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As in the �k� l�-RSK (Robinson–Schensted–Knuth) of A. Berele and A. Regev
(1987, Adv. Math. 64, 118–175), other super-RSK algorithms can be applied to
sequences of variables from the set �t1� � � � � tk� u1� � � � � ul�, where t1 < · · · < tk and
u1 < · · · < ul . While the �k� l�-RSK is the case where ti < uj for all i and j, these
other super-RSK’s correspond to all the

(
k+l
k

)
shuffles of the t’s and u’s satisfying

the above restrictions that t1 < · · · < tk and u1 < · · · < ul . We show that the shape
of the tableaux produced by any such super-RSK is independent of the particular
shuffle of the t’s and u’s.  2002 Elsevier Science (USA)

1. INTRODUCTION

We follow the tableau terminology of [7]. The classical Frobenius–
Schur–Weyl theory shows how the SSYT (semistandard Young tableaux)
determine the representations of GL�m��� (or gl�m���). Here GL�m���
�gl�m���� is the general linear Lie group (algebra). Also, SYT (standard
Young tableaux) play an important role here. The notion of �k� l� SSYT
is introduced in [1], where similar relationships between such tableaux
and the representations of pl�k� l� are shown. Here pl�k� l� is the general
linear Lie super-algebra.
The �k� l� SSYT are defined, via a �k� l�-RSK algorithm, as follows [1].

Fix integers k� l ≥ 0, k+ l > 0, and k+ l symbols t1� � � � � tk� u1� � � � � ul such
that t1 < · · · < tk < u1 < · · · < ul. Let

ak� l�n� =
{(

1 · · ·n
v1 · · · vn

)
	 vi ∈ �t1� � � � � tk� u1� � � � � ul�

}
�

To map ak� l�n� to pairs of tableaux �P�Q�, apply to each v ∈ ak� l�n� the
�k� l�-RSK, in which the usual RSK insertion algorithm [7] is applied to the
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ti’s and the conjugate correspondence (see [1]) is applied to the uj ’s; see the
examples below. By the definitions of [1], the insertion tableau, P = P�v�,
mapped from v ∈ ak� l�n�, is �k� l� semistandard; that is, it satisfies the
following three properties:

(a) The “t part” (i.e., the cells filled with ti’s) is a tableau.
(b) The ti’s are nondecreasing in rows, strictly increasing in columns.
(c) The uj ’s are nondecreasing in columns, strictly increasing in rows.

As in the usual correspondence, the recording tableau, Q = Q�v�, indi-
cates the order in which the new cells were added to P . Clearly, Q is SYT
having the same shape as that of P .
A total order of �t1� � � � � tk� u1� � � � � ul�, which is compatible with

t1 < · · · < tk and u1 < · · · < ul, is called a shuffle (of t1� � � � � tk and
u1� � � � � ul). For example, t1 < u1 < u2 < t2 is such a shuffle, compatible
with t1 < t2 and u1 < u2. Clearly, there are

(
k+l
k

)
such shuffles; of these,

Berele and Regev chose to work with t1 < · · · < tk < u1 < · · · < ul, which
we call the �k� l� shuffle (see [1, 2.4]). The shuffle t1 < u1 < t2 < u2 < · · · <
tk < uk�with its corresponding SSYT, appears in Section 4 of [3].
Let I = I�k� l� denote the set of all such

(
k+l
k

)
shuffles. Given A ∈ I,

there is a corresponding A-RSK insertion algorithm; if v ∈ ak� l�n�, then
v−→

A
�P�Q� by that algorithm. P = PA = P�v�A� is the insertion tableau,

and Q = QA = Q�v�A� is the recording tableau. Here P is an A-SSYT;
that is, it satisfies the following three properties:

(a) P is weakly A-increasing in both rows and columns.
(b) The ti’s are strictly increasing in columns.
(c) The uj ’s are strictly increasing in rows.

Example. Let k = l = 2, A�B ∈ I = I�2� 2�, where
A 
 t1 < t2 < u1 < u2 and B 
 u1 < u2 < t1 < t2�

Let

v =
(

1 · · · · · · 4
u2� t1� t2� u1

)
�

Then

v −→
A

u2 t1 u2 t1 t2 u2
t1 t2 u2
u1

= PA�

while

v −→
B

u2 u2 t1 u2 t1 t2
u1 u2 t2
t1

= PB�
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Thus v −→
A
�PA�Q� and v −→

B
�PB�Q�, where

Q = 1 2 3
4

and PA and PB are as above.

Definition. Denote by sh�v�A� = sh�PA� the shape of the insertion
tableau P�v�A� = PA of v ∈ ak� l�n� under the A-RSK.

Given a shuffle A ∈ I and the pair �P�Q�, where P is A-SSYT, Q is SYT,
and sh�P� = sh�Q�, the A insertion algorithm can obviously be reversed.
Standard arguments (see, e.g., [7, Chap. 7]) yield the following result.

Theorem 1. Let A ∈ I be a shuffle. Then the A-RSK insertion algorithm
v−→

A
�PA�QA� is a bijection between ak� l�n� and

��PA� QA� 	 PA is A-SSYT� QA is SYT� sh�PA� = sh�QA���
Remark. Denote such a tableau P = �Pi� j� and denote <A by <. Clearly,

if Pi� j = tr , then Pi� j−1 ≤ Pi� j ≤ Pi� j+1 and Pi−1� j < Pi� j < Pi� j+1. Similarly,
if Pi� j = ur , then Pi� j−1 < Pi� j < Pi� j+1 and Pi−1� j ≤ Pi� j ≤ Pi� j+1.

Denote by sh(v�A) the shape of tableaux P�v�A� and Q�v�A�. This
brings us to our main result.

Theorem 2. Let v ∈ ak� l�n��A�B ∈ I� v −→
A
�PA�QA�, and v −→

B
�PB�

QB�. Then sh�PA� = sh�PB�. Consequently, QA = QB.

In other words, the shape of the tableau obtained through any of the
�k� l�-shuffle-RSK algorithms is independent of the particular shuffle of
the t’s and u’s.

Definition. Let A ∈ I and λ � n, that is, a partition of n. Let �A�λ�
denote the set of the A-SSYT of shape λ:

�A�λ� = �T 	T is A-SSYT� sh�T � = λ��
Recall the definition of type�T � from [7, p. 309].
Theorem 2 implies the following.

Theorem 3 [6]. Let A�B ∈ I� λ � n. Then there exists a bijection
ϕ
 �A�λ� → �B�λ� such that, for all T ∈ �A�λ�, type�T � = type�ϕ�T ��. (In
fact, there exist (at least) dλ such canonical bijections, where dλ is the number
of SYT’s of shape λ.)

Theorem 3 appears in [6], where it is proven by a different method. Our
proof of the theorem is as follows.
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Proof of Theorem 3. The proof is based on the following diagram:

�PA�Q�

v ∈ ak� l�n�� v

�PB�Q�

A−RSK

B−RSK

Thus choose an SYT Q of shape λ. Given P = PA ∈ �A�λ�, we get

�PA�Q� inverse
A-RSK
→ v

B-RSK
→ �PB�Q��

This defines the bijection ϕ = ϕQ 
 ϕ�PA� = PB. Clearly, type�PA� =
type�PB� and, by Theorem 2, sh�PA� = sh�PB�.
Recall from [2] the notation w�T � for the weight of a tableau T . For

example, let

T =
t1 t1 u2 u3
t2 t3 u2
u1 u3
u1

�

Then w�T � = x21x2x3y
2
1y

2
2y

2
3 . Also, recall the “hook” (or the “super”) Schur

function

HSλ�x� y� = HSλ�x1� � � � � xk� y1� � � � � yl� [1, 2]�

When A is the shuffle A0 
 t1 < · · · < tk < u1 < · · · < ul, HSλ�x� y� is
given by

HSλ�x1� � � � � xk� y1� � � � � yl� =
∑

T∈�A0
�λ�

w�T �

[1, Theorem 6.10]. See also [4–6].
Theorem 3 implies the following.

Corollary 4. For any A ∈ I,
HSλ�x1� � � � � xk� y1� � � � � yl� =

∑
T∈�A�λ�

w�T ��

Given a shuffle A ∈ I, the A-RSK is based on A, on the regular RSK
for the ti’s, and on the conjugate-regular RSK for the uj ’s.
In addition to the regular RSK, there is also the dual RSK [7, p. 331].

Given the shuffle A ∈ I, this leads to four possible A insertion algorithms:
either the regular or the dual for the ti’s and either the conjugate regular or
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the conjugate dual for the uj ’s. In fact, the previous A-RSK is (t-regular,
u-conjugate-regular), which we denote as the (regular, regular)-A-RSK.
Similarly, (t-regular, u-dual-conjugate) is the (regular, dual)-A-RSK. Sim-
ilarly for the algorithms (dual, regular)-A-RSK and (dual, dual)-A-RSK.
Each of these three new insertion algorithms exhibits a similar shape invari-
ance under all shuffles A ∈ I.
Theorem 5. (a) Let v ∈ ak� l�n� and A�B ∈ I such that

v
�regular� regular�-A-RSK

→ �P∗A�Q∗A�� v
�regular� regular�-B-RSK

→ �P∗B�Q∗B��

Then sh�P∗A� = sh�P∗B�. Consequently, Q∗A = Q∗B.
(b) Let v ∈ ak� l�n� and A�B ∈ I such that

v
�regular� dual�-A-RSK

→ �P∗A�Q∗A�� v
�regular� dual�-B-RSK

→ �P∗B�Q∗B��

Then sh�P∗A� = sh�P∗B�. Consequently, Q∗A = Q∗B.
(c) Let v ∈ ak� l�n� and A�B ∈ I such that

v
�dual� regular�-A-RSK

→ �P∗A�Q∗A�� v
�dual� regular�-B-RSK

→ �P∗B�Q∗B��

Then sh�P∗A� = sh�P∗B�. Consequently, Q∗A = Q∗B.
(d) Let v ∈ ak� l�n� and A�B ∈ I such that

v
�dual� dual�-A-RSK

→ �P∗A�Q∗A�� v
�dual� dual�-B-RSK

→ �P∗B�Q∗B��

Then sh�P∗A� = sh�P∗B�. Consequently, Q∗A = Q∗B.

Clearly, Theorem 5(a) is Theorem 2 above. The proof of Theorem 2
is given in the next section, which is the main body of this paper. First
we describe the A-RSK algorithm in detail. The main step in the proof of
Theorem 2 is Lemma 2.15, which shows that a transposition of the variables
in the shuffle (i.e., a single change in the order of some ti and uj) does
not alter the shape of the resulting tableaux. In Section 3 we prove the
remaining parts (b), (c), and (d) of Theorem 5, essentially by deducing
them from Theorem 2.

2. INVARIANCE OF SHAPE

As in the �k� l�-RSK, the A-RSK insertion algorithm involves applying
the usual RSK correspondence to the ti’s, and the conjugate correspon-
dence to the uj ’s. This is illustrated in the following example.

Definition 2.1. For i� j ∈ �+, let c�i� j� denote the cell in row i and
column j of a given tableau.
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Example 2.2. Under the shuffle A = t1 < u1 < t2 < u2 < t3, perform
the insertion

u1 t2 t2
u1 u2
t3

← t1�

(a) t1 < u1 �⇒ t1 occupies c�1� 1�. Now, a ui is always bumped to
the next column; hence u1 is bumped to column 2.

(b) u1 < t2 �⇒ u1 occupies c�1� 2�. Now, a ti is always bumped to
the next row; hence t2 is bumped to row 2.

(c) u1 < t2 < u2 �⇒ t2 occupies c�2� 2�, bumping u2 to column 3.

(d) u2 > t2 �⇒ u2 settles in c�2� 3�.

�a�
t1 t2 t2
u1 u2
t3

� �b�
t1 u1 t2
u1 u2
t3

�

�c�
t1 t2 t2
u1 t2
t3

� �d�
t1 u1 t2
u1 t2 u2
t3

�

The proof of Theorem 2 follows from the following analysis of the
A-RSK algorithm.

Lemma 2.3. Let P be an A-SSYT, v ∈ �t1� � � � � tk� u1� � � � � ul�. The inser-
tion P ← v is made of a sequence of several steps. In an intermediate mth such
step, we have an A-SSYT P̃ together with an element Pi� j that was bumped
from c�i� j� by P̃i� j , P̃i� j <APi� j , and we need to do the following insertion:

(a) If Pi� j = tr , insert it into the i+ 1th row of P̃ .

(b) If Pi� j = us, insert it into the j + 1th column of P̃ .

We show that in both cases the result would be an A-SSYT P∗ and—except
for the last step—together with a new element P̃i′� j′ (bumped from c�i′� j′�),
which is to be inserted into P∗. Moreover,

(1) If Pi� j = tr , then c�i′� j′� = c�i+ 1� j′� and j′ ≤ j.

(2) If Pi�j = us, then c�i′� j′� = c�i′� j + 1� and i′ ≤ i.

Proof. Note that (2) is obtained from (1) by conjugation; hence it suf-
fices to just prove (1).
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Proof of (1). Denote the ith row of P̃ by

a1 · · · · · · · · · aj−1P̃i� jaj+1 · · · · · · · · · ag�
so aj = Pi� j and, by assumption, Pi� j = tr . Thus

���

a1 · · · · · · · · · · · · · · · · · · aj−1P̃i� jaj+1 · · · · · · · · · ag
P̃ = b1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · bf

c1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ch
���

and Pi� j = tr is inserted into the i+ 1th row b1 · · · · · · bf .
Let bj′−1 ≤ Pi� j < bi� j′ , so, in P∗, the i+ 1th row is

b1 · · · · · · · · · · · · bj′−1Pi� jbj′+1 · · · · · · · · · · · · bf �
Since P̃i� j bumped Pi� j , we have P̃i� j < Pi� j . Since aj = Pi� j = tr , hence
Pi� j < bj . Together with bj′−1 ≤ Pi� j < bj′ , this implies that j′ ≤ j; hence

���

a1 · · · · · · aj′−1aj′aj′+1 · · · · · · P̃ijaj+1 · · · · · · · · · ag
P∗ = b1 · · · · · · bj′−1Pijbj′+1 · · · · · · · bjbj+1 · · · · · · · · · bf

c1 · · · · · · cj′−1cj′cj′+1 · · · · · · · ·cjcj+1 · · · · · · ch
���

By the induction assumption on P̃ , we only need to verify that the part

aj′
Pi� j
cj′

of the j′th column is A-semistandard; that is, since Pi� j = tr , we need to
show that aj′ ≤ P̃i� j < cj′ . This follows from aj′ ≤ P̃i� j < Pi� j = tr < bj′ ≤
cj′ .

Definition 2.4. Two shuffles A�B ∈ I are adjacent if there exist ti and
uj such that

(1) ti < uj in A.
(2) uj < ti in B.
(3) All other pairs have the same order relations in A and in B.

In that case, call A and B �ti� uj�-adjacent. Thus A and B differ by the
transposition �ti� uj�.
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Remark 2.5. Trivially, for any A�B ∈ I, there exist A0�A1� � � � �An ∈ I
such that A0 = A�An = B, and Ar is adjacent to Ar+1� 0 ≤ r ≤ n − 1.
Thus, to prove Theorem 1, it suffices to show that, for all v ∈ ak� l�n� and
for every pair �A� B� of adjacent shuffles, sh�v�A� = sh�v� B�. Therefore,
for the rest of this section, let A�B ∈ I be �ti� uj�-adjacent, with ti <A

uj
and uj <B

ti.

Lemma 2.6. Let A ∈ I, let w ∈ ak� l�n�, and, for some x ∈ �t1� � � � � tk,
u1� � � � � ul�, let w′ be the sequence obtained by omitting from w all elements
A-greater than x. Let PA and P ′A be the insertion tableaux obtained from w
and w′, respectively, under shuffle A. Then P ′A is a subtableau of PA.

Proof. Let w
A-RSK→ PA; P 
 �� P1� P2� � � � � Pn = PA, and similarly let

w′
A-RSK→ P ′A; P

′ 
 �� P ′1� P ′2� � � � � P ′m = P ′A �m = 	w′	�.
Assume P ′i is a subtableau of Pji and insert (a corresponding) y in w.
If x <

A
y� y is not in w′ so P ′i is not affected. Also, inserting y into Pji � y

does not affect the subtableau P ′i ⊆ Pji , since y bumps only elements that
are A-greater than itself.
A similar argument applies when y ≤ x: now y is also in w′, and is inserted

into P ′i and into Pji . Clearly, in Pji it is also inserted into the subtableau
P ′i ⊆ Pji , and the proof follows.

Corollary 2.7. Let A�B ∈ I be �ti� uj�-adjacent, v ∈ ak� l�n�, v A
→

�PA�QA�, and v
B
→ �PB�QB�. Then the elements that are both A-less and

B-less than ti and uj form identical subtableaux in PA and PB.

Proof. Denote by v′ the sequence obtained by omitting from v all ele-
ments (A- and B-) greater than or equal to ti and uj . By �ti� uj�-adjacency,
the largest element smaller than ti and uj , in both A and B, is the same
element x. Moreover, v′ is obtained by omitting from v all elements which
are (A- or B-) greater than x. Let P ′A and P ′B denote the insertion tableaux
of v′ under shuffles A and B, respectively. Then, by Lemma 2.6, P ′A and
P ′B are subtableaux of PA and PB, respectively. But the elements that
are A- or B-less than ti and uj are ordered identically in A and B, so
P ′A = P ′B.

Notation. As above, let A�B ∈ I be two shuffles that are �ti� uj�-
adjacent: ti < uj in A and uj < ti in B. Let v ∈ ak� l�n� and denote
v

A
→ �PA�QA� and v

B
→ �PB�QB�.

Notation. Given the tableau PA (and similarly for PB), let regions 1, 2,
and 3 denote, respectively, the regions occupied (1) by elements less than
ti and uj , (2) by ti and uj , and (3) by elements greater than ti and uj .
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Example 2.8. Let v = u1t3t2u2t2u1t1 and let

A = t1 < u1 < t2 < u2 < t3�

B = t1 < u1 < u2 < t2 < t3�

Then A and B are �ti� uj�-adjacent, with ti = t2 and uj = u2, and

PA =
t1 u1 t2
u1 t2 u2
t3

� PB =
t1 u1 u2
u1 t2 t2
t3

�

In both tableaux, region 1 contains the elements t1 and u1, region 2
contains t2 and u2, and region 3 contains t3. Note that, in this example,
regions 1 and 3 are the same in PA as in PB, and region 2 is identically
shaped in PA and PB. We shall show that this is always true.

By Lemma 2.6, both region 1 and the union of regions 1 and 2 form
subtableaux in P . It is easy to check that region 2 does not contain the
configuration

a b

c d
�

If it does, assume d = ti. Then b = uj , so uj < ti, and a �= ti� uj . Similarly
if d = uj . It follows that region 2 forms part of the rim of the subtableaux
which is the union of regions 1 and 2.

Remark 2.9. Note that (part of) region 2 in PA (i.e., ti < uj) always
looks like

ti · · · · · · ti
uj
���

ti · · · · · · tiuj
uj
���
uj

Namely, except possibly for the rightmost element, all other elements
in a row are ti’s. Similarly, except for possibly the top element, all other
elements in a column are uj ’s.
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Similarly, in PB (i.e., uj < ti), part of region 2 looks like

ujti · · · · · · ti
���

ujti · · · · · · ti
���
uj

Denote v = v1 · · · vn. The tableau PA is created by applying the A-RSK
insertion algorithm to each of v1� � � � � vn successively. For each vm, let lm�A�
denote the length of the insertion path [7, p. 317] of vm under shuffle A—
that is, the number of insertion steps that occur when vm is inserted while
forming PA. The total number of insertion steps involved in the formation
of PA is thus sA =

∑n
m=1 lm�A�. For every r ∈ �1� � � � � sA�, let Pr

A be the
insertion tableau as it appears immediately after insertion step r.
Similarly, under shuffle B, the length of the insertion path of vm into

PB is lm�B�, and the total number of insertion steps involved in forming PB
is sB =

∑n
m=1 lm�B�, with Pr

B denoting the insertion tableau after insertion
step r.

Example 2.10. As in Example 2.8, let v = v1 · · · v7 = u1t3t2u2t2u1t1 and
let A = t1 < u1 < t2 < u2 < t3. Then tableau PA is formed by the A-RSK
as follows (ignore the underlines):

u1 u1 t3
u1 t2
t3

u1 t2
u2
t3

u1 t2 t2
u2
t3

u1 t2 t2
u1 u2
t3

t1 u1 t2
u1 t2 u2
t3

For all i ∈ �1� � � � � 7�, the underlined elements in tableau i lie in the
insertion path of element vi. Thus l1�A� = l2�A� = l5�A� = 1, l3�A� = l4�A� =
l6�A� = 2, l7�A� = 4, and sA =

∑7
i=1 li�A� = 13. If, for example, r = 7 =∑5

i=1 li�A�, then we have

Pr =
u1 t2 t2
u2
t3

� Pr+1 =
u1 t2 t2
u1
t3

�
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Example 2.11. Let k = l = 1�A 
 t < u�B 
 u < t� v = v1v2 = tu. Then

PA 
 �� t �
t

u
� l1�A� = l2�A� = 1�

PB 
 �� t �
u

t
� l1�B� = 1� l2�B� = 2�

Definition 2.12. For p� q ∈ �+, we say that Pp
A ∼ P

q
B (with respect to

the formations of PA and PB) if:

(1) Regions 1 and 3 are identical in P
p
A and P

q
B.

(2) Region 2 is identically shaped in P
p
A and P

q
B; moreover, in each

connected component of that region 2, the number of ti’s (hence of uj ’s)
in P

p
A equals the number of ti’s (hence of uj ’s) in P

q
B.

(3) Either p = sA and q = sB, or both p < sA and q < sB. In the
latter case, the next insertion step involves inserting the same element into
the same row (or column) in both tableaux.

Example 2.13. The tableaux of Example 2.8 satisfy PA ∼ PB. Regions
1 and 3 in the two tableaux are identical, satisfying Definition 2.12(1).
Region 2 consists of one component which is identically shaped and
contains exactly one ti and one uj in both tableaux. This verifies
Definition 2.12(2). Since both tableaux correspond to p = sA and q = sB,
Definition 2.12(3) is satisfied as well.

Lemma 2.14. For any shuffle A ∈ I and for all p ∈ �2� � � � � sA� and
r� s ∈ �+, if c�r� s� contains some w in Pp−1

A , then c�r� s� contains some z ≤
A
w

in P
p
A.

Conversely, if c�r� s� contains some element z in P
p
A, then c�r� s� was either

empty or contained some w ≥
A
z in P

p−1
A .

Proof. Follows from the A-RSK algorithm.

The Proof of Theorem 2 clearly follows from the next result.

Lemma 2.15. Let A�B ∈ I be �ti� uj�-adjacent, v ∈ ak� l�n�, v A-RSK→�PA�QA�, and v
B-RSK→ �PB�QB�. Then PA ∼ PB.

Proof. We prove that PA ∼ PB by induction on the insertion steps of PA
and PB. Trivially, P

1
A = P1

B. Now let p ∈ �1� � � � � sA− 1�, q ∈ �1� � � � � sB− 1�
and assume that (1) Pp

A ∼ P
q
B and also (2) Pp−1

A ∼ P
q−1
B or Pp−1

A ∼ P
q−2
B or

P
p−2
A ∼ P

q−1
B . We show that this implies that Pp+1

A ∼ P
q+1
B or Pp+1

A ∼ P
q+2
B

or Pp+2
A ∼ P

q+1
B . This clearly implies the proof of the lemma (by induction

on p+ q).
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Note that if Pp
A ∼ P

q
B, then, by Definition 2.12(3), step p+ 1 in PA and

step q + 1 in PB are identical; that is, the same element, x, is inserted
into the same row (or column) in both tableaux. We assume that x is a
t-element and therefore enters some row, denoted row r; the case where x
is a u-element is analogous. Since P

p
A ∼ P

q
B, row r is empty in P

p
A if and

only if it is empty in P
q
B. The case where row r is empty is trivial, so we

assume throughout that row r is nonempty in P
p
A and P

q
B.

Case 1. Suppose that, under both shuffles A and B, x > ti and uj . Since
P
p
A ∼ P

q
B, the last nonempty cell in row r must be in the same region in

both P
p
A and P

q
B, and if it is in region 3, then it must be occupied by the

same element in both tableaux.

Case 1�1. Row r in Pp
A (and in Pq

B) terminates with an element less than
or equal to x. In this case, x is affixed to the end of the row in both tableaux,
so Pp+1

A and Pq+1
B have the same shape and clearly satisfy properties (1) and

(2) of Definition 2.12. Let m denote the size of Pp+1
A and P

q+1
B . If m = n,

which is the size of PA and PB, then the insertion algorithm terminates
here. Otherwise, the next step is to begin vm+1’s insertion path by inserting
vm+1 into either the first row or the first column in both tableaux. This
verifies Definition 2.12(3) and we have Pp+1

A ∼ P
q+1
B .

Case 1�2. Row r in P
p
A contains an element z > x (under both A and

B). Since P
p
A ∼ P

q
B, the same is true in P

q
B. In this case, x bumps an ele-

ment greater than itself—a region-3 element—and occupies its cell in both
tableaux. Thus both the cell occupied by x and the element bumped by x
are identical in the two tableaux, which verifies Definition 2.12(3). Since
Definition 2.12(1) and (2) clearly hold, it follows that Pp+1

A ∼ P
q+1
B .

Case 2. Suppose that x = ti. During step P
q
B → P

q+1
B , x = ti >B

uj
bumps the first region-3 element in row r, or if no such element exists, x
occupies the first empty cell in that row. Let c�r� s� be the cell occupied by
x in P

q+1
B .

Case 2�1. In row r of Pp
A, region 2 either terminates with ti or does not

appear at all in that row. Then x occupies c�r� s� also in P
p+1
A (and bumps

the same element as in P
q+1
B ), so P

p+1
A ∼ P

q+1
B .

Case 2�2. In P
p
A, the last region-2 element in row r is uj . Let this uj

be in c�r� s′�. Since P
p
A ∼ P

q
B, c�r� s′� is the last region-2 cell in row r in

both tableaux. Since, in P
q
B → P

q+1
B , x was inserted into c�r� s�, we have

s = s′ + 1. Thus uj is in c�r� s − 1� and is bumped by x = ti to column s

during Pp
A → P

p+1
A . We prove that, in such a case, Pp+2

A ∼ P
q+1
B . To do so,
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we show that

2.2.1. In P
p+1
A → P

p+2
A , uj settles in c�r� s�, to the immediate right

of x.
2.2.2. This implies that Definition 2.12(2) for Pp+2

A ∼ P
q+1
B is satisfied.

2.2.3. Both (1) and (3) of Definition 2.12 for P
p+2
A ∼ P

q+1
B are

satisfied.

Proof of 2.2.1. If r = 1, then uj clearly settles in c�r� s� in P
p+2
A . We

therefore assume that r > 1.
To prove that uj settles in c�r� s� in P

p+2
A , we need only to show that

c�r − 1� s� in Pp+1
A contains an element b ≤ uj , since c�r� s� in Pp+1

A contains
some element z >

A
uj . Now, since r > 1, x = ti arrived at row r in P

p
A (and

similarly in Pq
B) after being bumped from row r − 1 of Pp−1

A . Let c�r − 1� h�
be the cell occupied by x in P

p−1
A , before it was bumped from row r − 1.

P
p−1
A x is bumped

from c�r−1� h�
→ P

p
A x is inserted

into c�r� s−1�
→ P

p+1
A uj is inserted

into column s

→ P
p+2
A �

Since x is inserted into c�r� s− 1� of Pp+1
A , Lemma 2.3 implies that s− 1 ≤

h. If s ≤ h, then c�r − 1� s� was occupied by an element less than or equal
to x in P

p−1
A , and this continues to be true in P

p
A and P

p+1
A , which implies

our claim (that b ≤ uj). On the other hand, suppose that h = s − 1. In this
case, we prove that c�r − 1� s� contains an element less than or equal to uj
by showing that otherwise we would have a contradiction to the induction
assumptions. Our proof of this is illustrated by the following figures, each
of which consists of the block of cells in rows r − 1 and r and columns s− 1
and s in the corresponding tableaux.

P
p−1
A 


s
���

x b
r · · · �

P
p
A 


s
���
b

r · · · uj
�

P
p+1
A 


s
���
b

r · · · x
�

P
q−2
B 


s
���
z

r · · · �
P
q−1
B 


s
���
e

r · · · �



72 regev and seeman

So, assume that, in P
p−1
A , x occupied c�r − 1� s − 1�, and c�r − 1� s� was

either empty or contained an element b > uj (a region-3 element). We show
that this contradicts the claim of the induction hypothesis, that Pp−1

A ∼
P
q−1
B , Pp−1

A ∼ P
q−2
B , or Pp−2

A ∼ P
q−1
B .

P
q−2
B e is inserted

into c�r−1� s�
→ P

q−1
B x is bumped

from c�r−1� s′�
→ P

q
B x is inserted

into c�r� s�
→ P

q+1
B �

Now, in P
q+1
B , x = ti occupies c�r� s�, so c�r − 1� s� is occupied by an

element less than x. Lemma 2.3 implies that, in P
q
B, x occupied c�r − 1� s′�,

where s ≤ s′, and this implies that, in Pq−1
B , c�r − 1� s� contained an element

e ≤ x, a region-1 or -2 element. But the same cell in Pp−1
A was either empty

or contained a region-3 element, and by Lemma 2.14, the same must have
been true in P

p−2
A . Thus the above assumption, that h = s − 1, implies that

neither Pp−1
A ∼ P

q−1
B nor Pp−2

A ∼ P
q−1
B is satisfied. We show now that it also

implies that Pp−1
A �P

q−2
B .

Suppose that Pp−1
A ∼ P

q−2
B is satisfied. Denote by m the size of Pp−1

A

and Pq−2
B . By assumption, in Pp−1

A —hence also in Pq−2
B ∼ P

p−1
A —x occupies

c�r − 1� s− 1� and c�r − 1� s� is either empty or contains a region-3 element
z > x. But we saw above that, in P

q−1
B , c�r − 1� s� contained e ≤ x. It

follows that insertion step P
q−2
B → P

q−1
B consisted of e being inserted into

c�r − 1� s� and—if c�r − 1� s� were previously occupied—of bumping from
it some z > x. If e bumped some z, then, in Pq−1

B → P
q
B, z would have been

inserted into either row r or column s + 1. But we saw earlier that x was
bumped to row r in P

q−1
B → P

q
B, which implies that z must have bumped

x during this step. This leads to a contradiction, since z could not have
bumped x < z. Thus, when e occupied c�r − 1� s� during P

q−2
B → P

q−1
B , it

did not bump any element; the cell was previously empty. By occupying an
empty cell, e increased the size of the tableau from m to m+ 1: 	Pq−2

B 	 = m,
	Pq−1

B 	 = m+ 1. Hence 	Pq
B	 ≥ m+ 1.

On the other hand, Pp−1
A is of size m, and during P

p−1
A → P

p
A, x was

bumped from row r − 1 by some smaller element, so the size of the tableau
did not change. It follows that 	Pp

A	 = m < 	Pq
B	, contradicting Pp

A ∼ P
q
B.

It follows that c�r − 1� s� in P
p+1
A contains an element b ≤ uj , and this

implies that, when uj enters column s in P
p+1
A → P

p+2
A , it settles in c�r� s�,

to the right of x. This completes the proof of 2.2.1.

Proof of 2.2.2. By 2.2.1, uj settles in c�r� s� in P
p+2
A . We show that this

implies that Definition 2.12(2) for Pp+2
A ∼ P

q+1
B is satisfied. In the diagrams

below the proof, the cells outside of region 2 are marked with a +.
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Recall that, by Case 2.2, uj is located in c�r� s − 1� in P
p
A, so c�r� s − 1� is

part of a connected component of region 2. Let τ be the number of ti’s and
µ be the number of uj ’s in this connected component. By Definition 2.12(2)
of Pp

A ∼ P
q
B, region 2 of Pq

B contains a corresponding connected component
(in the same cells as that of Pp

A), with τ ti’s and µ uj ’s.
Since uj is located in c�r� s − 1� in P

p
A, by strict row inequality, c�r� s� is

either empty or in region 3. Similarly, since x = ti occupies c�r� s − 1� in
P
p
A → P

p+1
A , c�r − 1� s − 1� must contain a region-1 element in P

p+1
A (and

in P
p
A):

P
p
A 


s
���

+

r · · · uj +
�

Thus, if c�r − 1� s� is in region 2 in P
p
A and P

q
B, then in both tableaux it is

part of a connected component distinct from that of c�r� s − 1�. This other
component consists of τ′ ti’s and µ′ uj ’s. (If c�r − 1� s� is not in region 2,
then we let τ′ = µ′ = 0.)
Since c�r� s� is either empty or in region 3 in P

p
A (and thus in P

q
B), it fol-

lows that the same is true for c�r� s + 1� and c�r + 1� s�. By the assumption
at the beginning of Case 2, during Pq

B → P
q+1
B , x = ti bumps some region-3

element z from c�r� s�, thereby adding c�r� s� to region 2. But c�r� s� is adja-
cent to both c�r� s− 1� and c�r − 1� s�, so when it joins region 2, it combines
their respective connected components into a single larger one. Since nei-
ther c�r� s + 1� nor c�r + 1� s� is in region 2, it follows that, in P

q+1
B , c�r� s�

becomes part of a connected component of region 2, consisting of τ+ τ′ + 1
ti’s and µ+ µ′ uj ’s:

P
q+1
B 


s
���

+

r · · · x +

+

�

Similarly, during P
p
A → P

p+1
A → P

p+2
A , x = ti bumps uj from c�r� s − 1�,

and uj bumps z from c�r� s�, so the only change in the shape of region 2 in
P
p+2
A is the addition of c�r� s�. Thus c�r� s� of Pp+2

A is part of a connected
component of region 2, also containing τ + τ′ + 1 ti’s and µ+ µ′ uj ’s, and
this component is identically shaped to the corresponding component of
P
q+1
B , so Definition 2.12(2) of Pp+2

A ∼ P
q+1
B is satisfied. This completes the

proof of 2.2.2.
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Proof of 2.2.3. Definition 2.12(1) is satisfied for Pp+2
A ∼ P

q+1
B , since, in

both P
q
B → P

q+1
B and P

p
A → P

p+1
A → P

p+2
A , region 1 is unchanged, and the

only change in region 3 is the elimination of c�r� s�.
Since the same element z is bumped from c�r� s� in P

p+1
A → P

p+2
A

and P
q
B → P

q+1
B , Definition 2.12(3) is satisfied, and the proof of 2.2.3 is

complete.

It follows that Pp+2
A ∼ P

q+1
B .

Case 3. Suppose that x = ta < ti.

Case 3�1. Row r in P
p
A terminates with z ≤ x. Thus z is in region 1, so,

by Definition 2.12(1) of Pp
A ∼ P

q
B, row r in P

q
B terminates with z. In such a

case, x is affixed to the end of row r in both tableaux, so P
p+1
A and P

q+1
B

have the same shape, and clearly satisfy Definition 2.12(1) and (2). Let m
denote the size of Pp+1

A and P
q+1
B . If m = n, which is the size of PA and

PB, then the insertion algorithm terminates here. Otherwise, the next step
is to begin vm+1’s insertion path by inserting vm+1 into either the first row
or the first column in both tableaux. This verifies Definition 2.12(3) and we
have Pp+1

A ∼ P
q+1
B .

Case 3�2. Row r in P
p
A (and hence in P

q
B) contains an element greater

than x. In both tableaux, x bumps from row r the leftmost element greater
than itself. By Definition 2.12(1) and (2) of Pp

A ∼ P
q
B, the same cell—

denoted c�r� s�—becomes occupied by x in both tableaux. Thus, if the ele-
ment bumped by x is identical in the two tableaux, then P

p+1
A ∼ P

q+1
B .

Suppose, however, that x bumps different elements from the cell(s) c�r� s�
of Pp

A and P
q
B. By P

p
A ∼ P

q
B, these must be ti and uj . Since x = ta occupies

c�r� s� in P
p+1
A , Lemma 2.3 implies that, in P

p−1
A , x occupied c�r − 1� s′�

with s ≤ s′. Thus the c�r − 1� s� element g in P
p−1
A was g ≤ x < uj� ti,

so c�r − 1� s� was a region-1 cell. Since x was subsequently bumped from
row r − 1 by an element smaller than itself, it follows that c�r − 1� s� is
a region-1 cell also in P

p
A (and P

q
B). Similarly, since x = ta < ti settles in

c�r� s� in P
p
A → P

p+1
A , c�r� s − 1� is a region-1 cell in P

p+1
A (and P

q+1
B ), and

in P
p
A (and P

q
B),

P
p
A� P

q
B 


s
���
+

r · · · + �

(the stars represent region-1 elements).
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Now, since c�r� s� is in region 2 in both P
p
A and Pq

B, by Definition 2.12(2),
it is part of a connected component of region 2 which is identically shaped
and contains the same number of ti’s and uj ’s in both tableaux. But c�r� s�
contains ti in one tableau and uj in the other, so it follows that at least one
of c�r� s + 1� and c�r + 1� s� is in region 2 in P

p
A and P

q
B. By strict row and

column inequality, this implies that c�r� s� contains ti in P
p
A and uj in P

q
B.

Denote by C the connected component of region 2 containing c�r� s�.
Consider the subcomponent C1, consisting of all cells in C which are to the
right of or above c�r� s�. In Pp

A, let αA = #ti’s and βA = #uj ’s in C1; define
αB and βB similarly in P

q
B. If c�r� s + 1� is not in region 2, then C1 is empty

and αA = βA = αB = βB = 0. On the other hand, if C1 is nonempty, then
by strict row and column inequality, every northwest proper corner cell of
C1 contains ti in P

p
A and uj in P

q
B:

P
p
A 


ti · · ·

���

� P
q
B 


uj · · ·

���

�

Similarly, every southeast proper corner cell of C1 contains uj in P
p
A and ti

in P
q
B:

P
p
A 


���

· · · uj

� P
q
B 


���

· · · ti

�

Consider the top row of C1. If it contains more than one cell, then its
leftmost cell is a northwest corner. Thus the structure of C1 is as in the
following diagram, where, for example, a cell marked ti/uj contains ti in
P
p
A and uj in P

q
B (a question mark denotes that a cell may contain either ti

or uj) and elements:

ti/uj · · · · · ·?/ti
���

· · · · · ·uj/ti
On the other hand, if the top row of C1 contains only one cell, then the

structure of C1 is

?/uj
���

ti/uj· · · · · ·uj/ti
���

· · · · · ·uj/ti
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In both cases, it follows that αB − αA = βA − βB ∈ �0� 1�. We prove that

3.2.1. αB − αA = βA − βB = 1 �⇒ P
p+1
A ∼ P

q+2
B .

3.2.2. αB − αA = βA − βB = 0 �⇒ P
p+2
A ∼ P

q+1
B .

Let C2 be the subcomponent of C consisting of all cells below or to the
left of c�r� s�. Let γA = #ti’s and δA = #uj ’s in C2 of Pp

A; define γB and
δB similarly for Pq

B. Since neither c�r − 1� s� nor c�r� s − 1� is in region 2,
it follows that C = C1 + C2 + c�r� s�. By Definition 2.12(2) of Pp

A ∼ P
q
B, C

contains the same number of ti’s and uj ’s in P
p
A as in P

q
B. In both tableaux,

let τ be the number of ti’s and let µ be the number of uj ’s in C. Since
c�r� s� contains ti in P

p
A and uj in P

q
B, it follows that

τ = αA + γA + 1 = αB + γB� µ = βA + δA = βB + δB + 1� �+�

Proof of 3.2.1. Suppose that αB − αA = βA − βB = 1. Then γA − γB =
δB − δA = 0, so C2 is either empty or contains an equal number of ti’s and
uj ’s in P

p
A as in P

q
B. Also, C1 is nonempty, so c�r� s+ 1� is in region 2 in P

p
A

and in P
q
B. In P

q
B, c�r� s� contains uj , so, by strict row inequality, c�r� s + 1�

contains ti. The subsequent insertion steps are therefore

P
p
A x bumps ti

from c�r� s�
→ P

p+1
A ti enters

row r+1
→�

P
q
B x bumps uj

from c�r� s�
→ P

q+1
B uj bumps ti

from c�r� s+1�
→ P

q+2
B ti enters

row r+1
→ �

Thus, in both P
p
A → P

p+1
A and P

q
B → P

q+1
B → P

q+2
B , c�r� s� is eliminated

from region 2, and we are left with two separate components C1 and C2
(and with ti to be inserted into row r + 1). No change occurs in C2, so,
in both P

p+1
A and P

q+2
B , C2 has γA = γB ti’s and δA = δB uj ’s. Similarly,

no change occurs in C1 in P
p
A → P

p+1
A , so C1 of P

p+1
A contains αA ti’s and

βA uj ’s. On the other hand, in P
q
B → P

q+1
B → P

q+2
B , a single change occurs

in C1, when the ti in c�r� s+ 1� is replaced with uj . Thus C1 of P
q+2
B contains

αB − 1 ti’s and βB + 1 uj ’s. But, by 3.2.1, αB − 1 = αA and βB + 1 = βA,
so C1 contains the same number of ti’s and uj ’s in P

p+1
A as in P

q+2
B , and

Definition 2.12(2) is satisfied for Pp+1
A ∼ P

q+2
B .

Now, in both P
p+1
A and P

q+2
B , the only change that occurs in region 1 is

that the same element x is added to c�r� s�, so Definition 2.12(1) is satisfied.
Similarly, as was already mentioned, both P

p+1
A → P

p+2
A and P

q+2
B → P

q+3
B

consist of ti entering row r + 1, so Definition 2.12(3) is satisfied. It follows
that Pp+1

A ∼ P
q+2
B . This completes the proof of 3.2.1.
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Proof of 3.2.2. The proof of 3.2.2 is dual, in a sense, to the proof of
3.2.1. Here are the details.
Suppose that αB − αA = βA − βB = 0. Then C1 is either empty or

contains an equal number of ti’s and uj ’s in P
p
A as in P

q
B. Thus, by (+),

γB − γA = δA − δB = 1, so, C2 is nonempty, which implies that c�r + 1� s�
is in region 2 in P

p
A and in P

q
B. In P

p
A, c�r� s� contains ti, so, by strict

column inequality, c�r + 1� s� contains uj . The subsequent insertion steps
are therefore

P
p
A x bumps ti

from c�r� s�
→ P

p+1
A ti bumps uj

from c�r+1� s�
→ P

p+2
A uj enters

column s+1
→�

P
q
B x bumps uj

from c�r� s�
→ P

q+1
B uj enters

column s+1
→ �

Thus, in both P
p
A → P

p+1
A → P

p+2
A and P

q
B → P

q+1
B , c�r� s� is eliminated

from region 2, and we are left with two separate components C1 and C2
(and with uj to be inserted into column s+ 1). No change occurs in C1, so,
in both P

p+2
A and P

q+1
B , C1 has αA = αB ti’s and βA = βB uj ’s. Similarly,

no change occurs in C2 in P
q
B → P

q+1
B , so C2 of Pq+1

B contains γB ti’s and
δB uj ’s. On the other hand, in P

p
A→ P

p+1
A → P

p+2
A , a single change occurs

in C2, when the uj in c�r+ 1� s� is replaced with ti. Thus C2 of P
p+2
A contains

γA + 1 ti’s and δA − 1 uj ’s. But 3.2.2 and (+) imply that γA + 1 = γB and
δA − 1 = δB, so C2 contains the same number of ti’s and uj ’s in P

p+2
A as in

P
q+1
B , and Definition 2.12(2) is satisfied for Pp+2

A ∼ P
q+1
B .

Now, in both P
p+2
A and P

q+1
B , the only change that occurs in region 1 is

that the same element x is added to c�r� s�, so Definition 2.12(1) is satisfied.
Similarly, as was already mentioned, both P

p+2
A → P

p+3
A and P

q+1
B → P

q+2
B

consist of uj entering column s + 1, so Definition 2.12(3) is satisfied. It
follows that Pp+2

A ∼ P
q+1
B . This completes the proof of 3.2.2.

3. PROOF OF THEOREM 5

Here we prove, for example, Theorem 5(b). The proofs of parts (c) and
(d) of the theorem are similar.
Given v ∈ ak� l�n� and shuffle A, the (regular, dual)-A-RSK forms the

tableau pair �P∗�Q∗� = �P∗�v�A��Q∗�v�A�� by applying the regular RSK
to the ti’s and the dual conjugate RSK to the uj ’s of v under shuffle A. For
simplicity, we refer to this algorithm as the dual-A-RSK. As in the A-RSK,
P∗ is the insertion tableau, and Q∗ is the recording tableau of v under A.
Here P∗ is what we call a dual-A-SSYT; that is, it is weakly A-increasing
in rows and strictly A-increasing in columns.
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Example 3.1. Let k = 2� l = 1, and A 
 u1 < u2 < t1 < t2� Let

v =
(

1 · · · · · · 4
u1� t1� t2� u1

)
�

Then

v
dual-A-RSK

→ u1 u1 t1 u1 t1 t2
u1 u1 t2
t1

= P∗

and

Q∗ = 1 2 3
4

�

Lemma 3.2. Let v ∈ ak� l�n�, A ∈ I, and
v

A-RSK
→ �P�Q�� v

dual-A-RSK
→ �P∗�Q∗��

If v is nonrepeating in its u-elements, then P = P∗ and Q = Q∗.

Proof. The A-RSK and the dual-A-RSK differ in only one rule: When
some uj enters a column under the A-RSK, it bumps the first element wm

such that wm > uj (or if no such wm exists, it settles at the end of the
column). On the other hand, under the dual-A-RSK, uj bumps the first
element wr such that wr ≥ uj (or settles at the end of the column). But uj
may appear only once in v, which implies that wr > uj , so this step is
the same as that of the A-RSK. The proof now follows.

Notation. v ∈ ak� l�n� is said to be of type �α1� � � � � αk�β1� � � � � βl� if it
is a permutation of tα11 · · · tαkk u

β1
1 · · ·uβl

l .

Lemma 3.3. Let v ∈ ak� l�n� be of type �α1� � � � � αk�β1� � � � � βl� and
denote β =∑l

i=1 βi. Then there exists w ∈ ak�β�n� such that

(1) The u-elements of w are nonrepeating.

(2) For every shuffleA, if v dual-A-RSK→ �P∗v �Q∗v�, then there exists a cor-
responding shuffle A′ of the elements of w such that w dual-A-RSK→ �P∗w�Q∗w�,
where P∗w is identical to P∗v but with every vi changed to wi for all i ≤ n.
Consequently, sh�P∗v � = sh�P∗w�.

Proof. To avoid confusion between the elements of v and of w, we let
u′1� � � � � u

′
l denote the u-elements of v.

Form the sequence w from v as follows. Replace the u′1’s in v with u1� � � � �
uβ1

, moving from right to left. Replace the u′2’s with uβ1+1� � � � � uβ1+β2
,

moving from right to left. Continue in this way until u′l, including the u
′
l’s.

Clearly, the u-elements of w are nonrepeating, satisfying Lemma 3.3(1).
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Given some shuffle A of the elements of v, define the shuffle A′ of the
elements of w as follows. For every i ∈ �1� � � � � k�,

ti <A u′1 �⇒ ti <A′ u1 <A′ · · · <A′ uβ1
�

ti <A u′2 �⇒ ti <A′ uβ1+1 <A′ · · · <A′ uβ1+β2
�

���

ti <A u′l �⇒ ti <A′ uβ1+···+βl−1+1 <A′ · · · <A′ uβ�

u′1 <A ti �⇒ u1 <A′ · · · <A′ uβ1
<A′ ti�

���

u′l <A ti �⇒ uβ1+···+βl−1+1 <A′ · · · <A′ uβ <A′ ti�

We compare the A-RSK insertion of the v’s with the A′-RSK insertion of
the w’s. Note that the shuffle A and its derived shuffle A′ are similar in that
vi <A vj �⇒ wi <A′ wj , but they differ in one fundamental way: For i < j
such that vi� vj� wi, and wj are u-elements, vi =A

vj �⇒ wi >A′ wj . Now,
if wj reaches a cell inhabited by wi >A′ wj , then it bumps wj to the next
column, just as vj would bump vi =A

vj to the next column under the dual-
A-RSK. On the other hand, if wi reaches a cell inhabited by wj <A′ wi,
it settles below wj , whereas vi would bump vj =A

vi to the next column.
However, such a situation never occurs, since i < j and vi =A

vj implies
that every column reached by wj is first reached by wi. The proof of this is
as follows.
Suppose that, for some x, wi = ux+1 and wj = ux. Then every column

reached by wj is first reached by wi, by induction on the columns of P∗w.
Trivially, wi reaches column 1 before wj . By the induction assumption,
wi = ux+1 is in column c′, c′ ≥ c. If c′ > c, then we are done. Assume
c′ = c 
 wi = ux+1 is already in column c, and wj = ux is inserted into
column c. It bumps the first wd such that wd ≥ wj = ux. Now vi =A vj
implies that there does not exist any tz such that wj <A′ tz <A′ wi. Hence
wd = ux+1 = wi is bumped to column c + 1.
This clearly extends to the general case i < j� vi = vj , wi = uy , wj = ux,

for general y > x.
Hence the steps of the dual-A′-RSK on w are identical to the steps of

the dual-A-RSK on v, but with every vi, i ≤ n, changed to wi. This implies
that Lemma 3.3(2) is satisfied for w.

Example 3.4. Let v = t2u2u1u1t1 and A = t1 < t2 < u1 < u2. The
sequence w = t2u

′
3u
′
2u
′
1t1 clearly satisfies Lemma 3.3(1); we show that it sat-

isfies Lemma 3.3(2) for shuffle A, by letting A′ = t1 < t2 < u′1 < u′2 < u′3.



80 regev and seeman

Under shuffles A and A′,

v
A-RSK
→ �P∗v �Q∗v� and w

dual-A′-RSK
→ �P∗w�Q∗w��

where

P∗v =
t1 u1 u1 u2
t2

= v5 v4 v3 v2
v1

�

P∗w =
t1 u′1 u′2 u′3
t2

= w5 w4 w3 w2

w1
�

Thus Lemma 3.3(2) is satisfied for shuffle A.

We can now give the following proof.

Proof of Theorem 5(b). Let v be of type �α1� � � � � αk� β1� � � � � βl� and
denote β = ∑l

i=1 βi. Lemma 3.3 implies that there exists a sequence w ∈
ak�β�n� with no repeating u-elements and with shuffles A′� B′ such that

w
dual-A′-RSK

→ �P∗A′�Q∗A′ �� w
dual-B′-RSK

→ �P∗B′�Q∗B′ ��

where sh�P∗A′ � = sh�P∗A� and sh�P∗B′ � = sh�P∗B�. Since w contains no repe-
titions in its u-elements, Lemma 3.3 implies that

w
A′-RSK
→ �P∗A′�Q∗A′ �� w

B′-RSK
→ �P∗B′�Q∗B′ ��

Thus, by Theorem 2, sh�P∗A′ � = sh�P∗B′ �, which implies our result.

The proofs of parts (c) and (d) of Theorem 5 are similar to that of
Theorem 5(b), since Lemma 3.3 can also be applied to the (dual, regular)-
A-RSK and the (dual, dual)-A-RSK. Both algorithms are t-dual; for
simplicity, let t ′1� � � � � t

′
k denote the t-elements of v. The t’s of the sequence

w of Lemma 3.3 for parts (c) and (d) are set as follows. Replace the
t ′1’s in v with t1� � � � � tα1 , moving from left to right. Replace the t ′2’s with
tα1+1� � � � � tα1+α2 , moving from left to right. Continue in this way until t ′k,
including t ′k.
Since the (dual, regular)-A-RSK of part (c) is u-regular, the u’s of w

are identical to those of v. However, the (dual, dual)-A-RSK of part (d)
is u-dual, so, in this case, the u’s of w are derived the same way as in the
proof of Lemma 3.3. Finally, shuffle A′ is derived from A in parts (c) and
(d) by methods analogous to that of part (b).
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