k elements

f
i1
(x), f

i2
(x),2, f

ik
(x); then by [8], the polynomial

j(x, +
k
)"

< e|Gk
2 D(k~De D)

f (x, e, +
k
)

< e|Gk
2P(k~De D)

f (x, e, +
k
)

of degree ¹
k
"<k

u/0
(2niu!1) is irreducible over GF (2). Using the fact that

gcd(¸xg
1
(x), ¸xg

2
(x))"¸xgcd(g

1
(x), g

2
(x)) along with the separability of the

expression f (x, e, +
k
) in [6], we "nd that

gcd(j(x, +
k
), f (x, e, +p))"1,

if DeD(k, and gcd(j(x, +
k
), f (x, e, +p))"j(x, +

k
), if +

k
L+ De D/t

"

M f
j1
(x), f

j2
(x),2, f

jt
(x)N.

There are exactly ct~kp~k
subsets + De D/t

containing +
k
. This means that

j(x, +
k
) is a divisor of the polynomial <De D/t

f (x, e, +p ) of multiplicity ct~kp~k
.

Hence, if we set k"+
2 Du

cup~k
and k

1
"+

2Pu
cup~k

, then j (x, +
k
) will be

a divisor of the polynomials <e|Gp
2P(p~De D)

f (x, e, +p) and <e|Gp
2D(p~De D)

f (x, e, +p ) of

multiplicity k and k
1
, if p is odd and k

1
and k, respectively, if p is even. It

follows from the factorization (x!1)p~k"+p~k
u/0

cup~k
xu that k is the sum of

the coe$cients of the even degrees of x and k
1

is the sum of the coe$cients of
odd degrees of x. Therefore k!k

1
"(1!1)p~k"0. Hence j (x, +

k
) occurs

with the same multiplicity in <e|Gp
2P(p~De D)

f (x, e, +p ) and in < e|Gp
2D(p~De D)

f (x, e, +p )

and hence with the multiplicity of zero in their quotient.
Now using the procedure described above, for any e (for example De D"t

and e
i1
"e

i12
"e

i1
2"e

it
"1), we obtain

j (x, + De D/t
)"

¸x < t
u/1

f
iu (x)

< t~1
k/1

<+
k
L+

t
j(x, +

k
)
,

where the polynomials j(x, + De D
) and j (x, +

k
) of degree ¹

t
"< t

u/1
(2niu!1)

and ¹
k
"<k

u/1
(2niju!1), respectively, are irreducible over GF (2). Since

gcd(n, ¹
t
)"1 and gcd(n, ¹

k
)"1, then the polynomials j(x, +

t
) and j (x, +

k
)

will be also irreducible over GF (2n). Then for the coe$cients of the
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polynomials

j(x!a, +
t
)"

Tt
<
u/0

j
u
xu,

j (x!a, +
k
)"

Tk
<
u/0

j@
u
xu

(14)

by [2] since n'1, we have that deg
2
(j

0
, j

1
,2, j

Tt
)"n and

deg
2
(j@

0
, j@

1
,2, j@

Tk
)"n and the polynomials (14) are irreducible over GF

(2n). Besides also using the following easily provable fact that

j (x!a2v, +
t
)"

Tt
<
u/0

j2v

u
xu,

j (x!a2v, +
k
)"

Tk
<
u/0

j@2v

u
xu,

we have by [8] that the polynomials

F
1
(x, +

t
)"

n~1
<
u/0

j(x!a2u, +
t
),

F
1
(x, +

k
)"

n~1
<
v/0

j (x!a2v, +
k
)

are irreducible over GF (2). Hence we obtain

F
1
(x, +

t
)"

<n~1
v/0

(x¸x < t
u/1

f
iu (x)

!(+N
u/0
<
u
a2u )2v)

u (x) < t~1
k/0

<+
k
L+

t
F
1
(x, +

k
)

, (15)

where x¸x < t
v/0

f
iv(x)

"+N
u/0
<
u
x2u and N"+ t

u/1
n
iu
. It should be noted

here that, because of the separability of the polynomial
x¸x < t

v/0
f
iv
(x)!+N

u/0
<
u
a2u, the polynomials j(x!a, +

t
) and j (x!a, +

k
)

(k(t) are di!erent; this implies that for pairwise relative primes n
1
, n

2
,2, np

(n
i
'1), the polynomials F

1
(x, +

t
) and F

1
(x, +

k
) (k(t) are also di!erent.

Thus, if deg
2
(+N

u/0
<
u
a2u )"d, then

n~1
<
v/0
Ax!A

N
+
u/0

<
u
a2uB

2v

B"(t (x, +
t
))M,
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where n"dM and M'1. Hence, by (15) we have

F
1
(x, +

t
)"

t(x¸x < t
u/1

f
iu (x)

, +
t
)M

u (x) < t~1
k/1

<+
k
L+

t
F
1
(x, +

k
)
.

But since the polynomials u (x) and F
1
(x, +

k
) (+

k
L+

t
) are di!erent and

irreducible over GF (2), we obtain that

F
1
(x, +

t
)"tAx¸x

t
<
u/1

f
iu(x)

, +
tB

M~1
G(x),

which is impossible since F
1
(x, +

t
) is irreducible over GF (2).

Hence M"1 and, for any e, be is a proper element GF (2n), which in its turn
determines irreducibility of the polynomials t(e) (x)"<n~1

u/0
(x!b2u

e ) over
GF (2) for any e. Thus, in view of (13) the polynomial (12) is irreducible over
GF (2).

It should now be clear that

t(e)(R(e)(x)),0 (modu (x))

or

n
+
u/0

t(e)
u

(R(e)(x))u,0 (modu (x)).

Thus the theorem is proved. j

In exactly the same way as in Theorem 1 we can prove the following fact.

THEOREM 5. ¸et d3M0, 1, 2N gcd(n, 2d <p
i/1

(2ni!1))"1;

h (x)"x¸x(x#1)d#1;

f (h, e, +
p
)"h (x)¸h

p
<
i/1

f
i
(x)ei ;

(h(x)#1)¸h`1
p
<
i/1

f
i
(x)ei,R(e) (x) (modu(x));

h (x)#1,=(x) (mod u(x));

t(e)(x)"
n
+
u/0

t(e)
u

xu, and u (x)"
n
+
u/0

u
u
xu ;
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where t(e)
u

and u
u
are nontrivial solutions of the congruences

n
+
u/0

t(e)
u

(R(e)(x))u,0 (modu (x))

and

n
+
u/0

u
u
(=(x))u,0 (modu (x)),

respectively. ¹hen the polynomials t(v)(x), u(x) of degree n and the polynomial

F (x)"(u (h (x)))(~1)p
< e|Gp

2 D(p~De D)
t(e)( f (h, e, +

p
))

< e|Gp
2P(p~De D)

t(e)( f (h, e, + p ))

of degree 2dn¹ are irreducible over GF (2).

Remark. It follows from [9] and [3] that if the following two conditions
hold,

gcd(nr, qm!1)"1, g (x)"
m
+
v/0

b
v
xv(g (x)Ox!1),

where g(x) is a primitive polynomial over GF (q), f (x)"+n
u/0

a
u
xu is an

irreducible polynomial over GF (qr),

px
q
(g (x), 0)"

n
+
u/0

a
u A

m
+
v/0

b
v
xqvB

u
,R (x) (mod f (x)),

and t(x)"+n
u/0

t
u
xu, where t

u
is a nontrivial solution of the congruence

n
+
u/0

t
u
(R (x))u,0 (mod f (x)),

then the polynomials t (x) and F (x)"( f (x))~1pt
q
(g (x), 0) of degree n and

n(qm!1), respectively, are irreducible over GF(qr).
It is evident now that based on the above remark we may construct

a polynomial F (x) of degree n¹(¹"<p
i/1

(2ni!1), gcd(n, ¹ )"1) irredu-
cible over GF (2) wherever the conditions of Theorem 4 are satis"ed.

Thus to construct F (x) the polynomials F
1
(x), F

2
(x),2,Fp (x)"F (x) are

constructed successively. F
1
(x) of degree n (2n1!1) is constructed by means of

the polynomials u (x) and f
1
(x) (see Theorem 4). F

2
(x) is constructed with the

help of F
1
(x) and the primitive polynomial f

2
(x),2, Fp (x) using Fp~1

(x) and
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fp (x). Moreover, at the jth ( j4p) construction step, a set of n <j~1
i/1

(2ni!1)
equations in n < j~1

i/1
(2ni!1) unknowns is being solved.

Unlike the method described above, Theorems 4 and 5 allow us to
construct an irreducible polynomial F (x) of degree n¹ by solving directly
only 2p systems each of n equations in n unknowns.

It is worth noting here that Theorems 4 and 5 are only valid over GF (2).
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