doi:10.1006/aama.2001.0767, available online at http://www.idealibrary.com on IDE

Shuffle Invariance of the Super-RSK Algorithm

Amitai Regev and Tamar Seeman

Department of Theoretical Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

E-mail: regev@wisdom.weizmann.ac.il, tamars@wisdom.weizmann.ac.il

Received December 4, 2000; accepted April 4, 2001

As in the (k, l)-RSK (Robinson–Schensted–Knuth) of A. Berele and A. Regev (1987, Adv. Math. 64, 118–175), other super-RSK algorithms can be applied to sequences of variables from the set $\{t_1, \ldots, t_k, u_1, \ldots, u_l\}$, where $t_1 < \cdots < t_k$ and $u_1 < \cdots < u_l$. While the (k, l)-RSK is the case where $t_i < u_j$ for all i and j, these other super-RSK's correspond to all the $\binom{k+l}{k}$ shuffles of the t's and u's satisfying the above restrictions that $t_1 < \cdots < t_k$ and $u_1 < \cdots < u_l$. We show that the shape of the tableaux produced by any such super-RSK is independent of the particular shuffle of the t's and u's. @ 2002 Elsevier Science (USA)

1. INTRODUCTION

We follow the tableau terminology of [7]. The classical Frobenius-Schur-Weyl theory shows how the SSYT (semistandard Young tableaux) determine the representations of $GL(m, \mathbb{C})$ (or $gl(m, \mathbb{C})$). Here $GL(m, \mathbb{C})$ ($gl(m, \mathbb{C})$) is the general linear Lie group (algebra). Also, SYT (standard Young tableaux) play an important role here. The notion of (k, l) SSYT is introduced in [1], where similar relationships between such tableaux and the representations of pl(k, l) are shown. Here pl(k, l) is the general linear Lie super-algebra.

The (k, l) SSYT are defined, via a (k, l)-RSK algorithm, as follows [1]. Fix integers $k, l \ge 0, k + l > 0$, and k + l symbols $t_1, \ldots, t_k, u_1, \ldots, u_l$ such that $t_1 < \cdots < t_k < u_1 < \cdots < u_l$. Let

$$a_{k,l}(n) = \left\{ \begin{pmatrix} 1 \cdots n \\ v_1 \cdots v_n \end{pmatrix} \mid v_i \in \{t_1, \ldots, t_k, u_1, \ldots, u_l\} \right\}.$$

To map $a_{k,l}(n)$ to pairs of tableaux (P, Q), apply to each $v \in a_{k,l}(n)$ the (k, l)-RSK, in which the usual RSK insertion algorithm [7] is applied to the

 t_i 's and the conjugate correspondence (see [1]) is applied to the u_j 's; see the examples below. By the definitions of [1], the *insertion tableau*, P = P(v), mapped from $v \in a_{k,l}(n)$, is (k, l) semistandard; that is, it satisfies the following three properties:

- (a) The "t part" (i.e., the cells filled with t_i 's) is a tableau.
- (b) The t_i 's are nondecreasing in rows, strictly increasing in columns.
- (c) The u_i 's are nondecreasing in columns, strictly increasing in rows.

As in the usual correspondence, the *recording tableau*, Q = Q(v), indicates the order in which the new cells were added to P. Clearly, Q is SYT having the same shape as that of P.

A total order of $\{t_1, \ldots, t_k, u_1, \ldots, u_l\}$, which is compatible with $t_1 < \cdots < t_k$ and $u_1 < \cdots < u_l$, is called a *shuffle* (of t_1, \ldots, t_k and u_1, \ldots, u_l). For example, $t_1 < u_1 < u_2 < t_2$ is such a shuffle, compatible with $t_1 < t_2$ and $u_1 < u_2$. Clearly, there are $\binom{k+l}{k}$ such shuffles; of these, Berele and Regev chose to work with $t_1 < \cdots < t_k < u_1 < \cdots < u_l$, which we call *the* (k, l) *shuffle* (see [1, 2.4]). The shuffle $t_1 < u_1 < t_2 < u_2 < \cdots < t_k < u_k$, with its corresponding SSYT, appears in Section 4 of [3].

Let I = I(k, l) denote the set of all such $\binom{k+l}{k}$ shuffles. Given $A \in I$, there is a corresponding A-RSK insertion algorithm; if $v \in a_{k,l}(n)$, then $v \longrightarrow_{A} (P, Q)$ by that algorithm. $P = P_A = P(v, A)$ is the insertion tableau, and $Q = Q_A = Q(v, A)$ is the recording tableau. Here P is an A-SSYT; that is, it satisfies the following three properties:

- (a) *P* is weakly *A*-increasing in both rows and columns.
- (b) The t_i 's are strictly increasing in columns.
- (c) The u_i 's are strictly increasing in rows.

EXAMPLE. Let $k = l = 2, A, B \in I = I(2, 2)$, where

$$A: t_1 < t_2 < u_1 < u_2$$
 and $B: u_1 < u_2 < t_1 < t_2$.

Let

$$v = \begin{pmatrix} 1 \cdots 4 \\ u_2, t_1, t_2, u_1 \end{pmatrix}.$$

Then

$$v \xrightarrow{A} \begin{bmatrix} u_2 \end{bmatrix} \begin{bmatrix} t_1 & u_2 \end{bmatrix} \begin{bmatrix} t_1 & t_2 & u_2 \end{bmatrix} \begin{bmatrix} t_1 & t_2 & u_2 \end{bmatrix} = P_A,$$

while

$$v \xrightarrow{B} u_2$$
 $u_2 t_1$ $u_2 t_1 t_2$ $u_1 u_2 t_2 = P_B.$

Thus $v \xrightarrow{A} (P_A, Q)$ and $v \xrightarrow{B} (P_B, Q)$, where

$$Q = \boxed{\begin{array}{c|c} 1 & 2 & 3 \\ \hline 4 & \end{array}}$$

and P_A and P_B are as above.

DEFINITION. Denote by $sh(v, A) = sh(P_A)$ the shape of the insertion tableau $P(v, A) = P_A$ of $v \in a_{k,l}(n)$ under the A-RSK.

Given a shuffle $A \in I$ and the pair (P, Q), where P is A-SSYT, Q is SYT, and sh(P) = sh(Q), the A insertion algorithm can obviously be reversed. Standard arguments (see, e.g., [7, Chap. 7]) yield the following result.

THEOREM 1. Let $A \in I$ be a shuffle. Then the A-RSK insertion algorithm $v \xrightarrow{}_{A} (P_A, Q_A)$ is a bijection between $a_{k,l}(n)$ and

$$\{(P_A, Q_A) \mid P_A \text{ is } A\text{-}SSYT, Q_A \text{ is } SYT, \operatorname{sh}(P_A) = \operatorname{sh}(Q_A)\}$$

Remark. Denote such a tableau $P = (P_{i,j})$ and denote $<_A$ by <. Clearly, if $P_{i,j} = t_r$, then $P_{i,j-1} \le P_{i,j} \le P_{i,j+1}$ and $P_{i-1,j} < P_{i,j} < P_{i,j+1}$. Similarly, if $P_{i,j} = u_r$, then $P_{i,j-1} < P_{i,j} < P_{i,j+1}$ and $P_{i-1,j} \le P_{i,j} \le P_{i,j+1}$.

Denote by sh(v, A) the shape of tableaux P(v, A) and Q(v, A). This brings us to our main result.

THEOREM 2. Let $v \in a_{k,l}(n)$, $A, B \in I, v \longrightarrow (P_A, Q_A)$, and $v \longrightarrow (P_B, Q_B)$. Then $sh(P_A) = sh(P_B)$. Consequently, $Q_A = Q_B$.

In other words, the shape of the tableau obtained through any of the (k, l)-shuffle-RSK algorithms is independent of the particular shuffle of the *t*'s and *u*'s.

DEFINITION. Let $A \in I$ and $\lambda \vdash n$, that is, a partition of *n*. Let $\mathfrak{I}_A(\lambda)$ denote the set of the *A*-SSYT of shape λ :

$$\mathfrak{I}_A(\lambda) = \{T \mid T \text{ is } A\text{-SSYT, } \operatorname{sh}(T) = \lambda\}.$$

Recall the definition of type(T) from [7, p. 309]. Theorem 2 implies the following.

THEOREM 3 [6]. Let $A, B \in I, \lambda \vdash n$. Then there exists a bijection $\varphi: \mathfrak{F}_A(\lambda) \to \mathfrak{F}_B(\lambda)$ such that, for all $T \in \mathfrak{F}_A(\lambda)$, type $(T) = \text{type}(\varphi(T))$. (In fact, there exist (at least) d_{λ} such canonical bijections, where d_{λ} is the number of SYT's of shape λ .)

Theorem 3 appears in [6], where it is proven by a different method. Our proof of the theorem is as follows.

Proof of Theorem 3. The proof is based on the following diagram:

Thus choose an SYT Q of shape λ . Given $P = P_A \in \mathfrak{I}_A(\lambda)$, we get

$$(P_A, Q) \xrightarrow[\text{inverse}]{\text{inverse}} v \xrightarrow[B-RSK]{B-RSK} (P_B, Q)$$

This defines the bijection $\varphi = \varphi_Q : \varphi(P_A) = P_B$. Clearly, type $(P_A) =$ type (P_B) and, by Theorem 2, sh $(P_A) =$ sh (P_B) .

Recall from [2] the notation w(T) for the weight of a tableau T. For example, let

$$T = \begin{bmatrix} t_1 & t_1 & u_2 & u_3 \\ t_2 & t_3 & u_2 \\ \hline u_1 & u_3 \\ \hline u_1 \end{bmatrix}$$

Then $w(T) = x_1^2 x_2 x_3 y_1^2 y_2^2 y_3^2$. Also, recall the "hook" (or the "super") Schur function

$$HS_{\lambda}(x; y) = HS_{\lambda}(x_1, \dots, x_k; y_1, \dots, y_l)$$
 [1,2].

When A is the shuffle $A_0: t_1 < \cdots < t_k < u_1 < \cdots < u_l$, $HS_{\lambda}(x; y)$ is given by

$$HS_{\lambda}(x_1,\ldots,x_k;y_1,\ldots,y_l) = \sum_{T \in \mathfrak{I}_{\mathcal{A}_0}(\lambda)} w(T)$$

[1, Theorem 6.10]. See also [4-6].

Theorem 3 implies the following.

COROLLARY 4. For any $A \in I$,

$$HS_{\lambda}(x_1,\ldots,x_k;y_1,\ldots,y_l) = \sum_{T\in\mathfrak{T}_{\mathcal{A}}(\lambda)} w(T).$$

Given a shuffle $A \in I$, the A-RSK is based on A, on the regular RSK for the t_i 's, and on the conjugate-regular RSK for the u_j 's.

In addition to the regular RSK, there is also the dual RSK [7, p. 331]. Given the shuffle $A \in I$, this leads to four possible A insertion algorithms: either the regular or the dual for the t_i 's and either the conjugate regular or

the conjugate dual for the u_j 's. In fact, the previous A-RSK is (*t*-regular, *u*-conjugate-regular), which we denote as the (regular, regular)-A-RSK. Similarly, (*t*-regular, *u*-dual-conjugate) is the (regular, dual)-A-RSK. Similarly for the algorithms (dual, regular)-A-RSK and (dual, dual)-A-RSK. Each of these three new insertion algorithms exhibits a similar shape invariance under all shuffles $A \in I$.

- . . -

THEOREM 5. (a) Let
$$v \in a_{k,l}(n)$$
 and $A, B \in I$ such that
 $v \xrightarrow{\text{(regular, regular)-}A-RSK} (P_A^*, Q_A^*), \quad v \xrightarrow{\text{(regular, regular)-}B-RSK} (P_B^*, Q_B^*)$
Then $\operatorname{sh}(P_A^*) = \operatorname{sh}(P_B^*)$. Consequently, $Q_A^* = Q_B^*$.
(b) Let $v \in a_{k,l}(n)$ and $A, B \in I$ such that
 $v \xrightarrow{\text{(regular, dual)-}A-RSK} (P_A^*, Q_A^*), \quad v \xrightarrow{\text{(regular, dual)-}B-RSK} (P_B^*, Q_B^*)$.
Then $\operatorname{sh}(P_A^*) = \operatorname{sh}(P_B^*)$. Consequently, $Q_A^* = Q_B^*$.
(c) Let $v \in a_{k,l}(n)$ and $A, B \in I$ such that
 $v \xrightarrow{\text{(dual, regular)-}A-RSK} (P_A^*, Q_A^*), \quad v \xrightarrow{\text{(dual, regular)-}B-RSK} (P_B^*, Q_B^*)$.
Then $\operatorname{sh}(P_A^*) = \operatorname{sh}(P_B^*)$. Consequently, $Q_A^* = Q_B^*$.
(d) Let $v \in a_{k,l}(n)$ and $A, B \in I$ such that
 $v \xrightarrow{\text{(dual, regular)-}A-RSK} (P_A^*, Q_A^*), \quad v \xrightarrow{\text{(dual, regular)-}B-RSK} (P_B^*, Q_B^*)$.
Then $\operatorname{sh}(P_A^*) = \operatorname{sh}(P_B^*)$. Consequently, $Q_A^* = Q_B^*$.
(d) Let $v \in a_{k,l}(n)$ and $A, B \in I$ such that
 $v \xrightarrow{\text{(dual, dual)-}A-RSK} (P_A^*, Q_A^*), \quad v \xrightarrow{\text{(dual, dual)-}B-RSK} (P_B^*, Q_B^*)$.
Then $\operatorname{sh}(P_A^*) = \operatorname{sh}(P_B^*)$. Consequently, $Q_A^* = Q_B^*$.

Clearly, Theorem 5(a) is Theorem 2 above. The proof of Theorem 2 is given in the next section, which is the main body of this paper. First we describe the A-RSK algorithm in detail. The main step in the proof of Theorem 2 is Lemma 2.15, which shows that a transposition of the variables in the shuffle (i.e., a single change in the order of some t_i and u_j) does not alter the shape of the resulting tableaux. In Section 3 we prove the remaining parts (b), (c), and (d) of Theorem 5, essentially by deducing them from Theorem 2.

2. INVARIANCE OF SHAPE

As in the (k, l)-RSK, the A-RSK insertion algorithm involves applying the usual RSK correspondence to the t_i 's, and the conjugate correspondence to the u_i 's. This is illustrated in the following example.

DEFINITION 2.1. For $i, j \in \mathbb{Z}^+$, let c(i, j) denote the cell in row *i* and column *j* of a given tableau.

EXAMPLE 2.2. Under the shuffle $A = t_1 < u_1 < t_2 < u_2 < t_3$, perform the insertion

$$\begin{array}{c|cccc} u_1 & t_2 & t_2 \\ \hline u_1 & u_2 \\ \hline t_3 \end{array} \leftarrow t_1.$$

(a) $t_1 < u_1 \implies t_1$ occupies c(1, 1). Now, a u_i is always bumped to the next column; hence u_1 is bumped to column 2.

(b) $u_1 < t_2 \implies u_1$ occupies c(1, 2). Now, a t_i is always bumped to the next row; hence t_2 is bumped to row 2.

(c) $u_1 < t_2 < u_2 \Longrightarrow t_2$ occupies c(2, 2), bumping u_2 to column 3.

(d) $u_2 > t_2 \Longrightarrow u_2$ settles in c(2, 3).

The proof of Theorem 2 follows from the following analysis of the *A*-RSK algorithm.

- (a) If $P_{i,i} = t_r$, insert it into the i + 1th row of \widetilde{P} .
- (b) If $P_{i,j} = u_s$, insert it into the j + 1th column of \widetilde{P} .

We show that in both cases the result would be an A-SSYT P^* and—except for the last step—together with a new element $\tilde{P}_{i',j'}$ (bumped from c(i',j')), which is to be inserted into P^* . Moreover,

(1) If
$$P_{i,j} = t_r$$
, then $c(i', j') = c(i+1, j')$ and $j' \le j$.

(2) If
$$P_{i,j} = u_s$$
, then $c(i', j') = c(i', j+1)$ and $i' \le i$.

Proof. Note that (2) is obtained from (1) by conjugation; hence it suffices to just prove (1).

Proof of (1). Denote the *i*th row of \widetilde{P} by

$$a_1 \cdots a_{j-1} \widetilde{P}_{i,j} a_{j+1} \cdots a_g,$$

so $a_j = P_{i,j}$ and, by assumption, $P_{i,j} = t_r$. Thus

 $\widetilde{P} = \begin{array}{c} \vdots \\ a_1 \cdots \cdots a_{j-1} \widetilde{P}_{i,j} a_{j+1} \cdots \cdots a_g \\ \widetilde{P} = b_1 \cdots \cdots \cdots b_f \\ c_1 \cdots \cdots c_h \\ \vdots \end{array}$

and $P_{i,j} = t_r$ is inserted into the i + 1th row $b_1 \cdots b_f$. Let $b_{i'-1} \le P_{i,j} < b_{i,j'}$, so, in P^* , the i + 1th row is

$$b_1 \cdots b_{j'-1} P_{i,j} b_{j'+1} \cdots b_f.$$

Since $\widetilde{P}_{i,j}$ bumped $P_{i,j}$, we have $\widetilde{P}_{i,j} < P_{i,j}$. Since $a_j = P_{i,j} = t_r$, hence $P_{i,j} < b_j$. Together with $b_{j'-1} \le P_{i,j} < b_{j'}$, this implies that $j' \le j$; hence

$$P^* = \begin{array}{c} \vdots \\ a_1 \cdots a_{j'-1} a_{j'} a_{j'+1} \cdots \widetilde{P}_{ij} a_{j+1} \cdots a_g \\ P^* = \begin{array}{c} b_1 \cdots b_{j'-1} P_{ij} b_{j'+1} \cdots b_j b_{j+1} \cdots b_f \\ c_1 \cdots c_{j'-1} c_{j'} c_{j'+1} \cdots c_j c_{j+1} \cdots c_h \\ \vdots \end{array}$$

By the induction assumption on \widetilde{P} , we only need to verify that the part

$$a_{j'}$$

 $P_{i,j}$
 $c_{j'}$

of the j'th column is A-semistandard; that is, since $P_{i,j} = t_r$, we need to show that $a_{j'} \leq \widetilde{P}_{i,j} < c_{j'}$. This follows from $a_{j'} \leq \widetilde{P}_{i,j} < P_{i,j} = t_r < b_{j'} \leq c_{j'}$.

DEFINITION 2.4. Two shuffles $A, B \in I$ are *adjacent* if there exist t_i and u_j such that

(1) $t_i < u_i$ in A.

•

(2) $u_i < t_i$ in *B*.

(3) All other pairs have the same order relations in A and in B.

In that case, call A and B (t_i, u_j) -adjacent. Thus A and B differ by the transposition (t_i, u_j) .

Remark 2.5. Trivially, for any $A, B \in I$, there exist $A_0, A_1, \ldots, A_n \in I$ such that $A_0 = A$, $A_n = B$, and A_r is adjacent to A_{r+1} , $0 \le r \le n-1$. Thus, to prove Theorem 1, it suffices to show that, for all $v \in a_{k,l}(n)$ and for every pair (A, B) of adjacent shuffles, sh(v, A) = sh(v, B). Therefore, for the rest of this section, let $A, B \in I$ be (t_i, u_i) -adjacent, with $t_i < u_i$ and $u_i <_{_{R}} t_i$.

LEMMA 2.6. Let $A \in I$, let $w \in a_{k,l}(n)$, and, for some $x \in \{t_1, \ldots, t_k\}$ u_1, \ldots, u_l , let w' be the sequence obtained by omitting from w all elements A-greater than x. Let P_A and P'_A be the insertion tableaux obtained from w and w', respectively, under shuffle A. Then P'_A is a subtableau of P_A .

Proof. Let $w \xrightarrow[A-RSK]{A-RSK} P_A$; $P : \emptyset, P_1, P_2, \ldots, P_n = P_A$, and similarly let $w' \xrightarrow[A-RSK]{A-RSK} P'_A$; $P' : \emptyset, P'_1, P'_2, \ldots, P'_m = P'_A$ (m = |w'|). Assume P'_i is a subtableau of P'_{j_i} and insert (a corresponding) y in w.

If x < y, y is not in w' so P'_i is not affected. Also, inserting y into P_i, y does not affect the subtableau $P'_i \subseteq P_i$, since y bumps only elements that are A-greater than itself.

A similar argument applies when $y \le x$: now y is also in w', and is inserted into P'_i and into P_{j_i} . Clearly, in P_{j_i} it is also inserted into the subtableau $P'_i \subseteq P_i$, and the proof follows.

COROLLARY 2.7. Let $A, B \in I$ be (t_i, u_j) -adjacent, $v \in a_{k,l}(n), v \xrightarrow{} A$ (P_A, Q_A) , and $v \rightarrow (P_B, Q_B)$. Then the elements that are both A-less and B-less than t_i and u_i form identical subtableaux in P_A and P_B .

Proof. Denote by v' the sequence obtained by omitting from v all elements (A- and B-) greater than or equal to t_i and u_j . By (t_i, u_j) -adjacency, the largest element smaller than t_i and u_i , in both A and B, is the same element x. Moreover, v' is obtained by omitting from v all elements which are (A- or B-) greater than x. Let P'_A and P'_B denote the insertion tableaux of v' under shuffles A and B, respectively. Then, by Lemma 2.6, P'_A and P'_B are subtableaux of P_A and P_B , respectively. But the elements that are A- or B-less than t_i and u_j are ordered identically in A and B, so $P'_A = P'_B$.

Notation. As above, let $A, B \in I$ be two shuffles that are (t_i, u_j) -adjacent: $t_i < u_j$ in A and $u_j < t_i$ in B. Let $v \in a_{k,l}(n)$ and denote $v \rightarrow (P_A, Q_A)$ and $v \rightarrow (P_B, Q_B)$.

Notation. Given the tableau P_A (and similarly for P_B), let regions 1, 2, and 3 denote, respectively, the regions occupied (1) by elements less than t_i and u_i , (2) by t_i and u_i , and (3) by elements greater than t_i and u_i .

EXAMPLE 2.8. Let $v = u_1 t_3 t_2 u_2 t_2 u_1 t_1$ and let

$$A = t_1 < u_1 < t_2 < u_2 < t_3,$$

$$B = t_1 < u_1 < u_2 < t_2 < t_3.$$

Then A and B are (t_i, u_j) -adjacent, with $t_i = t_2$ and $u_j = u_2$, and

$$P_{A} = \underbrace{\begin{bmatrix} t_{1} & u_{1} & t_{2} \\ u_{1} & t_{2} & u_{2} \\ \hline t_{3} \end{bmatrix}}_{t_{3}}, \qquad P_{B} = \underbrace{\begin{bmatrix} t_{1} & u_{1} & u_{2} \\ u_{1} & t_{2} & t_{2} \\ \hline t_{3} \end{bmatrix}}_{t_{3}}.$$

In both tableaux, region 1 contains the elements t_1 and u_1 , region 2 contains t_2 and u_2 , and region 3 contains t_3 . Note that, in this example, regions 1 and 3 are the same in P_A as in P_B , and region 2 is identically shaped in P_A and P_B . We shall show that this is always true.

By Lemma 2.6, both region 1 and the union of regions 1 and 2 form subtableaux in P. It is easy to check that region 2 does not contain the configuration

	а	b	
l	С	d	•

If it does, assume $d = t_i$. Then $b = u_j$, so $u_j < t_i$, and $a \neq t_i$, u_j . Similarly if $d = u_j$. It follows that region 2 forms part of the rim of the subtableaux which is the union of regions 1 and 2.

Remark 2.9. Note that (part of) region 2 in P_A (i.e., $t_i < u_j$) always looks like

$$\begin{array}{c}
t_i \cdots t_i \\
u_j \\
\vdots \\
t_i \cdots t_i u_j \\
u_j \\
\vdots \\
u_j \\
u_j
\end{array}$$

Namely, except possibly for the rightmost element, all other elements in a row are t_i 's. Similarly, except for possibly the top element, all other elements in a column are u_i 's.

Similarly, in P_B (i.e., $u_i < t_i$), part of region 2 looks like

$$u_j t_i \cdots t_i$$

$$\vdots$$

$$u_j t_i \cdots t_i$$

$$\vdots$$

$$u_j$$

Denote $v = v_1 \cdots v_n$. The tableau P_A is created by applying the A-RSK insertion algorithm to each of v_1, \ldots, v_n successively. For each v_m , let $l_{m(A)}$ denote the length of the insertion path [7, p. 317] of v_m under shuffle A—that is, the number of insertion steps that occur when v_m is inserted while forming P_A . The total number of insertion steps involved in the formation of P_A is thus $s_A = \sum_{m=1}^n l_{m(A)}$. For every $r \in \{1, \ldots, s_A\}$, let P_A^r be the insertion tableau as it appears immediately after insertion step r.

Similarly, under shuffle *B*, the length of the insertion path of v_m into P_B is $l_{m(B)}$, and the total number of insertion steps involved in forming P_B is $s_B = \sum_{m=1}^n l_{m(B)}$, with P_B^r denoting the insertion tableau after insertion step *r*.

EXAMPLE 2.10. As in Example 2.8, let $v = v_1 \cdots v_7 = u_1 t_3 t_2 u_2 t_2 u_1 t_1$ and let $A = t_1 < u_1 < t_2 < u_2 < t_3$. Then tableau P_A is formed by the A-RSK as follows (ignore the underlines):

For all $i \in \{1, ..., 7\}$, the underlined elements in tableau *i* lie in the insertion path of element v_i . Thus $l_{1(A)} = l_{2(A)} = l_{5(A)} = 1$, $l_{3(A)} = l_{4(A)} = l_{6(A)} = 2$, $l_{7(A)} = 4$, and $s_A = \sum_{i=1}^{7} l_{i(A)} = 13$. If, for example, $r = 7 = \sum_{i=1}^{5} l_{i(A)}$, then we have

$$P^{r} = \underbrace{\begin{matrix} u_{1} & t_{2} & t_{2} \\ u_{2} & \\ t_{3} \end{matrix}}_{t_{3}}, \qquad P^{r+1} = \underbrace{\begin{matrix} u_{1} & t_{2} & t_{2} \\ u_{1} & \\ t_{3} \end{matrix}}_{t_{3}}$$

EXAMPLE 2.11. Let k = l = 1, A : t < u, B : u < t, $v = v_1v_2 = tu$. Then

$$P_A : \emptyset, \quad \boxed{t}, \quad \boxed{\frac{t}{\underline{u}}}, \qquad l_{1(A)} = l_{2(A)} = 1,$$
$$P_B : \emptyset, \quad \boxed{t}, \quad \boxed{\frac{\underline{u}}{\underline{t}}}, \qquad l_{1(B)} = 1, l_{2(B)} = 2.$$

DEFINITION 2.12. For $p, q \in \mathbb{Z}^+$, we say that $P_A^p \sim P_B^q$ (with respect to the formations of P_A and P_B) if:

(1) Regions 1 and 3 are identical in P_A^p and P_B^q .

(2) Region 2 is identically shaped in P_A^p and P_B^q ; moreover, in each connected component of that region 2, the number of t_i 's (hence of u_j 's) in P_A^p equals the number of t_i 's (hence of u_j 's) in P_B^q .

(3) Either $p = s_A$ and $q = s_B$, or both $p < s_A$ and $q < s_B$. In the latter case, the next insertion step involves inserting the same element into the same row (or column) in both tableaux.

EXAMPLE 2.13. The tableaux of Example 2.8 satisfy $P_A \sim P_B$. Regions 1 and 3 in the two tableaux are identical, satisfying Definition 2.12(1). Region 2 consists of one component which is identically shaped and contains exactly one t_i and one u_j in both tableaux. This verifies Definition 2.12(2). Since both tableaux correspond to $p = s_A$ and $q = s_B$, Definition 2.12(3) is satisfied as well.

LEMMA 2.14. For any shuffle $A \in I$ and for all $p \in \{2, ..., s_A\}$ and $r, s \in \mathbb{Z}^+$, if c(r, s) contains some w in P_A^{p-1} , then c(r, s) contains some $z \leq_A w$ in P_A^p .

Conversely, if c(r, s) contains some element z in P_A^p , then c(r, s) was either empty or contained some $w \ge_{A} z$ in P_A^{p-1} .

Proof. Follows from the *A*-RSK algorithm.

The Proof of Theorem 2 clearly follows from the next result.

LEMMA 2.15. Let $A, B \in I$ be (t_i, u_j) -adjacent, $v \in a_{k,l}(n)$, $v \xrightarrow{A-RSK} (P_A, Q_A)$, and $v \xrightarrow{B-RSK} (P_B, Q_B)$. Then $P_A \sim P_B$.

Proof. We prove that $P_A \sim P_B$ by induction on the insertion steps of P_A and P_B . Trivially, $P_A^1 = P_B^1$. Now let $p \in \{1, \ldots, s_A - 1\}$, $q \in \{1, \ldots, s_B - 1\}$ and assume that (1) $P_A^p \sim P_B^q$ and also (2) $P_A^{p-1} \sim P_B^{q-1}$ or $P_A^{p-1} \sim P_B^{q-2}$ or $P_A^{p-2} \sim P_B^{q-1}$. We show that this implies that $P_A^{p+1} \sim P_B^{q+1}$ or $P_A^{p+1} \sim P_B^{q+2}$ or $P_A^{p+2} \sim P_B^{q+1}$. This clearly implies the proof of the lemma (by induction on p + q).

Note that if $P_A^p \sim P_B^q$, then, by Definition 2.12(3), step p + 1 in P_A and step q + 1 in P_B are identical; that is, the same element, x, is inserted into the same row (or column) in both tableaux. We assume that x is a *t*-element and therefore enters some row, denoted *row* r; the case where x is a *u*-element is analogous. Since $P_A^p \sim P_B^q$, row r is empty in P_A^p if and only if it is empty in P_B^q . The case where row r is empty is trivial, so we assume throughout that row r is nonempty in P_A^p and P_B^q .

Case 1. Suppose that, under both shuffles A and B, $x > t_i$ and u_j . Since $P_A^p \sim P_B^q$, the last nonempty cell in row r must be in the same region in both P_A^p and P_B^q , and if it is in region 3, then it must be occupied by the same element in both tableaux.

Case 1.1. Row r in P_A^p (and in P_B^q) terminates with an element less than or equal to x. In this case, x is affixed to the end of the row in both tableaux, so P_A^{p+1} and P_B^{q+1} have the same shape and clearly satisfy properties (1) and (2) of Definition 2.12. Let m denote the size of P_A^{p+1} and P_B^{q+1} . If m = n, which is the size of P_A and P_B , then the insertion algorithm terminates here. Otherwise, the next step is to begin v_{m+1} 's insertion path by inserting v_{m+1} into either the first row or the first column in both tableaux. This verifies Definition 2.12(3) and we have $P_A^{p+1} \sim P_B^{q+1}$.

Case 1.2. Row *r* in P_A^p contains an element z > x (under both *A* and *B*). Since $P_A^p \sim P_B^q$, the same is true in P_B^q . In this case, *x* bumps an element greater than itself—a region-3 element—and occupies its cell in both tableaux. Thus both the cell occupied by *x* and the element bumped by *x* are identical in the two tableaux, which verifies Definition 2.12(3). Since Definition 2.12(1) and (2) clearly hold, it follows that $P_A^{p+1} \sim P_B^{q+1}$.

Case 2. Suppose that $x = t_i$. During step $P_B^q \to P_B^{q+1}$, $x = t_i >_B u_j$ bumps the first region-3 element in row *r*, or if no such element exists, *x* occupies the first empty cell in that row. Let c(r, s) be the cell occupied by *x* in P_B^{q+1} .

Case 2.1. In row *r* of P_A^p , region 2 either terminates with t_i or does not appear at all in that row. Then *x* occupies c(r, s) also in P_A^{p+1} (and bumps the same element as in P_B^{q+1}), so $P_A^{p+1} \sim P_B^{q+1}$.

Case 2.2. In P_A^p , the last region-2 element in row r is u_j . Let this u_j be in c(r, s'). Since $P_A^p \sim P_B^q$, c(r, s') is the last region-2 cell in row r in both tableaux. Since, in $P_B^q \rightarrow P_B^{q+1}$, x was inserted into c(r, s), we have s = s' + 1. Thus u_j is in c(r, s - 1) and is bumped by $x = t_i$ to column s during $P_A^p \rightarrow P_A^{p+1}$. We prove that, in such a case, $P_A^{p+2} \sim P_B^{q+1}$. To do so,

we show that

In $P_A^{p+1} \to P_A^{p+2}$, u_i settles in c(r, s), to the immediate right 2.2.1. of x.

2.2.2. This implies that Definition 2.12(2) for $P_A^{p+2} \sim P_B^{q+1}$ is satisfied. 2.2.3. Both (1) and (3) of Definition 2.12 for $P_A^{p+2} \sim P_B^{q+1}$ are satisfied.

Proof of 2.2.1. If r = 1, then u_i clearly settles in c(r, s) in P_A^{p+2} . We therefore assume that r > 1.

To prove that u_j settles in c(r, s) in P_A^{p+2} , we need only to show that c(r-1, s) in P_A^{p+1} contains an element $b \le u_j$, since c(r, s) in P_A^{p+1} contains some element $z >_A u_j$. Now, since r > 1, $x = t_i$ arrived at row r in P_A^p (and similarly in P_B^q) after being bumped from row r-1 of P_A^{p-1} . Let c(r-1, h) be the cell occupied by x in P_A^{p-1} , before it was bumped from row r-1.

$$P_A^{p-1} \xrightarrow[\text{ trop } c(r-1, h)]{x \text{ is bumped}} P_A^p \xrightarrow[\text{ trop } c(r, s-1)]{x \text{ is inserted}} P_A^{p+1} \xrightarrow[\text{ trop } c(r, s-1)]{u_j \text{ is inserted}} P_A^{p+2}.$$

Since x is inserted into c(r, s-1) of P_A^{p+1} , Lemma 2.3 implies that $s-1 \le 1$ *h*. If $s \le h$, then c(r-1, s) was occupied by an element less than or equal to x in P_A^{p-1} , and this continues to be true in P_A^p and P_A^{p+1} , which implies our claim (that $b \le u_i$). On the other hand, suppose that h = s - 1. In this case, we prove that c(r-1, s) contains an element less than or equal to u_i by showing that otherwise we would have a contradiction to the induction assumptions. Our proof of this is illustrated by the following figures, each of which consists of the block of cells in rows r - 1 and r and columns s - 1and s in the corresponding tableaux.

So, assume that, in P_A^{p-1} , x occupied c(r-1, s-1), and c(r-1, s) was either empty or contained an element $b > u_j$ (a region-3 element). We show that this contradicts the claim of the induction hypothesis, that $P_A^{p-1} \sim P_B^{q-1}$, $P_A^{p-1} \sim P_B^{q-2}$, or $P_A^{p-2} \sim P_B^{q-1}$.

$$P_B^{q-2} \xrightarrow[into c(r-1,s)]{e is inserted} P_B^{q-1} \xrightarrow[x is bumped]{x is bumped} P_B^q \xrightarrow[x is inserted]{x is inserted} P_B^{q+1}.$$

Now, in P_B^{q+1} , $x = t_i$ occupies c(r, s), so c(r-1, s) is occupied by an element less than x. Lemma 2.3 implies that, in P_B^q , x occupied c(r-1, s'), where $s \le s'$, and this implies that, in P_B^{q-1} , c(r-1, s) contained an element $e \le x$, a region-1 or -2 element. But the same cell in P_A^{p-1} was either empty or contained a region-3 element, and by Lemma 2.14, the same must have been true in P_A^{p-2} . Thus the above assumption, that h = s - 1, implies that neither $P_A^{p-1} \sim P_B^{q-1}$ nor $P_A^{p-2} \sim P_B^{q-1}$ is satisfied. We show now that it also implies that $P_A^{p-1} \approx P_B^{q-2}$.

or contained a region-3 element, and by Lemma 2.14, the same must have been true in P_A^{p-2} . Thus the above assumption, that h = s - 1, implies that neither $P_A^{p-1} \sim P_B^{q-1}$ nor $P_A^{p-2} \sim P_B^{q-1}$ is satisfied. We show now that it also implies that $P_A^{p-1} \sim P_B^{q-2}$. Suppose that $P_A^{p-1} \sim P_B^{q-2}$ is satisfied. Denote by *m* the size of P_A^{p-1} and P_B^{q-2} . By assumption, in P_A^{p-1} —hence also in $P_B^{q-2} \sim P_A^{p-1}$ —*x* occupies c(r-1, s-1) and c(r-1, s) is either empty or contains a region-3 element z > x. But we saw above that, in P_B^{q-1} , c(r-1, s) contained $e \le x$. It follows that insertion step $P_B^{q-2} \to P_B^{q-1}$ consisted of *e* being inserted into c(r-1, s) and—if c(r-1, s) were previously occupied—of bumping from it some z > x. If *e* bumped some *z*, then, in $P_B^{q-1} \to P_B^q$, *z* would have been inserted into either row *r* or column s + 1. But we saw earlier that *x* was bumped to row *r* in $P_B^{q-1} \to P_B^q$, which implies that *z* must have bumped *x* during this step. This leads to a contradiction, since *z* could not have bumped x < z. Thus, when *e* occupied c(r-1, s) during $P_B^{q-2} \to P_B^{q-1}$, it did not bump any element; the cell was previously empty. By occupying an empty cell, *e* increased the size of the tableau from *m* to m + 1: $|P_B^{q-1}| = m$, $|P_B^{q-1}| = m + 1$. Hence $|P_B^q| \ge m + 1$.

 $|P_B^{q-1}| = m + 1$. Hence $|P_B^q| \ge m + 1$. On the other hand, P_A^{p-1} is of size m, and during $P_A^{p-1} \to P_A^p$, x was bumped from row r-1 by some smaller element, so the size of the tableau did not change. It follows that $|P_A^p| = m < |P_B^q|$, contradicting $P_A^p \sim P_B^q$. It follows that c(r-1, s) in P_A^{p+1} contains an element $b \le u_j$, and this

It follows that c(r-1, s) in P_A^{p+1} contains an element $b \le u_j$, and this implies that, when u_j enters column s in $P_A^{p+1} \to P_A^{p+2}$, it settles in c(r, s), to the right of x. This completes the proof of 2.2.1.

Proof of 2.2.2. By 2.2.1, u_j settles in c(r, s) in P_A^{p+2} . We show that this implies that Definition 2.12(2) for $P_A^{p+2} \sim P_B^{q+1}$ is satisfied. In the diagrams below the proof, the cells outside of region 2 are marked with a \star .

Recall that, by Case 2.2, u_j is located in c(r, s - 1) in P_A^p , so c(r, s - 1) is part of a connected component of region 2. Let τ be the number of t_i 's and

part of a connected component of region 2. Let τ be the number of t_i 's and μ be the number of u_j 's in this connected component. By Definition 2.12(2) of $P_A^p \sim P_B^q$, region 2 of P_B^q contains a corresponding connected component (in the same cells as that of P_A^p), with τ t_i 's and μ u_j 's. Since u_j is located in c(r, s - 1) in P_A^p , by strict row inequality, c(r, s) is either empty or in region 3. Similarly, since $x = t_i$ occupies c(r, s - 1) in $P_A^{p} \rightarrow P_A^{p+1}$, c(r - 1, s - 1) must contain a region-1 element in P_A^{p+1} (and in P_A^p): $\operatorname{in}^{A} P_{A}^{p}$):

Thus, if c(r-1, s) is in region 2 in P_A^p and P_B^q , then in both tableaux it is part of a connected component distinct from that of c(r, s-1). This other component consists of τ' t_i 's and μ' u_i 's. (If c(r-1, s) is not in region 2, then we let $\tau' = \mu' = 0.$)

Since c(r, s) is either empty or in region 3 in P_A^p (and thus in P_B^q), it follows that the same is true for c(r, s + 1) and c(r + 1, s). By the assumption at the beginning of Case 2, during $P_B^q \to P_B^{q+1}$, $x = t_i$ bumps some region-3 element z from c(r, s), thereby adding c(r, s) to region 2. But c(r, s) is adjacent to both c(r, s - 1) and c(r - 1, s), so when it joins region 2, it combines their respective connected components into a single larger one. Since neither c(r, s+1) nor c(r+1, s) is in region 2, it follows that, in P_B^{q+1} , c(r, s) becomes part of a connected component of region 2, consisting of $\tau + \tau' + 1$ t_i 's and $\mu + \mu' u_i$'s:

Similarly, during $P_A^p \to P_A^{p+1} \to P_A^{p+2}$, $x = t_i$ bumps u_j from c(r, s - 1), and u_j bumps z from c(r, s), so the only change in the shape of region 2 in P_A^{p+2} is the addition of c(r, s). Thus c(r, s) of P_A^{p+2} is part of a connected component of region 2, also containing $\tau + \tau' + 1$ t_i 's and $\mu + \mu' u_i$'s, and this component is identically shaped to the corresponding component of P_B^{q+1} , so Definition 2.12(2) of $P_A^{p+2} \sim P_B^{q+1}$ is satisfied. This completes the proof of 2.2.2.

Proof of 2.2.3. Definition 2.12(1) is satisfied for $P_A^{p+2} \sim P_B^{q+1}$, since, in both $P_B^q \to P_B^{q+1}$ and $P_A^p \to P_A^{p+1} \to P_A^{p+2}$, region 1 is unchanged, and the only change in region 3 is the elimination of c(r, s).

Since the same element z is bumped from c(r, s) in $P_A^{p+1} \to P_A^{p+2}$ and $P_B^q \to P_B^{q+1}$, Definition 2.12(3) is satisfied, and the proof of 2.2.3 is complete.

It follows that $P_A^{p+2} \sim P_B^{q+1}$.

Case 3. Suppose that $x = t_a < t_i$.

Case 3.1. Row r in P_A^p terminates with $z \le x$. Thus z is in region 1, so, by Definition 2.12(1) of $P_A^p \sim P_B^q$, row r in P_B^q terminates with z. In such a case, x is affixed to the end of row r in both tableaux, so P_A^{p+1} and P_B^{q+1} have the same shape, and clearly satisfy Definition 2.12(1) and (2). Let m denote the size of P_A^{p+1} and P_B^{q+1} . If m = n, which is the size of P_A and P_B , then the insertion algorithm terminates here. Otherwise, the next step is to begin v_{m+1} 's insertion path by inserting v_{m+1} into either the first row or the first column in both tableaux. This verifies Definition 2.12(3) and we have $P_A^{p+1} \sim P_B^{q+1}$.

Case 3.2. Row r in P_A^p (and hence in P_B^q) contains an element greater than x. In both tableaux, x bumps from row r the leftmost element greater than itself. By Definition 2.12(1) and (2) of $P_A^p \sim P_B^q$, the same cell—denoted c(r, s)—becomes occupied by x in both tableaux. Thus, if the element bumped by x is identical in the two tableaux, then $P_A^{p+1} \sim P_B^{q+1}$.

ment bumped by x is identical in the two tableaux. Thus, if the element bumped by x is identical in the two tableaux, then $P_A^{p+1} \sim P_B^{q+1}$. Suppose, however, that x bumps different elements from the cell(s) c(r, s)of P_A^p and P_B^q . By $P_A^p \sim P_B^q$, these must be t_i and u_j . Since $x = t_a$ occupies c(r, s) in P_A^{p+1} , Lemma 2.3 implies that, in P_A^{p-1} , x occupied c(r-1, s')with $s \leq s'$. Thus the c(r-1, s) element g in P_A^{p-1} was $g \leq x < u_j, t_i$, so c(r-1, s) was a region-1 cell. Since x was subsequently bumped from row r-1 by an element smaller than itself, it follows that c(r-1, s) is a region-1 cell also in P_A^p (and P_B^q). Similarly, since $x = t_a < t_i$ settles in c(r, s) in $P_A^p \to P_A^{p+1}$, c(r, s-1) is a region-1 cell in P_A^{p+1} (and P_B^{q+1}), and in P_A^p (and P_B^q),

(the stars represent region-1 elements).

Now, since c(r, s) is in region 2 in both P_A^p and P_B^q , by Definition 2.12(2), it is part of a connected component of region 2 which is identically shaped and contains the same number of t_i 's and u_j 's in both tableaux. But c(r, s) contains t_i in one tableau and u_j in the other, so it follows that at least one of c(r, s + 1) and c(r + 1, s) is in region 2 in P_A^p and P_B^q . By strict row and column inequality, this implies that c(r, s) contains t_i in P_A^p and u_j in P_B^q .

Denote by *C* the connected component of region 2 containing c(r, s). Consider the subcomponent C_1 , consisting of all cells in *C* which are to the right of or above c(r, s). In P_A^p , let $\alpha_A = \#t_i$'s and $\beta_A = \#u_j$'s in C_1 ; define α_B and β_B similarly in P_B^q . If c(r, s + 1) is not in region 2, then C_1 is empty and $\alpha_A = \beta_A = \alpha_B = \beta_B = 0$. On the other hand, if C_1 is nonempty, then by strict row and column inequality, every northwest proper corner cell of C_1 contains t_i in P_A^p and u_j in P_B^q :

Similarly, every southeast proper corner cell of C_1 contains u_j in P_A^p and t_i in P_B^q :

Consider the top row of C_1 . If it contains more than one cell, then its leftmost cell is a northwest corner. Thus the structure of C_1 is as in the following diagram, where, for example, a cell marked t_i/u_j contains t_i in P_A^p and u_j in P_B^q (a question mark denotes that a cell may contain either t_i or u_j) and elements:

$$t_i/u_j\cdots \cdot ?/t_i$$

$$\vdots$$

$$\cdots u_i/t_i$$

On the other hand, if the top row of C_1 contains only one cell, then the structure of C_1 is

$$\begin{array}{c}
?/u_{j} \\
\vdots \\
t_{i}/u_{j}\cdots\cdots u_{j}/t_{i} \\
\vdots \\
\cdots\cdots u_{i}/t_{i}
\end{array}$$

In both cases, it follows that $\alpha_B - \alpha_A = \beta_A - \beta_B \in \{0, 1\}$. We prove that

3.2.1.
$$\alpha_B - \alpha_A = \beta_A - \beta_B = 1 \Longrightarrow P_A^{p+1} \sim P_B^{q+2}.$$

3.2.2. $\alpha_B - \alpha_A = \beta_A - \beta_B = 0 \Longrightarrow P_A^{p+2} \sim P_B^{q+1}.$

Let C_2 be the subcomponent of C consisting of all cells below or to the left of c(r, s). Let $\gamma_A = \#t_i$'s and $\delta_A = \#u_j$'s in C_2 of P_A^p ; define γ_B and δ_B similarly for P_B^q . Since neither c(r-1, s) nor c(r, s-1) is in region 2, it follows that $C = C_1 + C_2 + c(r, s)$. By Definition 2.12(2) of $P_A^p \sim P_B^q$, C contains the same number of t_i 's and u_j 's in P_A^p as in P_B^q . In both tableaux, let τ be the number of t_i 's and let μ be the number of u_j 's in C. Since c(r, s) contains t_i in P_A^p and u_j in P_B^q , it follows that

$$au = lpha_A + \gamma_A + 1 = lpha_B + \gamma_B, \qquad \mu = eta_A + \delta_A = eta_B + \delta_B + 1.$$
 (*)

Proof of 3.2.1. Suppose that $\alpha_B - \alpha_A = \beta_A - \beta_B = 1$. Then $\gamma_A - \gamma_B = \delta_B - \delta_A = 0$, so C_2 is either empty or contains an equal number of t_i 's and u_j 's in P_A^p as in P_B^q . Also, C_1 is nonempty, so c(r, s + 1) is in region 2 in P_A^p and in P_B^q . In P_B^q , c(r, s) contains u_j , so, by strict row inequality, c(r, s + 1) contains t_i . The subsequent insertion steps are therefore

Thus, in both $P_A^p \to P_A^{p+1}$ and $P_B^q \to P_B^{q+1} \to P_B^{q+2}$, c(r, s) is eliminated from region 2, and we are left with two separate components C_1 and C_2 (and with t_i to be inserted into row r + 1). No change occurs in C_2 , so, in both P_A^{p+1} and P_B^{q+2} , C_2 has $\gamma_A = \gamma_B t_i$'s and $\delta_A = \delta_B u_j$'s. Similarly, no change occurs in C_1 in $P_A^p \to P_A^{p+1}$, so C_1 of P_A^{p+1} contains $\alpha_A t_i$'s and $\beta_A u_j$'s. On the other hand, in $P_B^q \to P_B^{q+1} \to P_B^{q+2}$, a single change occurs in C_1 , when the t_i in c(r, s + 1) is replaced with u_j . Thus C_1 of P_B^{q+2} contains $\alpha_B - 1 t_i$'s and $\beta_B + 1 u_j$'s. But, by 3.2.1, $\alpha_B - 1 = \alpha_A$ and $\beta_B + 1 = \beta_A$, so C_1 contains the same number of t_i 's and u_j 's in P_A^{q+2} .

Definition 2.12(2) is satisfied for $P_A^{p+1} \sim P_B^{q+2}$. Now, in both P_A^{p+1} and P_B^{q+2} , the only change that occurs in region 1 is that the same element x is added to c(r, s), so Definition 2.12(1) is satisfied. Similarly, as was already mentioned, both $P_A^{p+1} \rightarrow P_A^{p+2}$ and $P_B^{q+2} \rightarrow P_B^{q+3}$ consist of t_i entering row r + 1, so Definition 2.12(3) is satisfied. It follows that $P_A^{p+1} \sim P_B^{q+2}$. This completes the proof of 3.2.1. *Proof of* 3.2.2. The proof of 3.2.2 is dual, in a sense, to the proof of 3.2.1. Here are the details.

Suppose that $\alpha_B - \alpha_A = \beta_A - \beta_B = 0$. Then C_1 is either empty or contains an equal number of t_i 's and u_j 's in P_A^p as in P_B^q . Thus, by (\star) , $\gamma_B - \gamma_A = \delta_A - \delta_B = 1$, so, C_2 is nonempty, which implies that c(r + 1, s) is in region 2 in P_A^p and in P_B^q . In P_A^p , c(r, s) contains t_i , so, by strict column inequality, c(r + 1, s) contains u_j . The subsequent insertion steps are therefore

$$P_{A}^{p} \xrightarrow[from c(r, s)]{} P_{A}^{p+1} \xrightarrow[from c(r+1, s)]{} P_{A}^{p+2} \xrightarrow[from c(r+1, s)]{} P_{A}^{p+2} \xrightarrow[from c(r+1, s)]{} P_{B}^{q} \xrightarrow[from c(r+1, s)]{} P_{B}^{q+1} \xrightarrow[from c(r, s)]{} P_{B}^{q+1} \xrightarrow[from c(r, s)]{} P_{B}^{q+1} \xrightarrow[from c(r, s)]{} P_{A}^{p+2} \xrightarrow[from c(r, s)]{} P_{A}^{p+2} \xrightarrow[from c(r+1, s)]{} P_{A}^{p+2$$

Thus, in both $P_A^p \to P_A^{p+1} \to P_A^{p+2}$ and $P_B^q \to P_B^{q+1}$, c(r, s) is eliminated from region 2, and we are left with two separate components C_1 and C_2 (and with u_j to be inserted into column s + 1). No change occurs in C_1 , so, in both P_A^{p+2} and P_B^{q+1} , C_1 has $\alpha_A = \alpha_B t_i$'s and $\beta_A = \beta_B u_j$'s. Similarly, no change occurs in C_2 in $P_B^q \to P_B^{q+1}$, so C_2 of P_B^{q+1} contains $\gamma_B t_i$'s and $\delta_B u_j$'s. On the other hand, in $P_A^p \to P_A^{p+1} \to P_A^{p+2}$, a single change occurs in C_2 , when the u_j in c(r+1, s) is replaced with t_i . Thus C_2 of P_A^{p+2} contains $\gamma_A + 1 t_i$'s and $\delta_A - 1 u_j$'s. But 3.2.2 and (\star) imply that $\gamma_A + 1 = \gamma_B$ and $\delta_A - 1 = \delta_B$, so C_2 contains the same number of t_i 's and u_j 's in P_A^{p+2} as in P_B^{q+1} , and Definition 2.12(2) is satisfied for $P_A^{p+2} \sim P_B^{q+1}$. Now, in both P_A^{p+2} and P_B^{q+1} , the only change that occurs in region 1 is that the same element x is added to c(x, z) as Definition 2.12(1) is particle 1.

Now, in both P_A^{p+2} and P_B^{q+1} , the only change that occurs in region 1 is that the same element x is added to c(r, s), so Definition 2.12(1) is satisfied. Similarly, as was already mentioned, both $P_A^{p+2} \rightarrow P_A^{p+3}$ and $P_B^{q+1} \rightarrow P_B^{q+2}$ consist of u_j entering column s + 1, so Definition 2.12(3) is satisfied. It follows that $P_A^{p+2} \sim P_B^{q+1}$. This completes the proof of 3.2.2.

3. PROOF OF THEOREM 5

Here we prove, for example, Theorem 5(b). The proofs of parts (c) and (d) of the theorem are similar.

Given $v \in a_{k,l}(n)$ and shuffle A, the (regular, dual)-A-RSK forms the tableau pair $(P^*, Q^*) = (P^*(v, A), Q^*(v, A))$ by applying the regular RSK to the t_i 's and the dual conjugate RSK to the u_j 's of v under shuffle A. For simplicity, we refer to this algorithm as the dual-A-RSK. As in the A-RSK, P^* is the insertion tableau, and Q^* is the recording tableau of v under A. Here P^* is what we call a dual-A-SSYT; that is, it is weakly A-increasing in rows and strictly A-increasing in columns.

EXAMPLE 3.1. Let k = 2, l = 1, and $A : u_1 < u_2 < t_1 < t_2$. Let

$$v = \begin{pmatrix} 1 \cdots & 4 \\ u_1, t_1, t_2, u_1 \end{pmatrix}.$$

Then

$$v \xrightarrow[\text{dual-}A-\text{RSK}]{u_1} [u_1 | t_1] [u_1 | t_1] t_2 [u_1 | u_1 | t_2] = P^*$$

and

$$Q^* = \boxed{\begin{array}{c|c} 1 & 2 & 3 \\ \hline 4 & \end{array}}.$$

LEMMA 3.2. Let $v \in a_{k,l}(n)$, $A \in I$, and

$$v \xrightarrow[A-RSK]{A-RSK} (P, Q), v \xrightarrow[dual-A-RSK]{} (P^*, Q^*).$$

If v is nonrepeating in its u-elements, then $P = P^*$ and $Q = Q^*$.

Proof. The A-RSK and the dual-A-RSK differ in only one rule: When some u_j enters a column under the A-RSK, it bumps the first element w_m such that $w_m > u_j$ (or if no such w_m exists, it settles at the end of the column). On the other hand, under the dual-A-RSK, u_j bumps the first element w_r such that $w_r \ge u_j$ (or settles at the end of the column). But u_j may appear only once in v, which implies that $w_r > u_j$, so this step is the same as that of the A-RSK. The proof now follows.

Notation. $v \in a_{k,l}(n)$ is said to be of type $(\alpha_1, \ldots, \alpha_k; \beta_1, \ldots, \beta_l)$ if it is a permutation of $t_1^{\alpha_1} \cdots t_k^{\alpha_k} u_1^{\beta_1} \cdots u_l^{\beta_l}$.

LEMMA 3.3. Let $v \in a_{k,l}(n)$ be of type $(\alpha_1, \ldots, \alpha_k; \beta_1, \ldots, \beta_l)$ and denote $\beta = \sum_{i=1}^l \beta_i$. Then there exists $w \in a_{k,\beta}(n)$ such that

(1) The u-elements of w are nonrepeating.

(2) For every shuffle A, if $v \xrightarrow{\text{dual-}A-\text{RSK}} (P_v^*, Q_v^*)$, then there exists a corresponding shuffle A' of the elements of w such that $w \xrightarrow{\text{dual-}A-\text{RSK}} (P_w^*, Q_w^*)$, where P_w^* is identical to P_v^* but with every v_i changed to w_i for all $i \leq n$. Consequently, $\operatorname{sh}(P_v^*) = \operatorname{sh}(P_w^*)$.

Proof. To avoid confusion between the elements of v and of w, we let u'_1, \ldots, u'_l denote the *u*-elements of v.

Form the sequence w from v as follows. Replace the u'_1 's in v with u_1, \ldots, u_{β_1} , moving from right to left. Replace the u'_2 's with $u_{\beta_1+1}, \ldots, u_{\beta_1+\beta_2}$, moving from right to left. Continue in this way until u'_l , including the u'_l 's.

Clearly, the *u*-elements of w are nonrepeating, satisfying Lemma 3.3(1).

Given some shuffle A of the elements of v, define the shuffle A' of the elements of w as follows. For every $i \in \{1, ..., k\}$,

$$\begin{split} t_{i} <_{A} u'_{1} &\Longrightarrow t_{i} <_{A'} u_{1} <_{A'} \cdots <_{A'} u_{\beta_{1}}, \\ t_{i} <_{A} u'_{2} &\Longrightarrow t_{i} <_{A'} u_{\beta_{1}+1} <_{A'} \cdots <_{A'} u_{\beta_{1}+\beta_{2}}, \\ &\vdots \\ t_{i} <_{A} u'_{l} &\Longrightarrow t_{i} <_{A'} u_{\beta_{1}+\dots+\beta_{l-1}+1} <_{A'} \cdots <_{A'} u_{\beta}, \\ u'_{1} <_{A} t_{i} &\Longrightarrow u_{1} <_{A'} \cdots <_{A'} u_{\beta_{1}} <_{A'} t_{i}, \\ &\vdots \\ u'_{l} <_{A} t_{i} &\Longrightarrow u_{\beta_{1}+\dots+\beta_{l-1}+1} <_{A'} \cdots <_{A'} u_{\beta} <_{A'} t_{i}. \end{split}$$

We compare the A-RSK insertion of the v's with the A'-RSK insertion of the w's. Note that the shuffle A and its derived shuffle A' are similar in that $v_i <_A v_j \Longrightarrow w_i <_{A'} w_j$, but they differ in one fundamental way: For i < jsuch that v_i, v_j, w_i , and w_j are u-elements, $v_i =_A v_j \Longrightarrow w_i >_{A'} w_j$. Now, if w_j reaches a cell inhabited by $w_i >_{A'} w_j$, then it bumps w_j to the next column, just as v_j would bump $v_i =_A v_j$ to the next column under the dual-A-RSK. On the other hand, if w_i reaches a cell inhabited by $w_j <_{A'} w_i$, it settles below w_j , whereas v_i would bump $v_j =_A v_i$ to the next column. However, such a situation never occurs, since i < j and $v_i =_A v_j$ implies that every column reached by w_j is first reached by w_i . The proof of this is as follows.

Suppose that, for some $x, w_i = u_{x+1}$ and $w_j = u_x$. Then every column reached by w_j is first reached by w_i , by induction on the columns of P_w^* . Trivially, w_i reaches column 1 before w_j . By the induction assumption, $w_i = u_{x+1}$ is in column $c', c' \ge c$. If c' > c, then we are done. Assume $c' = c : w_i = u_{x+1}$ is already in column c, and $w_j = u_x$ is inserted into column c. It bumps the first w_d such that $w_d \ge w_j = u_x$. Now $v_i = A v_j$ implies that there does not exist any t_z such that $w_j <_{A'} t_z <_{A'} w_i$. Hence $w_d = u_{x+1} = w_i$ is bumped to column c + 1.

This clearly extends to the general case i < j, $v_i = v_j$, $w_i = u_y$, $w_j = u_x$, for general y > x.

Hence the steps of the dual-A'-RSK on w are identical to the steps of the dual-A-RSK on v, but with every v_i , $i \le n$, changed to w_i . This implies that Lemma 3.3(2) is satisfied for w.

EXAMPLE 3.4. Let $v = t_2u_2u_1u_1t_1$ and $A = t_1 < t_2 < u_1 < u_2$. The sequence $w = t_2u'_3u'_2u'_1t_1$ clearly satisfies Lemma 3.3(1); we show that it satisfies Lemma 3.3(2) for shuffle A, by letting $A' = t_1 < t_2 < u'_1 < u'_2 < u'_3$.

Under shuffles A and A',

$$v \xrightarrow[A-RSK]{} (P_v^*, Q_v^*) \text{ and } w \xrightarrow[\text{dual-}A'-RSK]{} (P_w^*, Q_w^*),$$

where

$$P_{v}^{*} = \frac{\begin{bmatrix} t_{1} & u_{1} & u_{1} & u_{2} \\ t_{2} & & \end{bmatrix}}{\begin{bmatrix} t_{1} & u_{1} & u_{2} & u_{3} \end{bmatrix}} = \frac{\begin{bmatrix} v_{5} & v_{4} & v_{3} & v_{2} \\ v_{1} & & \end{bmatrix}}{\begin{bmatrix} v_{1} & u_{1} & u_{2} & u_{3} \end{bmatrix}} = \frac{\begin{bmatrix} w_{5} & w_{4} & w_{3} & w_{2} \\ w_{1} & & \end{bmatrix}}{\begin{bmatrix} w_{1} & u_{2} & u_{3} \end{bmatrix}}.$$

Thus Lemma 3.3(2) is satisfied for shuffle A.

We can now give the following proof.

Proof of Theorem 5(b). Let v be of type $(\alpha_1, \ldots, \alpha_k; \beta_1, \ldots, \beta_l)$ and denote $\beta = \sum_{i=1}^l \beta_i$. Lemma 3.3 implies that there exists a sequence $w \in a_{k,\beta}(n)$ with no repeating u-elements and with shuffles A', B' such that

$$w \xrightarrow[\text{dual-}A'-\text{RSK}]{} (P_{A'}^*, Q_{A'}^*), \qquad w \xrightarrow[\text{dual-}B'-\text{RSK}]{} (P_{B'}^*, Q_{B'}^*)$$

where $sh(P_{A'}^*) = sh(P_A^*)$ and $sh(P_{B'}^*) = sh(P_B^*)$. Since w contains no repetitions in its u-elements, Lemma 3.3 implies that

$$w \xrightarrow[A'-RSK]{} (P_{A'}^*, Q_{A'}^*), \qquad w \xrightarrow[B'-RSK]{} (P_{B'}^*, Q_{B'}^*).$$

Thus, by Theorem 2, $sh(P_{A'}^*) = sh(P_{B'}^*)$, which implies our result.

The proofs of parts (c) and (d) of Theorem 5 are similar to that of Theorem 5(b), since Lemma 3.3 can also be applied to the (dual, regular)-*A*-RSK and the (dual, dual)-*A*-RSK. Both algorithms are *t*-dual; for simplicity, let t'_1, \ldots, t'_k denote the *t*-elements of *v*. The *t*'s of the sequence *w* of Lemma 3.3 for parts (c) and (d) are set as follows. Replace the t'_1 's in *v* with $t_1, \ldots, t_{\alpha_1}$, moving from left to right. Replace the t'_2 's with $t_{\alpha_1+1}, \ldots, t_{\alpha_1+\alpha_2}$, moving from left to right. Continue in this way until t'_k , including t'_k .

Since the (dual, regular)-A-RSK of part (c) is *u*-regular, the *u*'s of *w* are identical to those of *v*. However, the (dual, dual)-A-RSK of part (d) is *u*-dual, so, in this case, the *u*'s of *w* are derived the same way as in the proof of Lemma 3.3. Finally, shuffle A' is derived from A in parts (c) and (d) by methods analogous to that of part (b).

REFERENCES

- 1. A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, *Adv. Math.* **64** (1987), 118–175.
- 2. A. Berele and J. B. Remmel, Hook flag characters and combinatorics, *J. Pure Appl. Algebra* **35** (1985), 245.
- 3. G. Olshanski, A. Regev, and A. Vershik, "Frobenius–Schur Functions," Studies in Memory of I. Schur, Birkhauser, Boston, in press.
- J. B. Remmel, The combinatorics of (k, l)-hook Schur functions, Contemp. Math. 34 (1984), 253–287.
- J. B. Remmel, Permutation statistics and (k, l)-hook Schur functions, Discrete Math. 67 (1987), 271–298.
- J. B. Remmel, A bijective proof of a factorization theorem for (k, l)-hook Schur functions, Linear and Multilinear Algebra 28 (1990), 119–154.
- R. Stanley, "Enumerative Combinatorics," Vol. 2, Cambridge Univ. Press, Cambridge, UK, 1999.