
Journal of Combinatorial Theory, Series A 108 (2004) 159–168

Note

Box complexes, neighborhood complexes,
and the chromatic number
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Abstract

Lovász’s striking proof of Kneser’s conjecture from 1978 using the Borsuk–Ulam theorem

provides a lower bound on the chromatic number wðGÞ of a graph G: We introduce the shore

subdivision of simplicial complexes and use it to show an upper bound to this topological lower

bound and to construct a strong Z2-deformation retraction from the box complex (in the

version introduced by Matoušek and Ziegler) to the Lovász complex. In the process, we

analyze and clarify the combinatorics of the complexes involved and link their structure via

several ‘‘intermediate’’ complexes.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The topological method in graph theory was introduced by Lovász [6] to prove
Kneser’s conjecture [4]. The pattern to obtain a lower bound of the chromatic
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1Supported by the joint Berlin/Zürich graduate program ‘‘Combinatorics, Geometry, and Computation
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number wðGÞ of a graph G is to associate a topological space and bound the
chromatic number by a topological invariant of this space, e.g. connectivity or Z2-
index. In Section 3, we present a subdivision technique that we call shore subdivision.
We use the shore subdivision in Section 4 to show that the complex LðGÞ which
Lovász used (and which we call Lovász complex for that reason) is a strong Z2-
deformation retract of the shore subdivision of the box complex BðGÞ described by
Matoušek and Ziegler [8]. Moreover, we explicitly realize (in a non-unique way) the
Lovász complex LðGÞ as a Z2-subcomplex of the shore subdivision ssdðBðGÞÞ of
BðGÞ: The advantage of the box complex is that for any graph homomorphism
f : G-H one obtains an induced simplicial Z2-map Bðf Þ : BðGÞ-BðHÞ: This
functorial property gives elegant conceptual proofs which is not the case for the
Lovász complex. Walker [10] gives a rather involved construction of a non-canonical
Z2-map j : jjLðGÞjj-jjLðHÞjj: Using the realization of the Lovász complex as a
subcomplex of ssdðBðGÞÞ; such a map can be constructed in a non-canonical but
straight-forward manner.

The box complex of a graph yields a lower bound for its chromatic number:
wðGÞXindðBðGÞÞ þ 2: It is known that this topological bound can get arbitrarily
bad: Walker [10] shows that if a graph G does not contain a K2;2 then the associated

invariant yields 3 as largest possible lower bound for the chromatic number wðGÞ: In
Section 5, we generalize this result to the following statement: If G does not contain a
complete bipartite graph Kc;m then the index of the box complex BðGÞ is bounded by

cþ m � 3 and this bound is sharp.
Independently from this work, de Longueville [3] used shore subdivisions to give a

short and elegant proof of the fact that Bier spheres are in fact spheres.

2. Preliminaries

In this section, we recall some basic facts of graphs and simplicial complexes to fix
notation. The interested reader is referred to [7] or [2] for details.

Graphs: Any graph G is assumed to be finite, simple, connected, and undirected,
i.e., G is given by a finite set VðGÞ of nodes (we use vertices for associated complexes)

and a set of edges EðGÞDðVðGÞ
2
Þ: A graph homomorphism f between two graphs G and

H is a map that maps nodes to nodes and edges to edges. A proper graph coloring

with n colors is a graph homomorphism c : G-Kn; where Kn is the complete graph
on n nodes. The chromatic number wðGÞ of G is the smallest n such that a proper
graph coloring of G with n colors exists. The neighborhood NðuÞ of uAVðGÞ is the set
of all nodes adjacent to u: For a set of nodes ADVðGÞ a node v is in the common

neighborhood CNðAÞ of A; if v is adjacent to all aAA; we define CNð|Þ :¼ VðGÞ: For
ADBDVðGÞ the common neighborhood relation satisfies

A-CNðAÞ ¼ |; CNðBÞDCNðAÞ; ADCN2ðAÞ; and CNðAÞ ¼ CN3ðAÞ:

Because of the last equality we call CN2 a closure operator. For two disjoint sets of
nodes A;BDVðGÞ we define G½A;B� as the (not necessarily induced) subgraph of G

ARTICLE IN PRESS
Note / Journal of Combinatorial Theory, Series A 108 (2004) 159–168160



with node set VðG½A;B�Þ ¼ A,B and all edges fa; bgAEðGÞ with aAA and bAB: For
a given node set A; the set CNðAÞ is the inclusion-maximal set B such that G½A;B� is
complete bipartite.

Simplicial complexes: An abstract simplicial complex K is a finite hereditary set
system. We denote its vertex set by VðKÞ and its barycentric subdivision by sdðKÞ:
For sets A;B define

A2B :¼ fða; 0Þ j aAAg,fðb; 1Þ j bABg:

An important construction in the category of simplicial complexes is the join

operation. For two simplicial complexes K and L the join K � L is defined as

K � L :¼ fF2G j FAK and GALg:

Any abstract simplicial complex K can be realized as a topological space jjKjj in Rd

for some d:
Z2-spaces: A Z2-space is a topological space X together with a homeomorphism

n : X-X that is self-inverse and free, i.e., has no fixed points. The map n is called free

Z2-action. The fundamental example for a Z2-space is the d-sphere Sd together with
the antipodal map nðxÞ ¼ �x: A continuous map f between Z2-spaces ðX ; nÞ and
ðY ; mÞ is Z2-equivariant (or a Z2-map for simplicity) if f commutes with the Z2-
actions, i.e., if f 3n ¼ m3f : A simplicial complex ðK; nÞ is a simplicial Z2-space if
n : K-K is a simplicial map such that jjnjj is a free Z2-action on jjKjj: A simplicial Z2-
equivariant map f is a simplicial map between two simplicial Z2-spaces that
commutes with the simplicial Z2-actions.

The index of a Z2-space ðX ; nÞ is the smallest d such that there is a Z2-map

f : X-Sd ; i.e., f 3n ¼ �f : The Borsuk–Ulam theorem states that there is no

antipodal continuous mapping f : Sd-Sd�1: Hence, it provides the index for

spheres: indðSdÞ ¼ d: Since the Z2-actions are usually canonical, we often refer to a
Z2-space K without explicit reference to n:

Chain notation: We denote by A a chain A1C?CAp of subsets of the nodes VðGÞ
of a graph G and by B a chain B1C?CBq of subsets of VðGÞ: For 1ptpp we

denote by Apt the chain A1C?CAt: A similar convention is used for AXt: For
chains A; B satisfying ApDB1 we define a new chain, the concatenation of A and B:

AKB :¼ A1C?CApDB1C?CBq;

where we omit Ap or B1 in case Ap ¼ B1: If a map f preserves (resp. reverses)

inclusions, we write f ðAÞ instead of f ðA1ÞDyDf ðApÞ (resp. f ðApÞDyDf ðA1Þ).
One obtains a chain of proper subsets by omitting multiple copies.

Neighborhood complex: The neighborhood complex NðGÞ of a graph G has vertex

set VðGÞ and the sets ADVðGÞ with CNðAÞa| as simplices.
Lovász complex: The neighborhood complex NðGÞ has no canonical Z2-structure

in general and can be retracted to a Z2-subspace, the Lovász complex LðGÞ: This
complex LðGÞ is the subcomplex of sdðNðGÞÞ induced by the vertices that are fixed
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points of CN2: The Lovász complex is

LðGÞ ¼ fA j A a chain of node sets of G with A ¼ CN2ðAÞg

which is a Z2-space with Z2-action CN:
Box complex: Different versions of a box complex are described by Alon et al. [1],

Sarkaria [9], Křı́ž [5] and Matoušek and Ziegler [8]. The box complex BðGÞ of G in
which we are interested is the one introduced by Matoušek and Ziegler and is defined
by

BðGÞ :¼fA2B j A;BANðGÞ and G½A;B� is complete bipartiteg

¼fA2B j A;BANðGÞ; ADCNðBÞ; and BDCNðAÞg:

The vertex set of the box complex BðGÞ can be canonically partitioned as follows:

V1 :¼ ffvg2| j vAVðGÞg and V2 :¼ f|2fvg j vAVðGÞg:

The subcomplexes of BðGÞ induced by V1 and V2 are disjoint subcomplexes of BðGÞ
that are both isomorphic to the neighborhood complex NðGÞ: This follows from the

definition, since fv1g2|;y; fvng2| are the vertices of a simplex of BðGÞ if and only
if A :¼ fv1;y; vng is a simplex of the neighborhood complex NðGÞ; that is, if and
only if CNðAÞa|: We refer to these two copies of NðGÞ induced by V1 and V2 as
shores of the box complex. The box complex is endowed with a Z2-action n which
interchanges the shores.

3. Shore subdivision and useful subcomplexes

Shore subdivision: For a simplicial complex K and any partition of its vertex set V

into non-empty sets V1 and V2; we call the simplicial subcomplexes K1 and K2

induced by V1 and V2 its shores. In case of the box complex we always consider the
canonical partition mentioned above. The shore subdivision of K is

ssdðKÞ :¼ fsdðs-K1Þ � sdðs-K2Þ j sAKg:

We apply this definition to the shores of the box complex to obtain the shore

subdivision ssdðBðGÞÞ of BðGÞ: The vertices of ssdðBðGÞÞ are of type A2| and |2A

where |aACVðGÞ with CNðAÞa|: A simplex of ssdðBðGÞÞ is denoted byA2B (the

simplex spanned by the vertices A2| and |2B where AAA; BAB).
Doubled Lovász complex: The map cn2 : ssdðBðGÞÞ-ssdðBðGÞÞ defined on the

vertices by

cn2ðA2|Þ :¼ CN2ðAÞ2| and cn2ð|2AÞ :¼ |2CN2ðAÞ

is simplicial and Z2-equivariant. We refer to the image of the map cn2 as doubled

Lovász complex DLðGÞ: It is

DLðGÞ ¼ A2B
A;BALðGÞ;

G½A;B� is complete bipartite for all AAA; BAB

����
�
:

�
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A copy of the Lovász complex can be found on each shore of DLðGÞCssdðBðGÞÞ; but
these copies do not respect the induced Z2-action.

Halved doubled Lovász complex: We partition the vertex set of the doubled Lovász

complex DLðGÞ into pairs of type fA2|; |2CNðAÞg to define a simplicial Z2-map
j : DLðGÞ-DLðGÞ: Our aim is to specify one vertex for every pair and map both
vertices of a pair to this chosen ‘‘smaller’’ vertex. To do this we refine the partial
order by cardinality to a linear order ‘‘!’’ on the vertices of the original Lovász
complex LðGÞ using the lexicographic order:

A!B 3
jAjojBj or
jAj ¼ jBj and AolexB:

�

In fact any refinement would work in the following. A partial order on the vertices of
the doubled Lovász complex DLðGÞ is now obtained:

A2|!|2CNðAÞ 3 A!CNðAÞ:

We define the map j on the vertices using this partial order by

jðA2|Þ :¼ min
!

fA2|; |2CNðAÞg and

jð|2BÞ :¼ min
!

f|2B;CNðBÞ2|g:

It is easy to show that j is simplicial. Let A2B be a simplex of the doubled Lovász

complex DLðGÞ; that is, the simplex spanned by the vertices A2| and |2B with

AAA; BAB; A;BANðGÞ are fixed points of CN2; and G½A;B� is complete bipartite.
Suppose that Ap!Bq holds for the largest elements Ap and Bq of A and B: Then
Ap!CNðApÞ; since BqDCNðApÞ: Hence, A2| is a fixed point of j for each AAA:

For some 0pkoq; the vertices |2B for BABpk are fixed by j; while the vertices

|2B are mapped to CNðBÞ2| for BAB4k: Since Ap!CNðBÞ for each BAB4k; we

have

jðA2BÞ ¼ ðAKCNðB4kÞÞ2Bpk;

which is a simplex of DLðGÞ: The argument is the same if Bq!Ap: Hence j is

simplicial.
Since the image Im j has half as many vertices as DLðGÞ; we refer to Im j as halved

doubled Lovász complex HDLðGÞ:
A first example: The neighborhood complex NðC5Þ of the 5-cycle C5 is the 5-cycle;

its Lovász complex LðC5Þ is the 10-cycle C10: The box complex BðC5Þ; depicted in
Fig. 1, consists of two copies of NðC5Þ (the two shores) such that simplices of
different shores are joined if and only if their vertex sets seen as node sets of the
graph are common neighbors of each other. The shore subdivision ssdðBðC5ÞÞ as
illustrated in Fig. 2 is a subdivision of the box complex induced from a barycentric

subdivision of the shores. The map cn2 maps a vertex of ssdðBðC5ÞÞ to the common
neighborhood of its common neighborhood. In our example, every vertex is mapped
to itself, hence ssdðBðC5ÞÞ ¼ DLðC5Þ: The partitioning of the vertex set of DLðC5Þ
into pairs of type ðA2|; |2CNðAÞÞ can be visualized by edges of DLðC5Þ that
connect singletons from one shore with two-element sets from the other. The refined
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lexicographic order determines the image of such an edge under j: the smaller vertex

is a singleton. Hence, the map j collapses all edges of type ðA2|; |2CNðAÞÞ; which
yields the halved doubled Lovász complex HDLðGÞ as shown in Fig. 3.

A second example: Let us first describe the neighborhood complex and the Lovász
complex of the complete graph Kn on n nodes. The neighborhood complex of Kn is
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Fig. 1. The box complex BðC5Þ:

Fig. 2. Here the shore subdivision ssdðBðC5ÞÞ coincides with DLðC5Þ:

Fig. 3. The halved doubled Lovász complex of C5:
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the boundary of a simplex on n vertices. This follows from the fact that every set of
n � 1 nodes has a common neighbor but the set ½n� has empty common
neighborhood. The neighborhood complex NðKnÞ is therefore a pure abstract

simplicial complex of dimension n � 2; the set of facets is ð ½n�
n�1

Þ: The Lovász complex

LðKnÞ is its barycentric subdivision, since CNðAÞ ¼ ½n�\A and therefore CN2ðAÞ ¼ A

for each AC½n�: The Z2-action of LðKnÞ maps a vertex AAVðLðKnÞÞ to its
complement in ½n�: We now describe the box complex BðKnÞ: It is the subcomplex of
the join NðKnÞ � NðKnÞ that has facets A2ð½n�\AÞ for each non-empty set AC½n�: The
box complex BðGÞ can also be interpreted as the boundary of an n-dimensional
crosspolytope where a pair of opposite facets is removed. The Z2-action maps a
simplex A2B to the simplex B2A: The shore subdivision ssdðBðKnÞÞ is a
subcomplex of the join LðKnÞ � LðKnÞ: Its facets can be described as follows.
Consider a non-empty set AC½n� and a maximal chain A of non-empty subsets of A:
Such a chain represents a ðjAj � 1Þ-dimensional face of LðKnÞ: Consider a
complementary simplex B; that is, a maximal chain of non-empty subsets of ½n�\A:
Then A2B is a facet of ssdðBðKnÞÞ: The Z2-action maps A2B to B2A: Since every

vertex of sdðNðKnÞÞ is a fixed point of CN2; the shore subdivision ssdðBðKnÞÞ
coincides with the doubled Lovász complex DLðKnÞ: To define the map j; we
consider the following partitioning of the vertices of DLðKnÞ into pairs formed by

A2| and |2CNðAÞ: The map j maps both vertices to the smaller one of A2| and

|2CNðAÞ with respect to !: The image of j is the halved doubled Lovász complex.

Its Z2-action maps A2| to |2A:

4. LðGÞ as a Z2-deformation retract of BðGÞ

Theorem 1. The Lovász complex LðGÞ and the halved doubled Lovász complex

HDLðGÞ are Z2-isomorphic.

The proof makes use of the chain notation introduced in Section 2.

Proof. Since each shore of DLðGÞ is isomorphic (but not Z2-isomorphic) to LðGÞ; we
have jVðLðGÞÞj ¼ jVðHDLðGÞÞj: To define a simplicial Z2-map f : LðGÞ-HDLðGÞ;
we partition VðLðGÞÞ into

S :¼ A
AAVðLðGÞÞ and

jðA2|Þ ¼ A2|

����
� �

and J :¼ A
AAVðLðGÞÞ and

jðA2|Þ ¼ |2CNðAÞ

����
� �

(where ‘‘S’’ and ‘‘J’’ denote the vertices that Stay fixed or Jump to their neighbor),
and set

f ðAÞ :¼
A2| if AAS

|2CNðAÞ if AAJ:

�

This map is a bijection between the vertex sets VðLðGÞÞ and VðHDLðGÞÞ that
commutes on vertex level with the Z2-actions. We now show that it is also surjective
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and simplicial. For simpliciality, consider a simplex A in LðGÞ: Let t denote the
largest index k such that Ak is mapped onto the first shore. The image of A under f is
Apt2CNðAXtþ1Þ: This is a simplex since G½At;CNðAtþ1Þ� is complete bipartite.
For surjectivity consider a simplex A2B of HDLðGÞ; i.e., G½A;B� is complete
bipartite for each AAA and BAB: This simplex is the image of the simplex
AKCNðBÞ of LðGÞ: &

Theorem 2. The halved doubled Lovász complex HDLðGÞ is a strong Z2-deformation

retract of the box complex BðGÞ:

Proof. First, we observe that jjDLðGÞjj is a strong Z2-deformation retract of
jjBðGÞjj ¼ jjssdðBðGÞÞjj: This follows from the fact that a closure operator induces a
strong deformation retraction from its domain to its image [2, Corollary 10.12 and
the following remark]. Explicitly, this map is obtained by sending each point

pAjjssdðBðGÞÞjj towards jjcn2jjðpÞ with uniform speed, which is Z2-equivariant at any
time of the deformation.

To show that jjHDLðGÞjj is a strong Z2-deformation retract of jjDLðGÞjj; we define
simplicial complexes and simplicial Z2-maps

DLðGÞ ¼: S0 !
f0

S1 !
f1 ?!fN

SNþ1 :¼ HDLðGÞ

such that Siþ1 is a Z2-subcomplex of Si and Siþ1 is a strong Z2-deformation retract of
Si: The composition of the fi yields the earlier defined map j; i.e.,

j ¼ fN3?3f13f0:

To construct Siþ1 inductively from Si; we consider

X :¼ max
!

fYAJjY2|ASig

and obtain Siþ1 from Si by deleting each simplex of Si that contains X2| or its Z2-

partner |2X ; that is,

Siþ1 :¼ fsjsASi and X2|es and |2Xesg:

The maximality of X implies that a maximal simplex which contains X2| (resp.

|2X ) does also contain |2CNðXÞ (resp. CNðXÞ2|). Hence, the map fi defined on
the vertices vAVðSiÞ via

fiðvÞ :¼
|2CNðX Þ if v ¼ X2|;

CNðX Þ2| if v ¼ |2X ;

v otherwise

8><
>:

is simplicial and Z2-equivariant.
Thus F : jjSijj � ½0; 1�-jjSijj given by Fðx; tÞ :¼ tx þ ð1� tÞ � jjfijjðxÞ is a well-

defined Z2-homotopy from jjfijj to IdjjSi jj that fixes jjSiþ1jj: &

We end this section with a construction of a Z2-map HDLðf Þ between HDLðGÞ and
HDLðHÞ if we are given a graph homomorphism f : G-H: Once we have chosen the
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partial orders that define the maps jG and jH that give HDLðGÞ and HDLðHÞ; we
simply compose the following simplicial Z2-maps:

* The inclusion i : HDLðGÞ-ssdðBðGÞÞ;
* the map ssdðBðf ÞÞ : ssdðBðGÞÞ-ssdðBðHÞÞ canonically induced from f ;
* the map cn2 : ssdðBðHÞÞ-DLðHÞ; and
* the map jH : DLðHÞ-HDLðHÞ:

More precisely, the simplicial Z2-map C : HDLðGÞ-HDLðHÞ is defined by

C :¼ jH3cn23ssdðBðf ÞÞ3i:

Since the halved doubled Lovász complex HDLðGÞ is Z2-isomorphic to the original
Lovász complex LðGÞ; this map can be interpreted as a simplicial Z2-map Lðf Þ
between LðGÞ and LðHÞ: This construction is significantly simpler than the
construction of the Z2-map Lðf Þ : LðGÞ-LðHÞ described by Walker [10].

5. The Kl;m-theorem

Theorem 3. If a graph G does not contain a complete bipartite subgraph Kc;m then the

index of its box complex is bounded by indðBðGÞÞpcþ m � 3:

From Example 2 we know that indðBðKcþm�1ÞÞ ¼ cþ m � 3; since BðKcþm�1Þ is
the boundary of a crosspolytope with an opposite pair of facets removed, that is,
homotopy equivalent to a sphere. Therefore, the statement of the theorem is best
possible. On the other hand, we obtain indðBðKk;kÞÞpk � 1 from the theorem, since

K1;kþ1 is not a subgraph of Kk;k: But indðBðKk;kÞÞ ¼ 0; since Kk;k is bipartite. So the

gap in the inequality can be arbitrarily large.
We give two proofs for this theorem. The first one uses the shore subdivision and

the halved doubled Lovász complex, the other is a direct argument on LðGÞ along the
lines of Walker [10].

Proof (using shore subdivision). Let F : ssdðBðGÞÞ-ssdðBðGÞÞ be the simplicial Z2-

map defined by j3cn2: Using that the index is dominated by dimension, it suffices to
show the last inequality of

indðBðGÞÞ ¼ indðssdðBðGÞÞÞpindðImFÞpdim ðImFÞpcþ m � 3:

To estimate the dimension of ImF ¼ HDLðGÞ; we use that the graph G does not
contain a subgraph of type Kc;m and assume without loss of generality that cpm: A

vertex of HDLðGÞ or DLðGÞ of the form A2| or |2A is called small if jAjoc;
medium if cpjAjom; and large if mpjAj: For c ¼ m there are no medium vertices.
Let s ¼ A2B be a simplex of HDLðGÞ and consider the set of vertices

Ms :¼ Vðj�1ðsÞÞ ¼
[

AAA
fA2|; |2CNðAÞg,

[
BAB

fCNðBÞ2|; |2Bg:
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Clearly, jMsj is at most twice jVðsÞj: If s has a large vertex A2|; then the vertex

|2CNðAÞmust be small, otherwise G would contain a Kc;m:Hence there are at most

4ðc� 1Þ many vertices in Ms that are large or small. Since the number of medium
vertices is at most 2ðm � cÞ; we have

jMsjp4ðc� 1Þ þ 2ðm � cÞ ¼ 2ðcþ m � 2Þ:
Hence jVðsÞjpcþ m � 2 for all s; and therefore dimðHDLðGÞÞ is at most
cþ m � 3: &

Proof (using Lovász complex). It suffices to prove dimðLðGÞÞpcþ m � 3 since

indðBðGÞÞ ¼ indðLðGÞÞpdimðLðGÞÞ;
[8] or use that ImF ¼ HDLðGÞCZ2

LðGÞ by Section 4. Without loss of generality let
cpm and consider a simplex A ¼ A1C?CAp of LðGÞ of maximal dimension p � 1:

If poc we are done. Suppose that pXc: Then G½Ac;CNðAcÞ� is a bipartite subgraph
of G and we have jAcjXc as well as jCNðAcÞjXp � cþ 1: The assumption that G

does not contain a Kc;m implies that m4p � cþ 1; i.e., dim ðAÞpcþ m � 3: &
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[7] J. Matoušek, Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics

and Geometry, Universitext, Springer, Heidelberg, 2003.
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