Shuffle Invariance of the Super-RSK Algorithm

Amitai Regev and Tamar Seeman
Department of Theoretical Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
E-mail: regev@wisdom.weizmann.ac.il, tamars@wisdom.weizmann.ac.il

Received December 4, 2000; accepted April 4, 2001

As in the (k, l)-RSK (Robinson-Schensted-Knuth) of A. Berele and A. Regev (1987, Adv. Math. 64, 118-175), other super-RSK algorithms can be applied to sequences of variables from the set $\left\{t_{1}, \ldots, t_{k}, u_{1}, \ldots, u_{l}\right\}$, where $t_{1}<\cdots<t_{k}$ and $u_{1}<\cdots<u_{l}$. While the (k, l)-RSK is the case where $t_{i}<u_{j}$ for all i and j, these other super-RSK's correspond to all the $\binom{k+l}{k}$ shuffles of the t 's and u 's satisfying the above restrictions that $t_{1}<\cdots<t_{k}$ and $u_{1}<\cdots<u_{l}$. We show that the shape of the tableaux produced by any such super-RSK is independent of the particular shuffle of the t 's and u 's. © 2002 Elsevier Science (USA)

1. INTRODUCTION

We follow the tableau terminology of [7]. The classical Frobenius-Schur-Weyl theory shows how the SSYT (semistandard Young tableaux) determine the representations of $G L(m, \mathbb{C})($ or $g l(m, \mathbb{C}))$. Here $G L(m, \mathbb{C})$ $(g l(m, \mathbb{C}))$ is the general linear Lie group (algebra). Also, SYT (standard Young tableaux) play an important role here. The notion of (k, l) SSYT is introduced in [1], where similar relationships between such tableaux and the representations of $p l(k, l)$ are shown. Here $p l(k, l)$ is the general linear Lie super-algebra.

The (k, l) SSYT are defined, via a (k, l)-RSK algorithm, as follows [1]. Fix integers $k, l \geq 0, k+l>0$, and $k+l$ symbols $t_{1}, \ldots, t_{k}, u_{1}, \ldots, u_{l}$ such that $t_{1}<\cdots<t_{k}<u_{1}<\cdots<u_{l}$. Let

$$
a_{k, l}(n)=\left\{\left.\binom{1 \cdots n}{v_{1} \cdots v_{n}} \right\rvert\, v_{i} \in\left\{t_{1}, \ldots, t_{k}, u_{1}, \ldots, u_{l}\right\}\right\} .
$$

To map $a_{k, l}(n)$ to pairs of tableaux (P, Q), apply to each $v \in a_{k, l}(n)$ the (k, l)-RSK, in which the usual RSK insertion algorithm [7] is applied to the
t_{i} 's and the conjugate correspondence (see [1]) is applied to the u_{j} 's; see the examples below. By the definitions of [1], the insertion tableau, $P=P(v)$, mapped from $v \in a_{k, l}(n)$, is (k, l) semistandard; that is, it satisfies the following three properties:
(a) The " t part" (i.e., the cells filled with t_{i} 's) is a tableau.
(b) The t_{i} 's are nondecreasing in rows, strictly increasing in columns.
(c) The u_{j} 's are nondecreasing in columns, strictly increasing in rows.

As in the usual correspondence, the recording tableau, $Q=Q(v)$, indicates the order in which the new cells were added to P. Clearly, Q is SYT having the same shape as that of P.
A total order of $\left\{t_{1}, \ldots, t_{k}, u_{1}, \ldots, u_{l}\right\}$, which is compatible with $t_{1}<\cdots<t_{k}$ and $u_{1}<\cdots<u_{l}$, is called a shuffle (of t_{1}, \ldots, t_{k} and u_{1}, \ldots, u_{l}). For example, $t_{1}<u_{1}<u_{2}<t_{2}$ is such a shuffle, compatible with $t_{1}<t_{2}$ and $u_{1}<u_{2}$. Clearly, there are $\binom{k+l}{k}$ such shuffles; of these, Berele and Regev chose to work with $t_{1}<\cdots<t_{k}<u_{1}<\cdots<u_{l}$, which we call the (k, l) shuffle (see [1, 2.4]). The shuffle $t_{1}<u_{1}<t_{2}<u_{2}<\cdots<$ $t_{k}<u_{k}$, with its corresponding SSYT, appears in Section 4 of [3].
Let $I=I(k, l)$ denote the set of all such $\binom{k+l}{k}$ shuffles. Given $A \in I$, there is a corresponding A-RSK insertion algorithm; if $v \in a_{k, l}(n)$, then $v \underset{A}{\longrightarrow}(P, Q)$ by that algorithm. $P=P_{A}=P(v, A)$ is the insertion tableau, and $Q=Q_{A}=Q(v, A)$ is the recording tableau. Here P is an A-SSYT; that is, it satisfies the following three properties:
(a) P is weakly A-increasing in both rows and columns.
(b) The t_{i} 's are strictly increasing in columns.
(c) The u_{j} 's are strictly increasing in rows.

Example. Let $k=l=2, A, B \in I=I(2,2)$, where

$$
A: t_{1}<t_{2}<u_{1}<u_{2} \quad \text { and } \quad B: u_{1}<u_{2}<t_{1}<t_{2} .
$$

Let

$$
v=\binom{1 \cdots \cdots 4}{u_{2}, t_{1}, t_{2}, u_{1}} .
$$

Then

$$
v \underset{A}{\longrightarrow} \begin{array}{|l|l|l|l|l|}
\hline u_{2} \\
\hline t_{1} & u_{2} \\
\hline t_{1} & t_{2} & u_{2} \\
\hline t_{1} & t_{2} & u_{2} \\
\hline u_{1} & \\
\hline
\end{array}=P_{A},
$$

while

$$
v \underset{B}{\longrightarrow} u_{2} \begin{array}{|l|l|l|l|}
\hline u_{2} & t_{1} \\
\hline u_{2} & t_{1} & t_{2} \\
\hline t_{1} & u_{2} & t_{2} \\
\hline t_{1} & \\
\hline
\end{array}=P_{B} .
$$

Thus $v \underset{A}{\longrightarrow}\left(P_{A}, Q\right)$ and $v \underset{B}{\longrightarrow}\left(P_{B}, Q\right)$, where

$$
Q=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & & \\
\hline
\end{array}
$$

and P_{A} and P_{B} are as above.
Definition. Denote by $\operatorname{sh}(v, A)=\operatorname{sh}\left(P_{A}\right)$ the shape of the insertion tableau $P(v, A)=P_{A}$ of $v \in a_{k, l}(n)$ under the A-RSK.

Given a shuffle $A \in I$ and the pair (P, Q), where P is A-SSYT, Q is SYT, and $\operatorname{sh}(P)=\operatorname{sh}(Q)$, the A insertion algorithm can obviously be reversed. Standard arguments (see, e.g., [7, Chap. 7]) yield the following result.

Theorem 1. Let $A \in I$ be a shuffle. Then the A-RSK insertion algorithm $v \underset{A}{\longrightarrow}\left(P_{A}, Q_{A}\right)$ is a bijection between $a_{k, l}(n)$ and

$$
\left\{\left(P_{A}, Q_{A}\right) \mid P_{A} \text { is } A-S S Y T, Q_{A} \text { is } \operatorname{SYT}, \operatorname{sh}\left(P_{A}\right)=\operatorname{sh}\left(Q_{A}\right)\right\} .
$$

Remark. Denote such a tableau $P=\left(P_{i, j}\right)$ and denote $<_{A}$ by $<$. Clearly, if $P_{i, j}=t_{r}$, then $P_{i, j-1} \leq P_{i, j} \leq P_{i, j+1}$ and $P_{i-1, j}<P_{i, j}<P_{i, j+1}$. Similarly, if $P_{i, j}=u_{r}$, then $P_{i, j-1}<P_{i, j}<P_{i, j+1}$ and $P_{i-1, j} \leq P_{i, j} \leq P_{i, j+1}$.

Denote by $\operatorname{sh}(v, A)$ the shape of tableaux $P(v, A)$ and $Q(v, A)$. This brings us to our main result.

Theorem 2. Let $v \in a_{k, l}(n), A, B \in I, v \underset{A}{\longrightarrow}\left(P_{A}, Q_{A}\right)$, and $v \underset{B}{\longrightarrow}\left(P_{B}\right.$, $\left.Q_{B}\right)$. Then $\operatorname{sh}\left(P_{A}\right)=\operatorname{sh}\left(P_{B}\right)$. Consequently, $Q_{A}^{A}=Q_{B}$.

In other words, the shape of the tableau obtained through any of the (k, l)-shuffle-RSK algorithms is independent of the particular shuffle of the t 's and u 's.

Definition. Let $A \in I$ and $\lambda \vdash n$, that is, a partition of n. Let $\Im_{A}(\lambda)$ denote the set of the A-SSYT of shape λ :

$$
\Im_{A}(\lambda)=\{T \mid T \text { is } A \text {-SSYT, } \operatorname{sh}(T)=\lambda\} .
$$

Recall the definition of type (T) from [7, p. 309].
Theorem 2 implies the following.
Theorem 3 [6]. Let $A, B \in I, \lambda \vdash n$. Then there exists a bijection $\varphi: \mathfrak{\Im}_{A}(\lambda) \rightarrow \mathfrak{\Im}_{B}(\lambda)$ such that, for all $T \in \mathfrak{\Im}_{A}(\lambda)$, type $(T)=\operatorname{type}(\varphi(T))$. (In fact, there exist (at least) d_{λ} such canonical bijections, where d_{λ} is the number of SYT's of shape λ.)

Theorem 3 appears in [6], where it is proven by a different method. Our proof of the theorem is as follows.

Proof of Theorem 3. The proof is based on the following diagram:

Thus choose an SYT Q of shape λ. Given $P=P_{A} \in \Im_{A}(\lambda)$, we get

$$
\left(P_{A}, Q\right) \underset{\substack{\text { inverse } \\ A \text {-RSK }}}{ } v \underset{B \text {-RSK }}{ }\left(P_{B}, Q\right) .
$$

This defines the bijection $\varphi=\varphi_{Q}: \varphi\left(P_{A}\right)=P_{B}$. Clearly, type $\left(P_{A}\right)=$ $\operatorname{type}\left(P_{B}\right)$ and, by Theorem 2, $\operatorname{sh}\left(P_{A}\right)=\operatorname{sh}\left(P_{B}\right)$.

Recall from [2] the notation $w(T)$ for the weight of a tableau T. For example, let

$$
T=
$$

Then $w(T)=x_{1}^{2} x_{2} x_{3} y_{1}^{2} y_{2}^{2} y_{3}^{2}$. Also, recall the "hook" (or the "super") Schur function

$$
H S_{\lambda}(x ; y)=H S_{\lambda}\left(x_{1}, \ldots, x_{k} ; y_{1}, \ldots, y_{l}\right) \quad[1,2] .
$$

When A is the shuffle $A_{0}: t_{1}<\cdots<t_{k}<u_{1}<\cdots<u_{l}, H S_{\lambda}(x ; y)$ is given by

$$
H S_{\lambda}\left(x_{1}, \ldots, x_{k} ; y_{1}, \ldots, y_{l}\right)=\sum_{T \in \mathcal{Y}_{A_{0}}(\lambda)} w(T)
$$

[1, Theorem 6.10]. See also [4-6].
Theorem 3 implies the following.
Corollary 4. For any $A \in I$,

$$
H S_{\lambda}\left(x_{1}, \ldots, x_{k} ; y_{1}, \ldots, y_{l}\right)=\sum_{T \in \mathcal{F}_{A}(\lambda)} w(T) .
$$

Given a shuffle $A \in I$, the A-RSK is based on A, on the regular RSK for the t_{i} 's, and on the conjugate-regular RSK for the u_{j} 's.

In addition to the regular RSK, there is also the dual RSK [7, p. 331]. Given the shuffle $A \in I$, this leads to four possible A insertion algorithms: either the regular or the dual for the t_{i} 's and either the conjugate regular or
the conjugate dual for the u_{j} 's. In fact, the previous A-RSK is $(t$-regular, u-conjugate-regular), which we denote as the (regular, regular)- A-RSK. Similarly, (t-regular, u-dual-conjugate) is the (regular, dual)- A-RSK. Similarly for the algorithms (dual, regular)- A-RSK and (dual, dual)- A-RSK. Each of these three new insertion algorithms exhibits a similar shape invariance under all shuffles $A \in I$.

Theorem 5. (a) Let $v \in a_{k, l}(n)$ and $A, B \in I$ such that

$$
v \underset{\text { (regular, regular) } A-\text {-RSK }}{\longrightarrow}\left(P_{A}^{*}, Q_{A}^{*}\right), \quad v \underset{\text { (regular, regular)- } B-\mathrm{RSK}}{ }\left(P_{B}^{*}, Q_{B}^{*}\right) .
$$

Then $\operatorname{sh}\left(P_{A}^{*}\right)=\operatorname{sh}\left(P_{B}^{*}\right)$. Consequently, $Q_{A}^{*}=Q_{B}^{*}$.
(b) Let $v \in a_{k, l}(n)$ and $A, B \in I$ such that

$$
v \underset{\text { (regular, dual)- } A \text {-RSK }}{\longrightarrow}\left(P_{A}^{*}, Q_{A}^{*}\right), \quad v \underset{\text { (regular, dual)- } B \text {-RSK }}{ }\left(P_{B}^{*}, Q_{B}^{*}\right) .
$$

Then $\operatorname{sh}\left(P_{A}^{*}\right)=\operatorname{sh}\left(P_{B}^{*}\right)$. Consequently, $Q_{A}^{*}=Q_{B}^{*}$.
(c) Let $v \in a_{k, l}(n)$ and $A, B \in I$ such that

$$
v \underset{\text { (dual, regular) }-A \text {-RSK }}{\longrightarrow}\left(P_{A}^{*}, Q_{A}^{*}\right), \quad v \underset{\text { (dual, regular)- } B \text {-RSK }}{ }\left(P_{B}^{*}, Q_{B}^{*}\right) .
$$

Then $\operatorname{sh}\left(P_{A}^{*}\right)=\operatorname{sh}\left(P_{B}^{*}\right)$. Consequently, $Q_{A}^{*}=Q_{B}^{*}$.
(d) Let $v \in a_{k, l}(n)$ and $A, B \in I$ such that

$$
v \xrightarrow[\text { (dual, dual) }-A \text {-RSK }]{ }\left(P_{A}^{*}, Q_{A}^{*}\right), \quad v \underset{\text { (dual, dual) }-B \text {-RSK }}{ }\left(P_{B}^{*}, Q_{B}^{*}\right) .
$$

Then $\operatorname{sh}\left(P_{A}^{*}\right)=\operatorname{sh}\left(P_{B}^{*}\right)$. Consequently, $Q_{A}^{*}=Q_{B}^{*}$.
Clearly, Theorem 5(a) is Theorem 2 above. The proof of Theorem 2 is given in the next section, which is the main body of this paper. First we describe the A-RSK algorithm in detail. The main step in the proof of Theorem 2 is Lemma 2.15, which shows that a transposition of the variables in the shuffle (i.e., a single change in the order of some t_{i} and u_{j}) does not alter the shape of the resulting tableaux. In Section 3 we prove the remaining parts (b), (c), and (d) of Theorem 5, essentially by deducing them from Theorem 2.

2. INVARIANCE OF SHAPE

As in the (k, l)-RSK, the A-RSK insertion algorithm involves applying the usual RSK correspondence to the t_{i} 's, and the conjugate correspondence to the u_{j} 's. This is illustrated in the following example.
Definition 2.1. For $i, j \in \mathbb{Z}^{+}$, let $c(i, j)$ denote the cell in row i and column j of a given tableau.

Example 2.2. Under the shuffle $A=t_{1}<u_{1}<t_{2}<u_{2}<t_{3}$, perform the insertion

$$
\leftarrow t_{1} .
$$

(a) $t_{1}<u_{1} \Longrightarrow t_{1}$ occupies $c(1,1)$. Now, a u_{i} is always bumped to the next column; hence u_{1} is bumped to column 2.
(b) $u_{1}<t_{2} \Longrightarrow u_{1}$ occupies $c(1,2)$. Now, a t_{i} is always bumped to the next row; hence t_{2} is bumped to row 2 .
(c) $u_{1}<t_{2}<u_{2} \Longrightarrow t_{2}$ occupies $c(2,2)$, bumping u_{2} to column 3 .
(d) $u_{2}>t_{2} \Longrightarrow u_{2}$ settles in $c(2,3)$.

(b)

t_{1}	u_{1}	t_{2}
u_{1}	u_{2}	
t_{3}		

(c) | t_{1} | t_{2} | t_{2} |
| :--- | :--- | :--- |
| u_{1} | t_{2} | |
| t_{3} | | |
| | | |
| | | |
| | | |,

(d)

t_{1}	u_{1}	t_{2}
u_{1}	t_{2}	u_{2}
t_{3}		

The proof of Theorem 2 follows from the following analysis of the A-RSK algorithm.

Lemma 2.3. Let P be an $A-S S Y T, v \in\left\{t_{1}, \ldots, t_{k}, u_{1}, \ldots, u_{l}\right\}$. The insertion $P \leftarrow v$ is made of a sequence of several steps. In an intermediate mth such step, we have an $A-\underset{\sim}{S} S Y T \widetilde{P}$ together with an element $P_{i, j}$ that was bumped from $c(i, j)$ by $\widetilde{P}_{i, j}, \widetilde{P}_{i, j}{ }_{A}^{<} P_{i, j}$, and we need to do the following insertion:
(a) If $P_{i, j}=t_{r}$, insert it into the $i+1$ th row of \widetilde{P}.
(b) If $P_{i, j}=u_{s}$, insert it into the $j+1$ th column of \widetilde{P}.

We show that in both cases the result would be an A-SSYT P^{*} and-except for the last step-together with a new element $\widetilde{P}_{i^{\prime}, j^{\prime}}$ (bumped from $c\left(i^{\prime}, j^{\prime}\right)$), which is to be inserted into P^{*}. Moreover,
(1) If $P_{i, j}=t_{r}$, then $c\left(i^{\prime}, j^{\prime}\right)=c\left(i+1, j^{\prime}\right)$ and $j^{\prime} \leq j$.
(2) If $P_{i, j}=u_{s}$, then $c\left(i^{\prime}, j^{\prime}\right)=c\left(i^{\prime}, j+1\right)$ and $i^{\prime} \leq i$.

Proof. Note that (2) is obtained from (1) by conjugation; hence it suffices to just prove (1).

Proof of (1). Denote the i th row of \widetilde{P} by

$$
a_{1} \cdots \cdots \cdots a_{j-1} \widetilde{P}_{i, j} a_{j+1} \cdots \cdots \cdots a_{g}
$$

so $a_{j}=P_{i, j}$ and, by assumption, $P_{i, j}=t_{r}$. Thus

$$
\begin{aligned}
& a_{1} \cdots \cdots \cdots \cdots \cdots \cdots \cdots a_{j-1} \widetilde{P}_{i, j} a_{j+1} \cdots \cdots \cdots \cdots a_{g} \\
& \widetilde{P}=b_{1} \cdots b_{f} \\
& \quad c_{1} \cdots c_{h} \\
& \quad \vdots
\end{aligned}
$$

and $P_{i, j}=t_{r}$ is inserted into the $i+1$ th row $b_{1} \cdots \cdots b_{f}$.
Let $b_{j^{\prime}-1} \leq P_{i, j}<b_{i, j^{\prime}}$, so, in P^{*}, the $i+1$ th row is

$$
b_{1} \cdots \cdots \cdots \cdots \cdot b_{j^{\prime}-1} P_{i, j} b_{j^{\prime}+1} \cdots \cdots \cdots \cdots \cdot b_{f}
$$

Since $\widetilde{P}_{i, j}$ bumped $P_{i, j}$, we have $\widetilde{P}_{i, j}<P_{i, j}$. Since $a_{j}=P_{i, j}=t_{r}$, hence $P_{i, j}<b_{j}$. Together with $b_{j^{\prime}-1} \leq P_{i, j}<b_{j^{\prime}}$, this implies that $j^{\prime} \leq j$; hence

$$
\begin{gathered}
a_{1} \cdots \cdots a_{j^{\prime}-1} a_{j^{\prime}} a_{j^{\prime}+1} \cdots \cdots \widetilde{P}_{i j} a_{j+1} \cdots \cdots \cdots \cdots a_{g} \\
P^{*}=b_{1} \cdots \cdots b_{j^{\prime}-1} P_{i j} b_{j^{\prime}+1} \cdots \cdots \cdot b_{j} b_{j+1} \cdots \cdots \cdots b_{f} \\
c_{1} \cdots \cdots c_{j^{\prime}-1} c_{j^{\prime}} c_{j^{\prime}+1} \cdots \cdots \cdots c_{j} c_{j+1} \cdots \cdots c_{h}
\end{gathered}
$$

By the induction assumption on \widetilde{P}, we only need to verify that the part

$$
\begin{aligned}
& a_{j^{\prime}} \\
& P_{i, j} \\
& c_{j^{\prime}}
\end{aligned}
$$

of the j^{\prime} th column is A-semistandard; that is, since $P_{i, j}=t_{r}$, we need to show that $a_{j^{\prime}} \leq \widetilde{P}_{i, j}<c_{j^{\prime}}$. This follows from $a_{j^{\prime}} \leq \widetilde{P}_{i, j}<P_{i, j}=t_{r}<b_{j^{\prime}} \leq$ $c_{j^{\prime}}$.

Definition 2.4. Two shuffles $A, B \in I$ are adjacent if there exist t_{i} and u_{j} such that
(1) $t_{i}<u_{j}$ in A.
(2) $u_{j}<t_{i}$ in B.
(3) All other pairs have the same order relations in A and in B.

In that case, call A and $B\left(t_{i}, u_{j}\right)$-adjacent. Thus A and B differ by the transposition $\left(t_{i}, u_{j}\right)$.

Remark 2.5. Trivially, for any $A, B \in I$, there exist $A_{0}, A_{1}, \ldots, A_{n} \in I$ such that $A_{0}=A, A_{n}=B$, and A_{r} is adjacent to $A_{r+1}, 0 \leq r \leq n-1$. Thus, to prove Theorem 1, it suffices to show that, for all $v \in a_{k, l}(n)$ and for every pair (A, B) of adjacent shuffles, $\operatorname{sh}(v, A)=\operatorname{sh}(v, B)$. Therefore, for the rest of this section, let $A, B \in I$ be $\left(t_{i}, u_{j}\right)$-adjacent, with $t_{i}<_{A} u_{j}$ and $u_{j}{ }_{B} t_{i}$.

LEMMA 2.6. Let $A \in I$, let $w \in a_{k, l}(n)$, and, for some $x \in\left\{t_{1}, \ldots, t_{k}\right.$, $\left.u_{1}, \ldots, u_{l}\right\}$, let w^{\prime} be the sequence obtained by omitting from w all elements A-greater than x. Let P_{A} and P_{A}^{\prime} be the insertion tableaux obtained from w and w^{\prime}, respectively, under shuffle A. Then P_{A}^{\prime} is a subtableau of P_{A}.

Proof. Let $w \underset{A-\mathrm{RSK}}{\longrightarrow} P_{A} ; P: \varnothing, P_{1}, P_{2}, \ldots, P_{n}=P_{A}$, and similarly let $w^{\prime} \xrightarrow[A \text {-RSK }]{ } P_{A}^{\prime} ; P^{\prime}: \varnothing, P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{m}^{\prime}=P_{A}^{\prime} \quad\left(m=\left|w^{\prime}\right|\right)$.

Assume P_{i}^{\prime} is a subtableau of $P_{j_{i}}$ and insert (a corresponding) y in w.
If $x<_{A} y, y$ is not in w^{\prime} so P_{i}^{\prime} is not affected. Also, inserting y into $P_{j_{i}}, y$ does not affect the subtableau $P_{i}^{\prime} \subseteq P_{j_{i}}$, since y bumps only elements that are A-greater than itself.

A similar argument applies when $y \leq x$: now y is also in w^{\prime}, and is inserted into P_{i}^{\prime} and into $P_{j_{i}}$. Clearly, in $P_{j_{i}}$ it is also inserted into the subtableau $P_{i}^{\prime} \subseteq P_{j_{i}}$, and the proof follows.

Corollary 2.7. Let $A, B \in I$ be $\left(t_{i}, u_{j}\right)$-adjacent, $v \in a_{k, l}(n), v \underset{A}{\rightarrow}$ $\left(P_{A}, Q_{A}\right)$, and $v \underset{B}{\rightarrow}\left(P_{B}, Q_{B}\right)$. Then the elements that are both A-less and B-less than t_{i} and u_{j} form identical subtableaux in P_{A} and P_{B}.

Proof. Denote by v^{\prime} the sequence obtained by omitting from v all elements (A - and B-) greater than or equal to t_{i} and u_{j}. By $\left(t_{i}, u_{j}\right)$-adjacency, the largest element smaller than t_{i} and u_{j}, in both A and B, is the same element x. Moreover, v^{\prime} is obtained by omitting from v all elements which are $\left(A\right.$ - or $B-$) greater than x. Let P_{A}^{\prime} and P_{B}^{\prime} denote the insertion tableaux of v^{\prime} under shuffles A and B, respectively. Then, by Lemma 2.6, P_{A}^{\prime} and P_{B}^{\prime} are subtableaux of P_{A} and P_{B}, respectively. But the elements that are A - or B-less than t_{i} and u_{j} are ordered identically in A and B, so $P_{A}^{\prime}=P_{B}^{\prime}$.

Notation. As above, let $A, B \in I$ be two shuffles that are $\left(t_{i}, u_{j}\right)$ adjacent: $t_{i}<u_{j}$ in A and $u_{j}<t_{i}$ in B. Let $v \in a_{k, l}(n)$ and denote $v \underset{A}{\rightarrow}\left(P_{A}, Q_{A}\right)$ and $v \underset{B}{\rightarrow}\left(P_{B}, Q_{B}\right)$.

Notation. Given the tableau P_{A} (and similarly for P_{B}), let regions 1,2 , and 3 denote, respectively, the regions occupied (1) by elements less than t_{i} and u_{j}, (2) by t_{i} and u_{j}, and (3) by elements greater than t_{i} and u_{j}.

Example 2.8. Let $v=u_{1} t_{3} t_{2} u_{2} t_{2} u_{1} t_{1}$ and let

$$
\begin{aligned}
& A=t_{1}<u_{1}<t_{2}<u_{2}<t_{3}, \\
& B=t_{1}<u_{1}<u_{2}<t_{2}<t_{3} .
\end{aligned}
$$

Then A and B are $\left(t_{i}, u_{j}\right)$-adjacent, with $t_{i}=t_{2}$ and $u_{j}=u_{2}$, and

$$
P_{A}=\begin{array}{|c|c|c|}
\hline t_{1} & u_{1} & t_{2} \\
\hline u_{1} & t_{2} & u_{2} \\
\hline t_{3} & & \\
\hline
\end{array}, \quad P_{B}= .
$$

In both tableaux, region 1 contains the elements t_{1} and u_{1}, region 2 contains t_{2} and u_{2}, and region 3 contains t_{3}. Note that, in this example, regions 1 and 3 are the same in P_{A} as in P_{B}, and region 2 is identically shaped in P_{A} and P_{B}. We shall show that this is always true.

By Lemma 2.6, both region 1 and the union of regions 1 and 2 form subtableaux in P. It is easy to check that region 2 does not contain the configuration

$$
\begin{array}{|l|l|}
\hline a & b \\
\hline c & d \\
\hline
\end{array} .
$$

If it does, assume $d=t_{i}$. Then $b=u_{j}$, so $u_{j}<t_{i}$, and $a \neq t_{i}, u_{j}$. Similarly if $d=u_{j}$. It follows that region 2 forms part of the rim of the subtableaux which is the union of regions 1 and 2 .

Remark 2.9. Note that (part of) region 2 in P_{A} (i.e., $t_{i}<u_{j}$) always looks like

$$
\begin{aligned}
& \quad \begin{array}{l}
t_{i} \cdots \cdots t_{i} \\
\\
\\
\\
u_{j} \\
t_{i} \cdots \cdots t_{i} u_{j} \\
u_{j} \\
\vdots \\
u_{j}
\end{array} \\
& \\
&
\end{aligned}
$$

Namely, except possibly for the rightmost element, all other elements in a row are t_{i} 's. Similarly, except for possibly the top element, all other elements in a column are u_{j} 's.

Similarly, in P_{B} (i.e., $u_{j}<t_{i}$), part of region 2 looks like

$$
\begin{aligned}
& \quad u_{j} t_{i} \cdots \cdots t_{i} \\
& \vdots \\
& u_{j} t_{i} \cdots \cdots t_{i} \\
& \vdots \\
& u_{j}
\end{aligned}
$$

Denote $v=v_{1} \cdots v_{n}$. The tableau P_{A} is created by applying the A-RSK insertion algorithm to each of v_{1}, \ldots, v_{n} successively. For each v_{m}, let $l_{m(A)}$ denote the length of the insertion path [7, p. 317] of v_{m} under shuffle A that is, the number of insertion steps that occur when v_{m} is inserted while forming P_{A}. The total number of insertion steps involved in the formation of P_{A} is thus $s_{A}=\sum_{m=1}^{n} l_{m(A)}$. For every $r \in\left\{1, \ldots, s_{A}\right\}$, let P_{A}^{r} be the insertion tableau as it appears immediately after insertion step r.

Similarly, under shuffle B, the length of the insertion path of v_{m} into P_{B} is $l_{m(B)}$, and the total number of insertion steps involved in forming P_{B} is $s_{B}=\sum_{m=1}^{n} l_{m(B)}$, with P_{B}^{r} denoting the insertion tableau after insertion step r.

Example 2.10. As in Example 2.8, let $v=v_{1} \cdots v_{7}=u_{1} t_{3} t_{2} u_{2} t_{2} u_{1} t_{1}$ and let $A=t_{1}<u_{1}<t_{2}<u_{2}<t_{3}$. Then tableau P_{A} is formed by the A-RSK as follows (ignore the underlines):

For all $i \in\{1, \ldots, 7\}$, the underlined elements in tableau i lie in the insertion path of element v_{i}. Thus $l_{1(A)}=l_{2(A)}=l_{5(A)}=1, l_{3(A)}=l_{4(A)}=$ $l_{6(A)}=2, l_{7(A)}=4$, and $s_{A}=\sum_{i=1}^{7} l_{i(A)}=13$. If, for example, $r=7=$ $\sum_{i=1}^{5} l_{i(A)}$, then we have

Example 2.11. Let $k=l=1, A: t<u, B: u<t, v=v_{1} v_{2}=t u$. Then

$$
\begin{array}{llll}
P_{A}: \varnothing, & \boxed{t}, & \begin{array}{|c}
\underline{t} \\
\hline \underline{u} \\
\hline
\end{array}, & l_{1(A)}=l_{2(A)}=1 \\
P_{B}: \varnothing, & \boxed{t}, & \boxed{\underline{u}} \\
\hline \underline{t} & & l_{1(B)}=1, l_{2(B)}=2 .
\end{array}
$$

Definition 2.12. For $p, q \in \mathbb{Z}^{+}$, we say that $P_{A}^{p} \sim P_{B}^{q}$ (with respect to the formations of P_{A} and P_{B}) if:
(1) Regions 1 and 3 are identical in P_{A}^{p} and P_{B}^{q}.
(2) Region 2 is identically shaped in P_{A}^{p} and P_{B}^{q}; moreover, in each connected component of that region 2, the number of t_{i} 's (hence of u_{j} 's) in P_{A}^{p} equals the number of t_{i} 's (hence of u_{j} 's) in P_{B}^{q}.
(3) Either $p=s_{A}$ and $q=s_{B}$, or both $p<s_{A}$ and $q<s_{B}$. In the latter case, the next insertion step involves inserting the same element into the same row (or column) in both tableaux.

Example 2.13. The tableaux of Example 2.8 satisfy $P_{A} \sim P_{B}$. Regions 1 and 3 in the two tableaux are identical, satisfying Definition 2.12(1). Region 2 consists of one component which is identically shaped and contains exactly one t_{i} and one u_{j} in both tableaux. This verifies Definition 2.12(2). Since both tableaux correspond to $p=s_{A}$ and $q=s_{B}$, Definition 2.12(3) is satisfied as well.

Lemma 2.14. For any shuffle $A \in I$ and for all $p \in\left\{2, \ldots, s_{A}\right\}$ and $r, s \in \mathbb{Z}^{+}$, if $c(r, s)$ contains some w in P_{A}^{p-1}, then $c(r, s)$ contains some $z \leq_{A} w$ in P_{A}^{p}.

Conversely, if $c(r, s)$ contains some element z in P_{A}^{p}, then $c(r, s)$ was either empty or contained some $w \geq_{A} z$ in P_{A}^{p-1}.
Proof. Follows from the A-RSK algorithm.
The Proof of Theorem 2 clearly follows from the next result.
Lemma 2.15. Let $A, B \in I$ be $\left(t_{i}, u_{j}\right)$-adjacent, $v \in a_{k, l}(n), v \underset{A \text {-RSK }}{\longrightarrow}$ $\left(P_{A}, Q_{A}\right)$, and $v \underset{B \text {-RSK }}{ }\left(P_{B}, Q_{B}\right)$. Then $P_{A} \sim P_{B}$.
Proof. We prove that $P_{A} \sim P_{B}$ by induction on the insertion steps of P_{A} and P_{B}. Trivially, $P_{A}^{1}=P_{B}^{1}$. Now let $p \in\left\{1, \ldots, s_{A}-1\right\}, q \in\left\{1, \ldots, s_{B}-1\right\}$ and assume that (1) $P_{A}^{p} \sim P_{B}^{q}$ and also (2) $P_{A}^{p-1} \sim P_{B}^{q-1}$ or $P_{A}^{p-1} \sim P_{B}^{q-2}$ or $P_{A}^{p-2} \sim P_{B}^{q-1}$. We show that this implies that $P_{A}^{p+1} \sim P_{B}^{q+1}$ or $P_{A}^{p+1} \sim P_{B}^{q+2}$ or $P_{A}^{p+2} \sim P_{B}^{q+1}$. This clearly implies the proof of the lemma (by induction on $p+q$).

Note that if $P_{A}^{p} \sim P_{B}^{q}$, then, by Definition 2.12(3), step $p+1$ in P_{A} and step $q+1$ in P_{B} are identical; that is, the same element, x, is inserted into the same row (or column) in both tableaux. We assume that x is a t-element and therefore enters some row, denoted row r; the case where x is a u-element is analogous. Since $P_{A}^{p} \sim P_{B}^{q}$, row r is empty in P_{A}^{p} if and only if it is empty in P_{B}^{q}. The case where row r is empty is trivial, so we assume throughout that row r is nonempty in P_{A}^{p} and P_{B}^{q}.

Case 1. Suppose that, under both shuffles A and $B, x>t_{i}$ and u_{j}. Since $P_{A}^{p} \sim P_{B}^{q}$, the last nonempty cell in row r must be in the same region in both P_{A}^{p} and P_{B}^{q}, and if it is in region 3, then it must be occupied by the same element in both tableaux.

Case 1.1. Row r in P_{A}^{p} (and in P_{B}^{q}) terminates with an element less than or equal to x. In this case, x is affixed to the end of the row in both tableaux, so P_{A}^{p+1} and P_{B}^{q+1} have the same shape and clearly satisfy properties (1) and (2) of Definition 2.12. Let m denote the size of P_{A}^{p+1} and P_{B}^{q+1}. If $m=n$, which is the size of P_{A} and P_{B}, then the insertion algorithm terminates here. Otherwise, the next step is to begin v_{m+1} 's insertion path by inserting v_{m+1} into either the first row or the first column in both tableaux. This verifies Definition 2.12(3) and we have $P_{A}^{p+1} \sim P_{B}^{q+1}$.

Case 1.2. Row r in P_{A}^{p} contains an element $z>x$ (under both A and B). Since $P_{A}^{p} \sim P_{B}^{q}$, the same is true in P_{B}^{q}. In this case, x bumps an element greater than itself-a region-3 element-and occupies its cell in both tableaux. Thus both the cell occupied by x and the element bumped by x are identical in the two tableaux, which verifies Definition 2.12(3). Since Definition 2.12(1) and (2) clearly hold, it follows that $P_{A}^{p+1} \sim P_{B}^{q+1}$.
Case 2. Suppose that $x=t_{i}$. During step $P_{B}^{q} \rightarrow P_{B}^{q+1}, x=t_{i}>_{B} u_{j}$ bumps the first region-3 element in row r, or if no such element exists, x occupies the first empty cell in that row. Let $c(r, s)$ be the cell occupied by x in P_{B}^{q+1}.

Case 2.1. In row r of P_{A}^{p}, region 2 either terminates with t_{i} or does not appear at all in that row. Then x occupies $c(r, s)$ also in P_{A}^{p+1} (and bumps the same element as in P_{B}^{q+1}), so $P_{A}^{p+1} \sim P_{B}^{q+1}$.

Case 2.2. In P_{A}^{p}, the last region-2 element in row r is u_{j}. Let this u_{j} be in $c\left(r, s^{\prime}\right)$. Since $P_{A}^{p} \sim P_{B}^{q}, c\left(r, s^{\prime}\right)$ is the last region-2 cell in row r in both tableaux. Since, in $P_{B}^{q} \rightarrow P_{B}^{q+1}, x$ was inserted into $c(r, s)$, we have $s=s^{\prime}+1$. Thus u_{j} is in $c(r, s-1)$ and is bumped by $x=t_{i}$ to column s during $P_{A}^{p} \rightarrow P_{A}^{p+1}$. We prove that, in such a case, $P_{A}^{p+2} \sim P_{B}^{q+1}$. To do so,
we show that
2.2.1. In $P_{A}^{p+1} \rightarrow P_{A}^{p+2}, u_{j}$ settles in $c(r, s)$, to the immediate right of x.
2.2.2. This implies that Definition 2.12(2) for $P_{A}^{p+2} \sim P_{B}^{q+1}$ is satisfied.
2.2.3. Both (1) and (3) of Definition 2.12 for $P_{A}^{p+2} \sim P_{B}^{q+1}$ are satisfied.

Proof of 2.2.1. If $r=1$, then u_{j} clearly settles in $c(r, s)$ in P_{A}^{p+2}. We therefore assume that $r>1$.
To prove that u_{j} settles in $c(r, s)$ in P_{A}^{p+2}, we need only to show that $c(r-1, s)$ in P_{A}^{p+1} contains an element $b \leq u_{j}$, since $c(r, s)$ in P_{A}^{p+1} contains some element $z>_{A} u_{j}$. Now, since $r>1, x=t_{i}$ arrived at row r in P_{A}^{p} (and similarly in P_{B}^{q}) after being bumped from row $r-1$ of P_{A}^{p-1}. Let $c(r-1, h)$ be the cell occupied by x in P_{A}^{p-1}, before it was bumped from row $r-1$.

$$
P_{A}^{p-1} \xrightarrow[\substack{x \text { is bumped } \\ \text { from } c(r-1, h)}]{ } P_{A}^{p} \xrightarrow[\substack{x \text { is inserted } \\ \text { into } c(r, s-1)}]{ } P_{A}^{p+1} \xrightarrow[\substack{u_{j} \text { is inserted } \\ \text { into column } s}]{ } P_{A}^{p+2}
$$

Since x is inserted into $c(r, s-1)$ of P_{A}^{p+1}, Lemma 2.3 implies that $s-1 \leq$ h. If $s \leq h$, then $c(r-1, s)$ was occupied by an element less than or equal to x in P_{A}^{p-1}, and this continues to be true in P_{A}^{p} and P_{A}^{p+1}, which implies our claim (that $b \leq u_{j}$). On the other hand, suppose that $h=s-1$. In this case, we prove that $c(r-1, s)$ contains an element less than or equal to u_{j} by showing that otherwise we would have a contradiction to the induction assumptions. Our proof of this is illustrated by the following figures, each of which consists of the block of cells in rows $r-1$ and r and columns $s-1$ and s in the corresponding tableaux.

So, assume that, in P_{A}^{p-1}, x occupied $c(r-1, s-1)$, and $c(r-1, s)$ was either empty or contained an element $b>u_{j}$ (a region-3 element). We show that this contradicts the claim of the induction hypothesis, that $P_{A}^{p-1} \sim$ $P_{B}^{q-1}, P_{A}^{p-1} \sim P_{B}^{q-2}$, or $P_{A}^{p-2} \sim P_{B}^{q-1}$.

Now, in $P_{B}^{q+1}, x=t_{i}$ occupies $c(r, s)$, so $c(r-1, s)$ is occupied by an element less than x. Lemma 2.3 implies that, in P_{B}^{q}, x occupied $c\left(r-1, s^{\prime}\right)$, where $s \leq s^{\prime}$, and this implies that, in $P_{B}^{q-1}, c(r-1, s)$ contained an element $e \leq x$, a region- 1 or -2 element. But the same cell in P_{A}^{p-1} was either empty or contained a region-3 element, and by Lemma 2.14, the same must have been true in P_{A}^{p-2}. Thus the above assumption, that $h=s-1$, implies that neither $P_{A}^{p-1} \sim P_{B}^{q-1}$ nor $P_{A}^{p-2} \sim P_{B}^{q-1}$ is satisfied. We show now that it also implies that $P_{A}^{p-1} \nsim P_{B}^{q-2}$.

Suppose that $P_{A}^{p-1} \sim P_{B}^{q-2}$ is satisfied. Denote by m the size of P_{A}^{p-1} and P_{B}^{q-2}. By assumption, in P_{A}^{p-1}-hence also in $P_{B}^{q-2} \sim P_{A}^{p-1}-x$ occupies $c(r-1, s-1)$ and $c(r-1, s)$ is either empty or contains a region-3 element $z>x$. But we saw above that, in $P_{B}^{q-1}, c(r-1, s)$ contained $e \leq x$. It follows that insertion step $P_{B}^{q-2} \rightarrow P_{B}^{q-1}$ consisted of e being inserted into $c(r-1, s)$ and-if $c(r-1, s)$ were previously occupied-of bumping from it some $z>x$. If e bumped some z, then, in $P_{B}^{q-1} \rightarrow P_{B}^{q}, z$ would have been inserted into either row r or column $s+1$. But we saw earlier that x was bumped to row r in $P_{B}^{q-1} \rightarrow P_{B}^{q}$, which implies that z must have bumped x during this step. This leads to a contradiction, since z could not have bumped $x<z$. Thus, when e occupied $c(r-1, s)$ during $P_{B}^{q-2} \rightarrow P_{B}^{q-1}$, it did not bump any element; the cell was previously empty. By occupying an empty cell, e increased the size of the tableau from m to $m+1:\left|P_{B}^{q-2}\right|=m$, $\left|P_{B}^{q-1}\right|=m+1$. Hence $\left|P_{B}^{q}\right| \geq m+1$.

On the other hand, P_{A}^{p-1} is of size m, and during $P_{A}^{p-1} \rightarrow P_{A}^{p}, x$ was bumped from row $r-1$ by some smaller element, so the size of the tableau did not change. It follows that $\left|P_{A}^{p}\right|=m<\left|P_{B}^{q}\right|$, contradicting $P_{A}^{p} \sim P_{B}^{q}$.

It follows that $c(r-1, s)$ in P_{A}^{p+1} contains an element $b \leq u_{j}$, and this implies that, when u_{j} enters column s in $P_{A}^{p+1} \rightarrow P_{A}^{p+2}$, it settles in $c(r, s)$, to the right of x. This completes the proof of 2.2.1.

Proof of 2.2.2. By 2.2.1, u_{j} settles in $c(r, s)$ in P_{A}^{p+2}. We show that this implies that Definition 2.12(2) for $P_{A}^{p+2} \sim P_{B}^{q+1}$ is satisfied. In the diagrams below the proof, the cells outside of region 2 are marked with a \star.

Recall that, by Case $2.2, u_{j}$ is located in $c(r, s-1)$ in P_{A}^{p}, so $c(r, s-1)$ is part of a connected component of region 2. Let τ be the number of t_{i} 's and μ be the number of u_{j} 's in this connected component. By Definition 2.12(2) of $P_{A}^{p} \sim P_{B}^{q}$, region 2 of P_{B}^{q} contains a corresponding connected component (in the same cells as that of P_{A}^{p}), with τt_{i} 's and μu_{j} 's.
Since u_{j} is located in $c(r, s-1)$ in P_{A}^{p}, by strict row inequality, $c(r, s)$ is either empty or in region 3. Similarly, since $x=t_{i}$ occupies $c(r, s-1)$ in $P_{A}^{p} \rightarrow P_{A}^{p+1}, c(r-1, s-1)$ must contain a region-1 element in P_{A}^{p+1} (and in P_{A}^{p}):

Thus, if $c(r-1, s)$ is in region 2 in P_{A}^{p} and P_{B}^{q}, then in both tableaux it is part of a connected component distinct from that of $c(r, s-1)$. This other component consists of $\tau^{\prime} t_{i}$'s and $\mu^{\prime} u_{j}$'s. (If $c(r-1, s)$ is not in region 2, then we let $\tau^{\prime}=\mu^{\prime}=0$.)
Since $c(r, s)$ is either empty or in region 3 in P_{A}^{p} (and thus in P_{B}^{q}), it follows that the same is true for $c(r, s+1)$ and $c(r+1, s)$. By the assumption at the beginning of Case 2, during $P_{B}^{q} \rightarrow P_{B}^{q+1}, x=t_{i}$ bumps some region-3 element z from $c(r, s)$, thereby adding $c(r, s)$ to region 2. But $c(r, s)$ is adjacent to both $c(r, s-1)$ and $c(r-1, s)$, so when it joins region 2 , it combines their respective connected components into a single larger one. Since neither $c(r, s+1)$ nor $c(r+1, s)$ is in region 2, it follows that, in $P_{B}^{q+1}, c(r, s)$ becomes part of a connected component of region 2 , consisting of $\tau+\tau^{\prime}+1$ t_{i} 's and $\mu+\mu^{\prime} u_{j}$'s:

Similarly, during $P_{A}^{p} \rightarrow P_{A}^{p+1} \rightarrow P_{A}^{p+2}, x=t_{i}$ bumps u_{j} from $c(r, s-1)$, and u_{j} bumps z from $c(r, s)$, so the only change in the shape of region 2 in P_{A}^{p+2} is the addition of $c(r, s)$. Thus $c(r, s)$ of P_{A}^{p+2} is part of a connected component of region 2, also containing $\tau+\tau^{\prime}+1 t_{i}$'s and $\mu+\mu^{\prime} u_{j}$'s, and this component is identically shaped to the corresponding component of P_{B}^{q+1}, so Definition 2.12(2) of $P_{A}^{p+2} \sim P_{B}^{q+1}$ is satisfied. This completes the proof of 2.2.2.

Proof of 2.2.3. Definition 2.12(1) is satisfied for $P_{A}^{p+2} \sim P_{B}^{q+1}$, since, in both $P_{B}^{q} \rightarrow P_{B}^{q+1}$ and $P_{A}^{p} \rightarrow P_{A}^{p+1} \rightarrow P_{A}^{p+2}$, region 1 is unchanged, and the only change in region 3 is the elimination of $c(r, s)$.

Since the same element z is bumped from $c(r, s)$ in $P_{A}^{p+1} \rightarrow P_{A}^{p+2}$ and $P_{B}^{q} \rightarrow P_{B}^{q+1}$, Definition 2.12(3) is satisfied, and the proof of 2.2.3 is complete.

It follows that $P_{A}^{p+2} \sim P_{B}^{q+1}$.
Case 3. Suppose that $x=t_{a}<t_{i}$.
Case 3.1. Row r in P_{A}^{p} terminates with $z \leq x$. Thus z is in region 1, so, by Definition 2.12(1) of $P_{A}^{p} \sim P_{B}^{q}$, row r in P_{B}^{q} terminates with z. In such a case, x is affixed to the end of row r in both tableaux, so P_{A}^{p+1} and P_{B}^{q+1} have the same shape, and clearly satisfy Definition 2.12(1) and (2). Let m denote the size of P_{A}^{p+1} and P_{B}^{q+1}. If $m=n$, which is the size of P_{A} and P_{B}, then the insertion algorithm terminates here. Otherwise, the next step is to begin v_{m+1} 's insertion path by inserting v_{m+1} into either the first row or the first column in both tableaux. This verifies Definition 2.12(3) and we have $P_{A}^{p+1} \sim P_{B}^{q+1}$.

Case 3.2. Row r in P_{A}^{p} (and hence in P_{B}^{q}) contains an element greater than x. In both tableaux, x bumps from row r the leftmost element greater than itself. By Definition 2.12(1) and (2) of $P_{A}^{p} \sim P_{B}^{q}$, the same celldenoted $c(r, s)$ —becomes occupied by x in both tableaux. Thus, if the element bumped by x is identical in the two tableaux, then $P_{A}^{p+1} \sim P_{B}^{q+1}$.

Suppose, however, that x bumps different elements from the cell(s) $c(r, s)$ of P_{A}^{P} and P_{B}^{q}. By $P_{A}^{p} \sim P_{B}^{q}$, these must be t_{i} and u_{j}. Since $x=t_{a}$ occupies $c(r, s)$ in P_{A}^{p+1}, Lemma 2.3 implies that, in P_{A}^{p-1}, x occupied $c\left(r-1, s^{\prime}\right)$ with $s \leq s^{\prime}$. Thus the $c(r-1, s)$ element g in P_{A}^{p-1} was $g \leq x<u_{j}, t_{i}$, so $c(r-1, s)$ was a region-1 cell. Since x was subsequently bumped from row $r-1$ by an element smaller than itself, it follows that $c(r-1, s)$ is a region- 1 cell also in P_{A}^{p} (and P_{B}^{q}). Similarly, since $x=t_{a}<t_{i}$ settles in $c(r, s)$ in $P_{A}^{p} \rightarrow P_{A}^{p+1}, c(r, s-1)$ is a region-1 cell in P_{A}^{p+1} (and P_{B}^{q+1}), and in $P_{A}^{p}\left(\right.$ and $\left.P_{B}^{q}\right)$,

(the stars represent region-1 elements).

Now, since $c(r, s)$ is in region 2 in both P_{A}^{p} and P_{B}^{q}, by Definition 2.12(2), it is part of a connected component of region 2 which is identically shaped and contains the same number of t_{i} 's and u_{j} 's in both tableaux. But $c(r, s)$ contains t_{i} in one tableau and u_{j} in the other, so it follows that at least one of $c(r, s+1)$ and $c(r+1, s)$ is in region 2 in P_{A}^{p} and P_{B}^{q}. By strict row and column inequality, this implies that $c(r, s)$ contains t_{i} in P_{A}^{p} and u_{j} in P_{B}^{q}.

Denote by C the connected component of region 2 containing $c(r, s)$. Consider the subcomponent C_{1}, consisting of all cells in C which are to the right of or above $c(r, s)$. In P_{A}^{p}, let $\alpha_{A}=\# t_{i}$'s and $\beta_{A}=\# u_{j}$'s in C_{1}; define α_{B} and β_{B} similarly in P_{B}^{q}. If $c(r, s+1)$ is not in region 2 , then C_{1} is empty and $\alpha_{A}=\beta_{A}=\alpha_{B}=\beta_{B}=0$. On the other hand, if C_{1} is nonempty, then by strict row and column inequality, every northwest proper corner cell of C_{1} contains t_{i} in P_{A}^{p} and u_{j} in P_{B}^{q} :

Similarly, every southeast proper corner cell of C_{1} contains u_{j} in P_{A}^{p} and t_{i} in P_{B}^{q} :

Consider the top row of C_{1}. If it contains more than one cell, then its leftmost cell is a northwest corner. Thus the structure of C_{1} is as in the following diagram, where, for example, a cell marked t_{i} / u_{j} contains t_{i} in P_{A}^{p} and u_{j} in P_{B}^{q} (a question mark denotes that a cell may contain either t_{i} or u_{j}) and elements:

$$
\begin{gathered}
t_{i} / u_{j} \cdots \cdots ? / t_{i} \\
\vdots \\
\cdots \cdots u_{j} / t_{i}
\end{gathered}
$$

On the other hand, if the top row of C_{1} contains only one cell, then the structure of C_{1} is

$$
\begin{gathered}
? / u_{j} \\
\vdots \\
t_{i} / u_{j} \cdots \cdots u_{j} / t_{i} \\
\vdots \\
\cdots \cdots u_{j} / t_{i}
\end{gathered}
$$

In both cases, it follows that $\alpha_{B}-\alpha_{A}=\beta_{A}-\beta_{B} \in\{0,1\}$. We prove that
3.2.1. $\alpha_{B}-\alpha_{A}=\beta_{A}-\beta_{B}=1 \Longrightarrow P_{A}^{p+1} \sim P_{B}^{q+2}$.
3.2.2. $\alpha_{B}-\alpha_{A}=\beta_{A}-\beta_{B}=0 \Longrightarrow P_{A}^{p+2} \sim P_{B}^{q+1}$.

Let C_{2} be the subcomponent of C consisting of all cells below or to the left of $c(r, s)$. Let $\gamma_{A}=\# t_{i}$'s and $\delta_{A}=\# u_{j}$'s in C_{2} of P_{A}^{p}; define γ_{B} and δ_{B} similarly for P_{B}^{q}. Since neither $c(r-1, s)$ nor $c(r, s-1)$ is in region 2 , it follows that $C=C_{1}+C_{2}+c(r, s)$. By Definition 2.12(2) of $P_{A}^{p} \sim P_{B}^{q}, C$ contains the same number of t_{i} 's and u_{j} 's in P_{A}^{p} as in P_{B}^{q}. In both tableaux, let τ be the number of t_{i} 's and let μ be the number of u_{j} 's in C. Since $c(r, s)$ contains t_{i} in P_{A}^{p} and u_{j} in P_{B}^{q}, it follows that

$$
\begin{equation*}
\tau=\alpha_{A}+\gamma_{A}+1=\alpha_{B}+\gamma_{B}, \quad \mu=\beta_{A}+\delta_{A}=\beta_{B}+\delta_{B}+1 . \tag{*}
\end{equation*}
$$

Proof of 3.2.1. Suppose that $\alpha_{B}-\alpha_{A}=\beta_{A}-\beta_{B}=1$. Then $\gamma_{A}-\gamma_{B}=$ $\delta_{B}-\delta_{A}=0$, so C_{2} is either empty or contains an equal number of t_{i} 's and u_{j} 's in P_{A}^{p} as in P_{B}^{q}. Also, C_{1} is nonempty, so $c(r, s+1)$ is in region 2 in P_{A}^{p} and in P_{B}^{q}. In $P_{B}^{q}, c(r, s)$ contains u_{j}, so, by strict row inequality, $c(r, s+1)$ contains t_{i}. The subsequent insertion steps are therefore

$$
\begin{aligned}
P_{A}^{p} \\
P_{B}^{q} \underset{\substack{x \text { bumps } t_{i} \\
\text { bumps } u_{j} \\
\text { from } c(r, s)}}{ } P_{A}^{p+1} \xrightarrow[\substack{t_{i} \text { enters } \\
\text { row } r+1}]{ } \\
P_{B}^{q+1} \xrightarrow[\begin{array}{c}
u_{j} \text { bumps } t_{i} \\
\text { from } c(r, s+1)
\end{array}]{ } P_{B}^{q+2} \xrightarrow[\substack{t_{i} \text { enters } \\
\text { row } r+1}]{ }
\end{aligned}
$$

Thus, in both $P_{A}^{p} \rightarrow P_{A}^{p+1}$ and $P_{B}^{q} \rightarrow P_{B}^{q+1} \rightarrow P_{B}^{q+2}, c(r, s)$ is eliminated from region 2, and we are left with two separate components C_{1} and C_{2} (and with t_{i} to be inserted into row $r+1$). No change occurs in C_{2}, so, in both P_{A}^{p+1} and P_{B}^{q+2}, C_{2} has $\gamma_{A}=\gamma_{B} t_{i}^{\prime}$'s and $\delta_{A}=\delta_{B} u_{j}$'s. Similarly, no change occurs in C_{1} in $P_{A}^{p} \rightarrow P_{A}^{p+1}$, so C_{1} of P_{A}^{p+1} contains $\alpha_{A} t_{i}^{\prime}$'s and $\beta_{A} u_{j}^{\prime}$'s. On the other hand, in $P_{B}^{q} \rightarrow P_{B}^{q+1} \rightarrow P_{B}^{q+2^{4}}$, a single change occurs in C_{1}, when the t_{i} in $c(r, s+1)$ is replaced with u_{j}. Thus C_{1} of P_{B}^{q+2} contains $\alpha_{B}-1 t_{i}^{\prime}$'s and $\beta_{B}+1 u_{j}$'s. But, by 3.2.1, $\alpha_{B}-1=\alpha_{A}$ and $\beta_{B}+1=\beta_{A}$, so C_{1} contains the same number of t_{i} 's and u_{j}^{\prime} 's in P_{A}^{p+1} as in P_{B}^{q+2}, and Definition 2.12(2) is satisfied for $P_{A}^{p+1} \sim P_{B}^{q+2}$.

Now, in both P_{A}^{p+1} and P_{B}^{q+2}, the only change that occurs in region 1 is that the same element x is added to $c(r, s)$, so Definition 2.12(1) is satisfied. Similarly, as was already mentioned, both $P_{A}^{p+1} \rightarrow P_{A}^{p+2}$ and $P_{B}^{q+2} \rightarrow P_{B}^{q+3}$ consist of t_{i} entering row $r+1$, so Definition 2.12(3) is satisfied. It follows that $P_{A}^{p+1} \sim P_{B}^{q+2}$. This completes the proof of 3.2.1.

Proof of 3.2.2. The proof of 3.2.2 is dual, in a sense, to the proof of 3.2.1. Here are the details.

Suppose that $\alpha_{B}-\alpha_{A}=\beta_{A}-\beta_{B}=0$. Then C_{1} is either empty or contains an equal number of t_{i} 's and u_{j} 's in P_{A}^{p} as in P_{B}^{q}. Thus, by (\star), $\gamma_{B}-\gamma_{A}=\delta_{A}-\delta_{B}=1$, so, C_{2} is nonempty, which implies that $c(r+1, s)$ is in region 2 in P_{A}^{p} and in P_{B}^{q}. In $P_{A}^{p}, c(r, s)$ contains t_{i}, so, by strict column inequality, $c(r+1, s)$ contains u_{j}. The subsequent insertion steps are therefore

$$
\begin{aligned}
& P_{A}^{p} \\
& \begin{array}{c}
x \text { bumps } t_{i} \\
\text { from } c(r, s)
\end{array} P_{A}^{p+1} \xrightarrow[\begin{array}{c}
t_{i} \text { bumps } u_{j} \\
\text { from } c(r+1, s)
\end{array}]{ } P_{A}^{p+2} \xrightarrow[\begin{array}{c}
u_{j} \text { enters } \\
\text { column } s+1
\end{array}]{ } \\
& P_{B}^{q} \underset{\substack{x \text { bumps } u_{j} \\
\text { from } c(r, s)}}{ } P_{B}^{q+1} \xrightarrow[\begin{array}{c}
u_{j} \text { enters } \\
\text { column } s+1
\end{array}]{ }
\end{aligned}
$$

Thus, in both $P_{A}^{p} \rightarrow P_{A}^{p+1} \rightarrow P_{A}^{p+2}$ and $P_{B}^{q} \rightarrow P_{B}^{q+1}, c(r, s)$ is eliminated from region 2, and we are left with two separate components C_{1} and C_{2} (and with u_{j} to be inserted into column $s+1$). No change occurs in C_{1}, so, in both P_{A}^{p+2} and P_{B}^{q+1}, C_{1} has $\alpha_{A}=\alpha_{B} t_{i}$'s and $\beta_{A}=\beta_{B} u_{j}$'s. Similarly, no change occurs in C_{2} in $P_{B}^{q} \rightarrow P_{B}^{q+1}$, so C_{2} of P_{B}^{q+1} contains $\gamma_{B} t_{i}^{\prime}$'s and $\delta_{B} u_{j}$'s. On the other hand, in $P_{A}^{p} \rightarrow P_{A}^{p+1} \rightarrow P_{A}^{p+2}$, a single change occurs in C_{2}, when the u_{j} in $c(r+1, s)$ is replaced with t_{i}. Thus C_{2} of P_{A}^{p+2} contains $\gamma_{A}+1 t_{i}$'s and $\delta_{A}-1 u_{j}^{\prime}$'s. But 3.2.2 and (\star) imply that $\gamma_{A}+1=\gamma_{B}$ and $\delta_{A}-1=\delta_{B}$, so C_{2} contains the same number of t_{i} 's and u_{j} 's in P_{A}^{p+2} as in P_{B}^{q+1}, and Definition 2.12(2) is satisfied for $P_{A}^{p+2} \sim P_{B}^{q+1}$.

Now, in both P_{A}^{p+2} and P_{B}^{q+1}, the only change that occurs in region 1 is that the same element x is added to $c(r, s)$, so Definition 2.12(1) is satisfied. Similarly, as was already mentioned, both $P_{A}^{p+2} \rightarrow P_{A}^{p+3}$ and $P_{B}^{q+1} \rightarrow P_{B}^{q+2}$ consist of u_{j} entering column $s+1$, so Definition 2.12(3) is satisfied. It follows that $P_{A}^{p+2} \sim P_{B}^{q+1}$. This completes the proof of 3.2.2.

3. PROOF OF THEOREM 5

Here we prove, for example, Theorem 5(b). The proofs of parts (c) and (d) of the theorem are similar.

Given $v \in a_{k, l}(n)$ and shuffle A, the (regular, dual)- A-RSK forms the tableau pair $\left(P^{*}, Q^{*}\right)=\left(P^{*}(v, A), Q^{*}(v, A)\right)$ by applying the regular RSK to the t_{i} 's and the dual conjugate RSK to the u_{j} 's of v under shuffle A. For simplicity, we refer to this algorithm as the dual- A-RSK. As in the A-RSK, P^{*} is the insertion tableau, and Q^{*} is the recording tableau of v under A. Here P^{*} is what we call a dual- A-SSYT; that is, it is weakly A-increasing in rows and strictly A-increasing in columns.

Example 3.1. Let $k=2, l=1$, and $A: u_{1}<u_{2}<t_{1}<t_{2}$. Let

$$
v=\binom{1 \cdots \cdots 4}{u_{1}, t_{1}, t_{2}, u_{1}}
$$

Then

$$
v \underset{\text { dual- } A \text {-RSK }}{ } \quad \begin{array}{|l|l|l|}
u_{1} \\
\hline u_{1} & t_{1} \\
\hline u_{1} & t_{1} & t_{2} \\
\hline t_{1} & & \\
\hline u_{1} & u_{1} & t_{2} \\
\hline
\end{array}=P^{*}
$$

and

$$
Q^{*}=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & & \\
\hline
\end{array} .
$$

Lemma 3.2. Let $v \in a_{k, l}(n), A \in I$, and

$$
v \underset{A \text {-RSK }}{\longrightarrow}(P, Q), \quad v \underset{\text { dual }-A \text {-RSK }}{ }\left(P^{*}, Q^{*}\right)
$$

If v is nonrepeating in its u-elements, then $P=P^{*}$ and $Q=Q^{*}$.
Proof. The A-RSK and the dual- A-RSK differ in only one rule: When some u_{j} enters a column under the A-RSK, it bumps the first element w_{m} such that $w_{m}>u_{j}$ (or if no such w_{m} exists, it settles at the end of the column). On the other hand, under the dual- A-RSK, u_{j} bumps the first element w_{r} such that $w_{r} \geq u_{j}$ (or settles at the end of the column). But u_{j} may appear only once in v, which implies that $w_{r}>u_{j}$, so this step is the same as that of the A-RSK. The proof now follows.

Notation. $\quad v \in a_{k, l}(n)$ is said to be of type $\left(\alpha_{1}, \ldots, \alpha_{k} ; \beta_{1}, \ldots, \beta_{l}\right)$ if it is a permutation of $t_{1}^{\alpha_{1}} \cdots t_{k}^{\alpha_{k}} u_{1}^{\beta_{1}} \cdots u_{l}^{\beta_{l}}$.

Lemma 3.3. Let $v \in a_{k, l}(n)$ be of type $\left(\alpha_{1}, \ldots, \alpha_{k} ; \beta_{1}, \ldots, \beta_{l}\right)$ and denote $\beta=\sum_{i=1}^{l} \beta_{i}$. Then there exists $w \in a_{k, \beta}(n)$ such that
(1) The u-elements of w are nonrepeating.
(2) For every shuffle A, if $v \underset{\text { dual- } A \text {-RSK }}{\longrightarrow}\left(P_{v}^{*}, Q_{v}^{*}\right)$, then there exists a corresponding shuffle A^{\prime} of the elements of w such that $w \underset{\text { dual- } A \text {-RSK }}{ }\left(P_{w}^{*}, Q_{w}^{*}\right)$, where P_{w}^{*} is identical to P_{v}^{*} but with every v_{i} changed to w_{i} for all $i \leq n$. Consequently, $\operatorname{sh}\left(P_{v}^{*}\right)=\operatorname{sh}\left(P_{w}^{*}\right)$.

Proof. To avoid confusion between the elements of v and of w, we let $u_{1}^{\prime}, \ldots, u_{l}^{\prime}$ denote the u-elements of v.

Form the sequence w from v as follows. Replace the u_{1}^{\prime} 's in v with u_{1}, \ldots, $u_{\beta_{1}}$, moving from right to left. Replace the u_{2}^{\prime} 's with $u_{\beta_{1}+1}, \ldots, u_{\beta_{1}+\beta_{2}}$, moving from right to left. Continue in this way until u_{l}^{\prime}, including the u_{l}^{\prime} 's.

Clearly, the u-elements of w are nonrepeating, satisfying Lemma 3.3(1).

Given some shuffle A of the elements of v, define the shuffle A^{\prime} of the elements of w as follows. For every $i \in\{1, \ldots, k\}$,

$$
\begin{aligned}
& t_{i}<_{A} u_{1}^{\prime} \Longrightarrow t_{i}<_{A^{\prime}} u_{1}<_{A^{\prime}} \cdots<_{A^{\prime}} u_{\beta_{1}}, \\
& t_{i}<_{A} u_{2}^{\prime} \Longrightarrow t_{i}<_{A^{\prime}} u_{\beta_{1}+1}<_{A^{\prime}} \cdots<_{A^{\prime}} u_{\beta_{1}+\beta_{2}} \\
& \vdots \\
& \\
& t_{i}<_{A} u_{l}^{\prime} \Longrightarrow t_{i}<_{A^{\prime}} u_{\beta_{1}+\cdots+\beta_{l-1}+1}<_{A^{\prime}} \cdots<_{A^{\prime}} u_{\beta}, \\
& u_{1}^{\prime}<_{A} t_{i} \Longrightarrow u_{1}<_{A^{\prime}} \cdots{ }_{A^{\prime}} u_{\beta_{1}}{ }_{A^{\prime}} t_{i}, \\
& \vdots \\
& u_{l}^{\prime}<_{A} t_{i} \Longrightarrow u_{\beta_{1}+\cdots+\beta_{l-1}+1}<_{A^{\prime}} \cdots<_{A^{\prime}} u_{\beta}<_{A^{\prime}} t_{i} .
\end{aligned}
$$

We compare the A-RSK insertion of the v 's with the A^{\prime}-RSK insertion of the w 's. Note that the shuffle A and its derived shuffle A^{\prime} are similar in that $v_{i}<{ }_{A} v_{j} \Longrightarrow w_{i}<_{A^{\prime}} w_{j}$, but they differ in one fundamental way: For $i<j$ such that v_{i}, v_{j}, w_{i}, and w_{j} are u-elements, $v_{i}={ }_{A} \Longrightarrow w_{i}>_{A^{\prime}} w_{j}$. Now, if w_{j} reaches a cell inhabited by $w_{i}>_{A^{\prime}} w_{j}$, then it bumps w_{j} to the next column, just as v_{j} would bump $v_{i}={ }_{A} v_{j}$ to the next column under the dual-A-RSK. On the other hand, if w_{i} reaches a cell inhabited by $w_{j}<A^{\prime} w_{i}$, it settles below w_{j}, whereas v_{i} would bump $v_{j}={ }_{A} v_{i}$ to the next column. However, such a situation never occurs, since $i<j$ and $v_{i}={ }_{A} v_{j}$ implies that every column reached by w_{j} is first reached by w_{i}. The proof of this is as follows.
Suppose that, for some $x, w_{i}=u_{x+1}$ and $w_{j}=u_{x}$. Then every column reached by w_{j} is first reached by w_{i}, by induction on the columns of P_{w}^{*}. Trivially, w_{i} reaches column 1 before w_{j}. By the induction assumption, $w_{i}=u_{x+1}$ is in column $c^{\prime}, c^{\prime} \geq c$. If $c^{\prime}>c$, then we are done. Assume $c^{\prime}=c: w_{i}=u_{x+1}$ is already in column c, and $w_{j}=u_{x}$ is inserted into column c. It bumps the first w_{d} such that $w_{d} \geq w_{j}=u_{x}$. Now $v_{i}=_{A} v_{j}$ implies that there does not exist any t_{z} such that $w_{j}<A_{A^{\prime}} t_{z}<A_{A^{\prime}} w_{i}$. Hence $w_{d}=u_{x+1}=w_{i}$ is bumped to column $c+1$.

This clearly extends to the general case $i<j, v_{i}=v_{j}, w_{i}=u_{y}, w_{j}=u_{x}$, for general $y>x$.

Hence the steps of the dual- A^{\prime}-RSK on w are identical to the steps of the dual- A-RSK on v, but with every $v_{i}, i \leq n$, changed to w_{i}. This implies that Lemma 3.3(2) is satisfied for w.

Example 3.4. Let $v=t_{2} u_{2} u_{1} u_{1} t_{1}$ and $A=t_{1}<t_{2}<u_{1}<u_{2}$. The sequence $w=t_{2} u_{3}^{\prime} u_{2}^{\prime} u_{1}^{\prime} t_{1}$ clearly satisfies Lemma 3.3(1); we show that it satisfies Lemma 3.3(2) for shuffle A, by letting $A^{\prime}=t_{1}<t_{2}<u_{1}^{\prime}<u_{2}^{\prime}<u_{3}^{\prime}$.

Under shuffles A and A^{\prime},

$$
v \underset{A \text {-RSK }}{ }\left(P_{v}^{*}, Q_{v}^{*}\right) \text { and } w \xrightarrow[\text { dual- } A^{\prime} \text {-RSK }]{ }\left(P_{w}^{*}, Q_{w}^{*}\right),
$$

where

$$
\begin{aligned}
& P_{v}^{*}=\begin{array}{|l|l|l|l|}
\hline t_{1} & u_{1} & u_{1} & u_{2} \\
\hline t_{2} & & & \\
\hline
\end{array}=\begin{array}{|l|l|l|l|}
\hline v_{5} & v_{4} & v_{3} & v_{2} \\
\hline v_{1} & & & \\
\hline
\end{array}, \\
& P_{w}^{*}=\begin{array}{|l|l|l|l|}
\hline t_{1} & u_{1}^{\prime} & u_{2}^{\prime} & u_{3}^{\prime} \\
\hline t_{2} & & \\
\hline
\end{array}=\begin{array}{|l|l|l|l|}
\hline w_{5} & w_{4} & w_{3} & w_{2} \\
\hline w_{1} & & & \\
\hline
\end{array} .
\end{aligned}
$$

Thus Lemma 3.3(2) is satisfied for shuffle A.
We can now give the following proof.
Proof of Theorem 5(b). Let v be of type $\left(\alpha_{1}, \ldots, \alpha_{k} ; \beta_{1}, \ldots, \beta_{l}\right)$ and denote $\beta=\sum_{i=1}^{l} \beta_{i}$. Lemma 3.3 implies that there exists a sequence $w \in$ $a_{k, \beta}(n)$ with no repeating u-elements and with shuffles A^{\prime}, B^{\prime} such that

$$
w \underset{\text { dual- } A^{\prime} \text {-RSK }}{\longrightarrow}\left(P_{A^{\prime}}^{*}, Q_{A^{\prime}}^{*}\right), \quad w \underset{\text { dual- }-B^{\prime} \text {-RSK }}{ }\left(P_{B^{\prime}}^{*}, Q_{B^{\prime}}^{*}\right),
$$

where $\operatorname{sh}\left(P_{A^{\prime}}^{*}\right)=\operatorname{sh}\left(P_{A}^{*}\right)$ and $\operatorname{sh}\left(P_{B^{\prime}}^{*}\right)=\operatorname{sh}\left(P_{B}^{*}\right)$. Since w contains no repetitions in its u-elements, Lemma 3.3 implies that

$$
w \underset{A^{\prime} \text {-RSK }}{ }\left(P_{A^{\prime}}^{*}, Q_{A^{\prime}}^{*}\right), \quad w \underset{B^{\prime}-\mathrm{RSK}}{ }\left(P_{B^{\prime}}^{*}, Q_{B^{\prime}}^{*}\right) .
$$

Thus, by Theorem $2, \operatorname{sh}\left(P_{A^{\prime}}^{*}\right)=\operatorname{sh}\left(P_{B^{\prime}}^{*}\right)$, which implies our result.
The proofs of parts (c) and (d) of Theorem 5 are similar to that of Theorem 5(b), since Lemma 3.3 can also be applied to the (dual, regular)-A-RSK and the (dual, dual)- A-RSK. Both algorithms are t-dual; for simplicity, let $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$ denote the t-elements of v. The t 's of the sequence w of Lemma 3.3 for parts (c) and (d) are set as follows. Replace the $t_{1}^{\prime \prime}$'s in v with $t_{1}, \ldots, t_{\alpha_{1}}$, moving from left to right. Replace the t_{2}^{\prime} 's with $t_{\alpha_{1}+1}, \ldots, t_{\alpha_{1}+\alpha_{2}}$, moving from left to right. Continue in this way until t_{k}^{\prime}, including t_{k}^{\prime}.
Since the (dual, regular)- A-RSK of part (c) is u-regular, the u 's of w are identical to those of v. However, the (dual, dual)- A-RSK of part (d) is u-dual, so, in this case, the u 's of w are derived the same way as in the proof of Lemma 3.3. Finally, shuffle A^{\prime} is derived from A in parts (c) and (d) by methods analogous to that of part (b).

REFERENCES

1. A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. Math. 64 (1987), 118-175.
2. A. Berele and J. B. Remmel, Hook flag characters and combinatorics, J. Pure Appl. Algebra 35 (1985), 245.
3. G. Olshanski, A. Regev, and A. Vershik, "Frobenius-Schur Functions," Studies in Memory of I. Schur, Birkhauser, Boston, in press.
4. J. B. Remmel, The combinatorics of (k, l)-hook Schur functions, Contemp. Math. 34 (1984), 253-287.
5. J. B. Remmel, Permutation statistics and (k, l)-hook Schur functions, Discrete Math. 67 (1987), 271-298.
6. J. B. Remmel, A bijective proof of a factorization theorem for (k, l)-hook Schur functions, Linear and Multilinear Algebra 28 (1990), 119-154.
7. R. Stanley, "Enumerative Combinatorics," Vol. 2, Cambridge Univ. Press, Cambridge, UK, 1999.
