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1. Introduction

The j-invariant is an invariant which coincides for two smooth elliptic curves over an algebraically
closed field if and only if they are isomorphic. In [1], equivalences between abstract tropical curves are
defined, and two elliptic abstract tropical curves are equivalent if and only if they have the same cycle
length. Thus the cycle length seems to plays the same role in the tropical setting as the j-invariant
does in the algebraic setting.

The aim of this paper is to show that for a plane cubic the j-invariant really tropicalizes to the
negative of the cycle length.

More precisely, we define plane cubic curves over the field K of Puiseux series and use the valua-
tion map to tropicalize them. The j-invariant of an elliptic curve over the Puiseux series is a Puiseux
series itself. Our main result, Theorem 11 is that if the tropicalization of a smooth cubic curve in P2

K

has a cycle then the negative of the cycle length is always equal to the generic valuation of the
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j-invariant, and it is equal to the valuation of the j-invariant itself if no terms in the j-invariant
cancel—which generically is the case. A corollary of this theorem is that if an elliptic curve has a
j-invariant with a non-negative valuation, then its tropicalization does not have a cycle.

After the completion of our work, David Speyer [2, Proposition 9.2] proved a similar result for not
necessarily plane genus one tropical curves, which implies our result in the case that the dual subdi-
vision of the Newton polygon is a unimodular triangulation. His proof uses the Tate uniformization of
elliptic curves while our approach is combinatorial.

This paper is organized as follows. In Section 2 we recall the definition of the j-invariant of a
plane cubic as a rational function in the cubic’s coefficients. Its denominator is the discriminant of
the cubic. Moreover, we observe that the generic valuation (see Definition 1) of the j-invariant is
a piece-wise linear function. In Section 3 we recall basic definitions of tropical geometry and show
that the function cycle length is piece-wise linear as well. The main theorem is stated in Section 4. As
we know already that the two functions we compare are piece-wise linear the proof consists of two
main steps: first we compare certain domains of linearity, then we compare the two linear functions
on each domain. As domains of linearity we choose cones of the Gröbner fan of the discriminant.
The comparison of the two linear functions, generic valuation of the j-invariant and cycle length on each
such cone is done in Section 5. In Section 6 we study the numerator of the j-invariant, which is
important to understand the domains of linearity of the generic valuation of the j-invariant.

The tropical curves and their Newton subdivisions were partly produced using the procedure
drawTropicalCurve from the Singular library tropical.lib (see [3]) which can be obtained
via the URL

http://www.mathematik.uni-kl.de/~keilen/en/tropical.html.

This library contains also a procedure tropicalJInvariant which computes the cycle length of
a tropical curve as defined in Definition 6. Parts of our proofs and many examples rely on compu-
tations performed using polymake [4], TOPCOM [5] and Singular [6]. The Singular code that we
used for this is contained in the library jinvariant.lib (see [7]) and it is available via the URL

http://www.mathematik.uni-kl.de/~keilen/en/jinvariant.html.

More detailed explanations on how to use the code can be found there.

2. The j-invariant and its valuation

In this paper we study plane cubics given by an equation of the form

f =
∑

0�i+ j�3

aij x
i y j = 0

over the field of Puiseux series

K =
∞⋃

N=1

Quot
(
C

�
t

1
N

�) =
{ ∞∑

ν=m

cν · t
ν
N

∣∣∣ cν ∈ C, N ∈ Z>0, m ∈ Z

}
.

The Newton polygon of a general cubic is the triangle Q c with vertices (0,0), (0,3) and (3,0), and
we denote its lattice points by Ac := Q c ∩ Z2 (see Fig. 1). In that way we can write the equation as
f = ∑

(i, j)∈Ac
ai j xi y j .

We are only interested in the solutions of f = 0 in the torus (K∗)2, but this already determines
its closure, say C f , in the projective plane. Moreover, we are only interested in the case where C f is
smooth, i.e. is an elliptic curve. In this situation the isomorphism class of C f is determined by a single
invariant, the j-invariant of the elliptic curve C f .

http://www.mathematik.uni-kl.de/~keilen/en/tropical.html
http://www.mathematik.uni-kl.de/~keilen/en/jinvariant.html
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Fig. 1. Q c and Ac .

The j-invariant can be computed from the defining polynomial f as a rational function

j( f ) = A

Δ

in the coefficients aij of f where A,Δ ∈ Q[a] are homogeneous polynomials of degree 12. We here

use the convention a = (aij | (i, j) ∈ Ac) and if ω ∈ NAc is a multi index then aω = ∏
(i, j)∈Ac

a
ωi j

i j . The
denominator Δ is the discriminant of f (see [8]).

The field K of Puiseux series comes with a valuation,

val : K∗ → Q :
∞∑

ν=m

cν · t
ν
N �→ min

{
ν

N

∣∣ cν �= 0

}
,

and we may extend the valuation to K by val(0) = ∞. We sometimes call val(k) the tropicalization
of k.

The j-invariant of C f is a Puiseux series and, unless some unfortunate cancellations occur, its
valuation can be read from the polynomials A and Δ. To do this, we introduce the notion of generic
valuation of the j-invariant.

Definition 1. The generic valuation of a polynomial 0 �= H = ∑
ω Hωaω ∈ Q[a] is the function

valH : RAc −→ R : u �→ valH (u) = min{u · ω | Hω �= 0},
where

u · ω =
∑

(i, j)∈Ac

ui j · ωi j

is the standard scalar product of u and ω. The generic valuation of the j-invariant is

val j : RAc −→ R : u �→ val j(u) = valA(u) − valΔ(u).

Note that the tropical j-invariant is a tropical rational function in the sense of [1, Section 2.2] and
[9, Definition 3.1].

The following remark is obvious from the definitions, since for u in a top-dimensional cone of the
Gröbner fan of H ∈ Q[a] the minimum in the definition of valH (u) is attained by only one fixed term.

Remark 2. The generic valuation of H ∈ Q[a] is piece-wise linear, and it is linear on a top-dimensional
cone of the Gröbner fan of H . Moreover, if u ∈ RAc is in the interior of a top-dimensional cone of the
Gröbner fan of H , then valH (u) = val(H(b)) for any b ∈ (K∗)Ac with val(b) = u.

From this it follows that

val j : RAc −→ R : u �→ val j(u)

is linear on intersections D ∩ D ′ of a top-dimensional cone D of the Gröbner fan of the numerator
polynomial A and a top-dimensional cone D ′ of the Gröbner fan of Δ. For u in the open interior of
D ∩ D ′ , val j(u) = val( j( f )) for any f = ∑

(i, j)∈Ac
ai j xi y j with val(aij) = uij .
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3. Tropicalizations and the cycle length of a plane tropical cubic

In this section we will study the tropicalization of a plane cubic C f , by which we mean

Trop(C f ) = val
(
C f ∩ (K∗)2

) ⊆ R2,

i.e. the closure of val(C f ∩ (K∗)2) with respect to the Euclidean topology in R2. By abuse of notation

val : (K∗)2 −→ Q2 : (k1,k2) �→ (
val(k1),val(k2)

)
denotes here the Cartesian product of the valuation map from Section 2.

This definition is not too helpful when it comes down to computing tropical curves. There it is
better to consider the tropical polynomial associated to f , that is, the piece-wise linear function

trop( f ) : R2 −→ R : (x, y) �→ min
{

val(aij) + i · x + j · y
∣∣ (i, j) ∈ Ac

}
.

Given any plane cubic tropical polynomial

F : R2 −→ R : (x, y) �→ min
{

uij + i · x + j · y
∣∣ (i, j) ∈ Ac

}
with uij ∈ R we call the locus of non-differentiability of this piece-wise linear function a plane cubic
tropical curve, or a plane tropical cubic for short.

Sometimes it will be convenient to allow some of the uij to be ∞, or equivalently the correspond-
ing aij are allowed to be zero. As long as the point (1,1) lies in the interior of the convex hull of the
(i, j)’s for which uij is finite, everything makes perfect sense. This allows us to replace Q c by some
subpolygon that has a single interior lattice point at (1,1).

By Kapranov’s Theorem (see [10, Theorem 2.1.1]), Trop(C f ) coincides with the plane tropical cubic
defined by trop( f ). In particular, Trop(C f ) is a piece-wise linear graph.

An important fact is that this graph is dual to a subdivision of the marked Newton polygon (Q c, Ac).
For the precise definition of the notions in their full generality and the proofs of the main statements
we refer the reader to [8, Chapter 7]. Here we summarize what we need for our special situation.

A marked polygon is a 2-dimensional convex lattice polygon Q in R2 together with a subset A of
the lattice points Q ∩ Z2 containing the vertices of Q . The Newton polygon (Q c, Ac) as shown in
Fig. 1 is a marked polygon.

A marked subdivision of a marked polygon (Q , A) is a collection of marked polygons, T =
{(Q 1, A1), . . . , (Q k, Ak)}, such that

• Q = ⋃k
i=1 Q i ,

• Q i ∩ Q j is a face (possibly empty) of Q i and of Q j for all i, j = 1, . . . ,k,
• Ai ⊂ A for i = 1, . . . ,k, and
• Ai ∩ (Q i ∩ Q j) = A j ∩ (Q i ∩ Q j) for all i, j = 1, . . . ,k.

We do not mandate that
⋃k

i=1 Ai = A. Example 3 shows an example of a marked subdivision of
(Q c, Ac).

A point in u ∈ RAc induces a marked subdivision of (Q c, Ac) by considering the convex hull of

{
(i, j, uij)

∣∣ (i, j) ∈ Ac
} ⊂ R3

in R3, and projecting the lower faces onto the xy-plane. A lattice point (i, j) will be marked if the
point (i, j, uij) was contained in one of the lower faces. Marked subdivisions of (Q c, Ac) obtained in
this way are called regular or coherent. We say two points u and u′ in RAc are equivalent if and only
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if they induce the same regular subdivision of (Q c, Ac). This defines an equivalence relation whose
equivalence classes are the interiors of cones. The collection of these cones is the secondary fan of Ac .

The secondary fan of Ac is an important object because we will see that the cycle length is a func-
tion that is linear on each of its top-dimensional cones. Since we have already seen that the valuation
of the j-invariant is linear on each cone of the common refinement of the Gröbner fans of A and Δ,
our strategy will be to compare the secondary fan with these two Gröbner fans.

Marked subdivisions of (Q c, Ac) are dual to plane tropical cubics. Given a point u ∈ RAc it defines
a plane tropical cubic, say C F , via the plane tropical polynomial

F = min
{

uij + i · x + j · y
∣∣ (i, j) ∈ Ac

}
and it defines a regular subdivision of (Q c, Ac). Each marked polygon of the subdivision is dual to
a vertex of C F , and each edge of a marked polygon is dual to an edge of C F . Moreover, if the edge,
say e, has end points (x1, y1) and (x2, y2) then the direction vector v(E) of the dual edge E in C F is
defined (up to sign) as

v(E) = (y2 − y1, x1 − x2)

and points in the direction of E . In particular, the edge E is orthogonal to its dual edge e. Finally, the
edge E is unbounded if and only if its dual edge e is contained in an edge of Q c .

Example 3. The marked subdivision below is induced by the plane tropical polynomial F =
min{3x,3y,0, x,−1 + x + y}.

Definition 4. We say that a plane tropical cubic C has a cycle if the interior point (1,1) is visible as
a vertex of a marked polygon in its dual marked subdivision. If this is the case, the cycle of C is the
union of those bounded edges of C which are dual to the edges of marked polygons in the marked
subdivision which emanate from (1,1), and we say that these edges form the cycle.

Example 5. In the picture below, the left plane tropical cubic has a cycle while the right one does
not, since (1,1) is visible but it is not a vertex of one of the marked polygons in the subdivision.
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Fig. 2. Marked subdivision determining a cycle.

Definition 6. For a bounded edge E of a plane tropical curve with direction vector v(E), we define
the lattice length l(E) = ‖E‖

‖v(E)‖ to be the Euclidean length of E divided by the Euclidean length of v(E).
For a plane tropical cubic with cycle, we define its cycle length to be the sum of the lattice lengths

of the edges which form the cycle. If the plane tropical cubic has no cycle we say its length is zero.
This defines a cycle length function,

cl : RAc → R : u = (uω | ω ∈ Ac) �→ cl(u) = “cycle length of C F ”

associating to every plane cubic tropical polynomial F = min{uij + i · x + j · y | (i, j) ∈ Ac} the cycle
length of the corresponding plane tropical cubic C F .

Example 7. The following picture shows a plane tropical cubic with cycle length 9
2 , since each of the

edges of the cycle has lattice length 3
2 .

One can define plane tropical curves other than cubics by considering other finite subsets A ⊂ N2 as
support. Let Q be the convex hull of A. The duality above works with (Q c, Ac) replaced by (Q , A).
In this manner we can also generalize Definition 4 to plane tropical curves other than cubics.

Definition 8. Let C be a plane tropical curve with Newton polygon Q and with dual marked subdi-
vision {(Q i, Ai) | i = 1, . . . , l}. Suppose that ω̃ ∈ Int(Q ) ∩ Z2 and that the (Q i, Ai) are ordered such
that ω̃ is a vertex of Q i for i = 1, . . . ,k and it is not contained in Q i for i = k + 1, . . . , l (see Fig. 2).
We then say that ω̃ determines a cycle of C , namely the union of the edges of C dual to the edges
emanating from ω̃, and we say that these edges form the cycle determined by ω̃. The length of this
cycle is defined as in Definition 6.

Lemma 9. Let (Q , A) be a marked polygon in R2 with a regular marked subdivision {(Q i, Ai) | i = 1, . . . , l}
and suppose that ω̃ ∈ Int(Q ) ∩ Z2 is a vertex of Q i for i = 1, . . . ,k and it is not contained in Q i for
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i = k + 1, . . . , l. If u ∈ RA is in the cone of the secondary fan corresponding to this subdivision, then ω̃ deter-
mines a cycle in the plane tropical curve C given by the tropical polynomial

min
{

uij + i · x + j · y
∣∣ (i, j) ∈ A

}
and, using the notation in Fig. 2, its length is

k∑
j=1

(uω̃ − uω j ) · D j−1, j + D j, j+1 + D j+1, j−1

D j−1, j · D j, j+1

where Di, j = det(wi, w j) with wi = ωi − ω̃ and w j = ω j − ω̃.

Proof. By definition ω̃ determines a cycle. It remains to prove the statement on its length.
For this we consider the convex polygon Q j having ω j+1, ω̃ and ω j as neighboring vertices:

The vertex v j = (v j,1, v j,2) of C dual to Q j is given by the system of linear equations

ω j · v j + u j = ω j+1 · v j + u j+1 = ω̃ · v j + u,

where u j = uω j , u j+1 = uω j+1 and u = uω̃ . This system can be rewritten as

(
wt

j

wt
j+1

)
· v j =

(
u − u j

u − u j+1

)
.

Since ω j+1, ω̃ and ω j are neighboring vertices of the polygon Q j the vectors w j and w j+1 are
linearly independent and we may apply Cramer’s Rule to find

v j,1 =
det

(
u − u j w j,2

u − u j+1 w j+1,2

)
D j, j+1

and v j,2 =
det

(
w j,1 u − u j

w j+1,1 u − u j+1

)
D j, j+1

. (1)

The lattice length of the edge from v j−1 to v j is the real number λ j ∈ R such that (v j − v j−1) =
λ j · w⊥

j , where w⊥
j = (−w j,2, w j,1) is perpendicular to w j . Thus

λ j = (v j − v j−1) · w⊥
j

w⊥
j · w⊥

j

= (v j − v j−1) · w⊥
j

w j · w j
. (2)

In order to understand the right-hand side of this equation better we need the following observation.
The last row of the matrix

M =
( w j−1,1 w j,1 w j+1,1

w j−1,2 w j,2 w j+1,2

)

w j−1 · w j w j · w j w j+1 · w j
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is a linear combination of the first two, and thus the determinant of M is zero. Expanding the deter-
minant along the last row we get

0 = det(M) = w j−1 · w j · D j, j+1 − w j · w j · D j−1, j+1 + w j+1 · w j · D j−1, j,

or equivalently

D j+1, j−1

D j−1, j · D j, j+1
= − D j−1, j+1

D j−1, j · D j, j+1
= − w j−1 · w j

w j · w j · D j−1, j
− w j+1 · w j

w j · w j · D j, j+1
.

Expanding the right-hand side of (2) using (1) and plugging in this last equality we get

λ j = u − u j−1

D j−1, j
+ u − u j+1

D j, j+1
− (u − u j) ·

(
w j · w j+1

w j · w j · D j, j+1
+ w j−1 · w j

w j · w j · D j−1, j

)

= u − u j−1

D j−1, j
+ u − u j+1

D j, j+1
+ (u − u j) · D j+1, j−1

D j−1, j · D j, j+1
.

The lattice length of the cycle of C is then given by adding the λ j , i.e. it is

λ1 + · · · + λk =
k∑

j=1

u − u j−1

D j−1, j
+ u − u j+1

D j, j+1
+ (u − u j) · D j+1, j−1

D j−1, j · D j, j+1

=
k∑

j=1

(u − u j) ·
(

D j−1, j + D j, j+1 + D j+1, j−1

D j−1, j · D j, j+1

)
. �

Remark 10. An immediate consequence of Lemma 9 is that the function cycle length, cl, from Defini-
tion 6 is linear on each cone of the secondary fan of Ac .

4. The main theorem

Theorem 11. Let C F be a plane tropical cubic given by the tropical polynomial

F = min
(i, j)∈Ac

{uij + ix + jy}

and assume that C F has a cycle. Then the negative of the generic valuation of the j-invariant at u = (uij |
(i, j) ∈ Ac) is equal to the cycle length of C , i.e.

−val j(u) = cl(u).

Furthermore, if the marked subdivision dual to C corresponds to a top-dimensional cone of the secondary fan
of Ac (that is, if it is a triangulation), then

val j(u) = val
(

j( f )
)

for any f = ∑
(i, j)∈Ac

ai j xi y j with coefficients ai j ∈ K satisfying val(aij) = uij .

There are two main parts of the proof: the first part is to compare certain domains of linearity
in RAc of the two piece-wise linear functions cycle length, cl, and generic valuation of j, val j , and the
second part is to compare the two linear functions on each domain.

The proof relies on the results of and the notions introduced in the following two sections.
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Fig. 3. Classification of the rays of the secondary fan of Ac .

Proof. Note that our claim only involves curves C which have a cycle or, equivalently, where the
point (1,1) is a vertex in the dual subdivision of the marked polygon. Therefore we may replace RAc

as domain of definition of cl and val j by the union U of those cones of the secondary fan of Ac
where the corresponding marked subdivision contains (1,1) as a vertex of a marked polygon. The
coordinates on U are given by u = (uij | (i, j) ∈ Ac) and the canonical basis vector ekl = (δik · δ jl |
(i, j) ∈ Ac) has a one in position kl and zeros elsewhere.

Lemma 23 below shows that U is contained in a single cone of the Gröbner fan of the numerator A
of the j-invariant. That vertex is the one dual to the vertex 12 ·e11 of the Newton polytope of A. Hence
the generic valuation of A is linear on U . In fact, it is

valA : U → R : u �→ 12 · u11.

Thus, if we want to divide U into cones on which val j is linear, it suffices to consider valΔ , and we
know already that the latter is linear on cones of the Gröbner fan of Δ by Remark 2. Thus so is val j
restricted to U , and by Lemma 16 and Remark 15 the function cl is so as well. Moreover, by definition
U is a union of cones of the Gröbner fan of Δ, and each such cone is a union of certain Δ-equivalent
cones (see Remark 15) of the secondary fan of Ac .

Hence to prove that the two functions val j and cl coincide it is enough to compare the linear func-
tions on each cone of the Gröbner fan of Δ contained in U . To do this, we use Theorem 11.3.2 of [8]
which enables us to compute the linear function valΔ on each such cone, D , given a (top-dimensional)
marked subdivision T whose corresponding cone in the secondary fan of Ac is contained in D . In fact,
it provides us with a formula to compute the coefficient of uij for each (i, j) ∈ Ac . Since we already
know that the two functions valΔ and cl are linear on D , we can for our comparison assume that
T is the representative of its class with as few edges as possible. The coefficient of uij in the linear
function cl for the marked subdivision is given by Lemma 9. To compare the two coefficients, there
are some cases to distinguish, which is done by Lemma 19. This proves the first part of the theorem.

Finally, for any point u in the interior of a cone of the Gröbner fan of Δ, val j(u) = val( j( f )) for
any polynomial f = ∑

(i, j)∈Ac
ai j xi y j with val(aij) = uij by Remark 2. As a point u in the interior of

a top-dimensional cone of the secondary fan of Ac is in the interior of a cone of the Gröbner fan
of Δ, the last statement follows as well. �
Remark 12. For our proof we use the cones of the Gröbner fan of Δ as common domains of linearity
of cl and val j . Instead we could have used top-dimensional cones of the secondary fan of Ac . Classi-
fying up to Sym3-symmetry the rays of Ac (see Fig. 3) and comparing a generalized cycle length on
these rays one gets an alternative proof of Theorem 11.

Corollary 13. Let f = ∑
(i, j)∈Ac

ai j xi y j define a smooth elliptic curve over K such that the valuation of its
j-invariant is non-negative. Then its tropicalization does not have a cycle.

Remark 14. It is obvious that the tropicalization of an elliptic curve over K depends on the embedding
into the projective plane that one chooses. An elliptic curve in reduced Weierstrass form

y2 − x3 + ax + b = 0
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Fig. 4. The tropicalization of C f and its dual Newton subdivision.

has no xy-term, and thus there is no cycle which could reflect the j-invariant. One might think that
the Weierstrass-form is just a bad choice of normal form, and that generically things work out better.
More precisely, one might expect the following: given a family of embeddings of an elliptic curve, the
tropicalization of the general member will exhibit a cycle with the right cycle length. This, however,
is yet again false as one can verify by the example (see Fig. 4)

f = xy + t · (1 + y + xy2 + x3) + t3 · y2 + t7 · y3 + t100 · (x + x2 + x2 y
)

and the 1-dimensional family of coordinate changes given by (x, y) �→ (x +k, y) with k ∈ K. There are
infinitely many tropicalizations having a cycle and infinitely many having none.

5. Δ-equivalent marked subdivisions

In this section we want to show that the function cycle length, cl, is linear on the union of cones
of the secondary fan of Ac which are Δ-equivalent. Also, we provide the classification of the different
cases we need to consider in order to compare the two linear functions val j and cl on such a union.
This is part of our proof of Theorem 11.

Remark 15. The Prime Factorization Theorem, [8, Chapter 10, Theorem 1.2] tells us that the codimen-
sion one cones of the Gröbner fan of Δ do not meet the interior of any top-dimensional cone of the
secondary fan of Ac . Thus the Gröbner fan of Δ is a coarsening of the secondary fan of Ac . Two
cones of the secondary fan of Ac are called Δ-equivalent if they are contained in the same cone of
the Gröbner fan of Δ.

It has been studied how two top-dimensional marked subdivisions whose cones belong to the
same Δ-equivalence class can differ. By [8, Chapter 11, Proposition 3.8] they can be obtained from
each other by a sequence of modifications along a circuit (see [8, Chapter 7, Section 2C]) such that
each intermediate (top-dimensional) marked subdivision belongs to the same equivalence class. In-
stead of defining in its full generality what a modification along a circuit is, we use [8, Chapter 11,
Proposition 3.9] to explain what this means in the case of the marked polygon (Q c, Ac): a subdi-
vision T can be obtained from a subdivision T ′ via a modification along a circuit if there are three
points a,b, c in order on one edge of Q c such that T and T ′ differ by the fact that one contains
the triangle {a, (1,1), c}, while the other one contains the two triangles, {a, (1,1),b} and {b, (1,1), c}
instead. An example is shown in the following picture, the three points are a = (0,0), b = (1,0) and
c = (3,0).

Lemma 16. The function cl (see Definition 6) is linear on a cone of the Gröbner fan of Δ.
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Proof. Given two Δ-equivalent marked subdivisions T and T ′ of the secondary fan of Ac , we can
use Lemma 9 to determine the function cl on the cone corresponding to each of them. Recall from
Remark 10 that the function is linear on each cone of the secondary fan of Ac . We want to show that
the these two linear functions coincide.

Without restriction we can assume that T can be obtained from T ′ by a modification along a cir-
cuit, and this circuit consists of three collinear points on an edge of Q c (see Remark 15).

Recall from Lemma 9 that the coefficients of the linear function cl can be determined using the
determinants Di, j = det(wi, w j), where wi = ωi − ω̃. One easily sees that for T and T ′ the following
two equations hold:

Di−1,i + Di,i+1 = Di−1,i+1, and (3)

Di,i+1 = λ · Di−1,i for λ satisfying λ · (wi−1 − wi) = wi − wi+1. (4)

To show that the expressions for cl on the cones for T and T ′ coincide, we have to show that for T
the summand for ωi equals 0 and the summand for ωi−1 equals the summand for ωi−1 for T ′ . The
first statement follows immediately from Eq. (3) above. To show the second statement, we subtract
the two summands from each other:

Di−2,i−1 + Di−1,i + Di,i−2

Di−2,i−1 · Di−1,i
− Di−2,i−1 + Di−1,i+1 + Di+1,i−2

Di−2,i−1 · Di−1,i+1
.

Multiplied with (Di−1,i · Di−1,i+1) this difference is equal to:

Di−2,i−1 · Di−1,i+1 + Di−1,i · Di−1,i+1 + Di,i−2 · Di−1,i+1

− Di−2,i−1 · Di−1,i − Di−1,i+1 · Di−1,i − Di+1,i−2 · Di−1,i

= Di−2,i−1 · Di,i+1 + Di,i−2 · Di,i+1 + Di,i−2 · Di−1,i − Di+1,i−2 · Di−1,i

= −det(wi−1 − wi, wi−2) · Di,i+1 + det(wi − wi+1, wi−2) · Di−1,i = 0

where the first equality follows from Eq. (3) above and the last from (4). �
Definition 17. Let us fix a cone CT of the secondary fan of Ac corresponding to the marked subdi-
vision T . We then denote by ηT (i, j) the coefficient of uij in the linear function valΔ on CT , and by
cT (i, j) we denote the coefficient of uij in the linear function cl restricted to CT .

Remark 18. Note that by Remark 2 and Remark 15 ηT (i, j) = ηT ′(i, j) for all (i, j) ∈ Ac whenever T
and T ′ belong to Δ-equivalent cones of the secondary fan of Ac , and by Lemma 16 also cT (i, j) =
cT ′(i, j) for all (i, j) ∈ Ac in this situation.
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Lemma 19. Let T be a marked subdivision of (Q c, Ac) corresponding to a top-dimensional cone in the sec-
ondary fan of Ac (i.e. a triangulation) such that (1,1) is a vertex of some marked polygon in T (i.e. all dual
plane tropical curves have a cycle). Then cT (1,1) = ηT (1,1)−12 and cT (i, j) = ηT (i, j) for all (i, j) �= (1,1).

Proof. Due to Remark 18 we may assume for the proof that T = {(Q θ , Aθ ) | θ ∈ Θ} is the representa-
tive of its Δ-equivalence class with as few edges as possible.

Moreover, if two triangulations T and T ′ can be transformed into each other by an integral uni-
modular linear isomorphism, i.e. by a linear coordinate change of the projective coordinates (x, y, z)
with a matrix in Gl3(Z), and the claim holds for T then it obviously also holds for T ′ . Therefore, we
only have to prove the claim up to Gl3(Z)-symmetry.

We want to use [8, Chapter 11, Theorem 3.2] which explains how ηT (i, j) can be computed. For
each (i, j) ∈ Ac we have to consider all (Q θ , Aθ ) such that (i, j) ∈ Aθ . Note that since T by assump-
tion is a triangulation then (i, j) ∈ Aθ implies necessarily that (i, j) is a vertex of Q θ . We have to
distinguish four cases, where in the formulas vol(Q θ ) denotes he generalized lattice area (i.e. twice
the Euclidean area of Q θ ):

• If (i, j) is a vertex of Q c , then ηT (i, j) = 1− l1 − l2 +∑
(i, j)∈Aθ

vol(Q θ ) where l1 and l2 denote the
lattice lengths of those edges of some Q θ adjacent to (i, j) which are contained in edges of Q c .
E.g. if (i, j) = (0,3) in the following triangulation T , then ηT (0,3) = 1 − l1 − l2 + vol(Q θ1 ) +
vol(Q θ2 ) = 1 − 3 − 2 + 3 + 2 = 1.

• If (i, j) lies on an edge of Q c , is not a vertex of Q c , but is a vertex of some Q θ ′ , then ηT (i, j) =
−l1 − l2 + ∑

(i, j)∈Aθ
vol(Q θ ) where again l1 and l2 denote the lattice lengths of those edges of

some Q θ adjacent to (i, j) which are contained in edges of Q c , e.g. if in the previous example
(i, j) = (2,1) then ηT (i, j) = −l2 − l3 + vol(Q θ2 ) + vol(Q θ3 ) + vol(Q θ4 ) = −2 − 1 + 2 + 1 + 1 = 1.

• If (i, j) lies on an edge of Q c , is not a vertex of any Q θ , then ηT (i, j) = 0.
• And finally ηT (1,1) = ∑

(1,1)∈Aθ
vol(Q θ ).

Let Q be the union of all those Q θ which contain (1,1), and endow the marked polygon
(Q , Q ∩ Ac) with the subdivision, T Q , induced by T . We say that Q meets an edge of Q c if the
intersection of Q with this edge is 1-dimensional (and not only a vertex). Moreover, we say that an
edge of Q is multiple if it contains more than two lattice points.

We first want to show that ηT (i, j) and cT (i, j) are as claimed whenever (i, j) ∈ Q . Up to symme-
try, we have to distinguish the following cases for Q and T Q :

• Assume Q meets all three edges of Q c and that for all three edges the intersection with Q is
multiple. Then Q looks (up to symmetry) like one of the following two pictures:
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In the second case, ηT (1,1) = 8. Using Lemma 9 we can compute cT (1,1). It is a sum with a
summand for each vertex of Q . The summand for (0,0) is

det

(
1 −1

−1 −1

)
+ det

(−1 −1
−1 2

)
+ det

(−1 1
2 −1

)

det

(
1 −1

−1 −1

)
· det

(−1 −1
−1 2

) = −1.

Computing the other 3 summands analogously we get cT (1,1) = −4 = ηT (1,1) − 12. In the first
case, ηT (1,1) = 9 and cT (1,1) = −3.

• Assume Q meets two edges of Q c multiply and one edge non-multiply.

In both cases, ηT (1,1) = 7 and cT (1,1) = −5.
• Assume Q meets two edges of Q c multiply and the third edge not at all.

In both cases, ηT (1,1) = 6 and cT (1,1) = −6.

• Assume Q meets only one edge of Q c multiply (and the two remaining edges non-multiply, or
only one of them and that one non-multiply, or none of them at all).

In the first case, ηT (1,1) = 6 and cT (1,1) = −6, in the second and third case, ηT (1,1) = 5 and
cT (1,1) = −7, and in the last case, ηT (1,1) = 4 and cT (1,1) = −8.

• Assume Q meets three edges of Q c , but none of them multiply.

In the first case, ηT (1,1) = 5 and cT (1,1) = −7, and in the second case, ηT (1,1) = 6 and
cT (1,1) = −6.

• Assume Q meets only two edges of Q c , and none of them multiply.
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In the first case, ηT (1,1) = 5 and cT (1,1) = −7, and in the second case, ηT (1,1) = 4 and
cT (1,1) = −8.

• Assume Q meets only one edge of Q c and it does so non-multiply.

In the first and second case, ηT (1,1) = 4 and cT (1,1) = −8, and in the third case, ηT (1,1) = 3
and cT (1,1) = −9.

• Assume Q meets no edge of Q c at all.

Finally, in this case, ηT (1,1) = 3 and cT (1,1) = −9.

Thus the claim for (1,1) is shown. Now assume (1,1) �= (i, j) ∈ Q is not a vertex of Q c . If (i, j) is also
not a vertex of any Q θ then there is no edge in the subdivision from (1,1) to (i, j) and thus (i, j)
does not contribute to the formula for the cycle length, i.e. cT (i, j) = 0. However, the same holds for
ηT (i, j). We may thus assume that (i, j) is a vertex of some Q θ , and we may without restriction
assume (i, j) = (0,1). The classification of cases we have to consider is very similar to the above, and
we will not give the details, leaving the computation of cT (i, j) and ηT (i, j) to the reader. We do not
have to consider the whole of Q , but only the triangles which are adjacent to (i, j).

If (1,1) �= (i, j) ∈ Q is a vertex of Q c (without restriction (i, j) = (0,0)), the following cases have to
be considered:

Finally, we have to consider the case were (i, j) is not part of Q . Obviously, cT (i, j) = 0 in this
case and we have to show the same for ηT (i, j). Assume first that (i, j) is a vertex of Q c , without
restriction we can assume (i, j) = (0,0). There must be an edge of Q such that (0,0) is on one side
of it and (1,1) is on the other. Then (up to symmetry) there are 3 possibilities for that edge.

Since we assumed that T is the representative with as few edges as possible, the triangle formed by
that edge of Q and (0,0) can not be additionally subdivided in the second and third picture. In any
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case, (0,0) is a vertex of only one triangle, which has one edge of integer length 1 and one edge
of integer length l where 1 � l � 3. Thus ηT (0,0) = 1 − 1 − l + l = 0. Now assume that (i, j) is not
a vertex of Q c , without restriction (i, j) = (1,0). Again there must be an edge of Q such that (1,0) is
on one side and (1,1) is on the other. Up to symmetry this can only be one of the line segments in
the two right pictures above. We assumed that T is the representative of its Δ-equivalence class with
as few edges as possible. But that means there is no edge through (1,0) and (1,0) is not a vertex of
a triangle in the subdivision. Thus ηT (1,0) = 0. �

As pointed out by a referee the distinction of cases that we did in the proof for showing
cT (1,1) = 12 − ηT (1,1) proves in particular the following corollary, where by definition a tropical
curve is smooth if and only if the dual Newton subdivision is a unimodular triangulation.

Corollary 20. Up to symmetry there are precisely 18 unimodular triangulations of Q c , all of which are regular.
In particular, there are up to symmetry precisely 18 combinatorial types of smooth elliptic tropical curves with
support set Ac .

Remark 21. In the proof above the computation that shows that ηT (i, j) = cT (i, j) is different in each
of the considered cases. In particular, in the computation of ηT (i, j) the part of Q c which is not part
of the cycle is involved while this is not the case for cT (i, j). Therefore it is unfortunately not possible
to replace the consideration of several cases by an argument which holds for all of them at the same
time.

However, using polymake and Singular one can compute the vertices of the Newton polytope
of Δ and for each vertex one can compute the dual cone in the Gröbner fan of Δ and the triangulation
of (Q c, Ac) with as few edges as possible corresponding to this cone. That way one can verify the
above computations for cT and ηT , since the values for ηT can be read off immediately from the
exponents of the vertex of the Newton polytope, while the cT can be computed with the formula in
Lemma 9. These computations have been made using the procedure displayFan and the result can
be obtained via the URL

http://www.mathematik.uni-kl.de/~keilen/en/jinvariant.html.

The advantage is that the file discriminant_fan_of_cubic.ps available via this URL shows the
cases not only up to symmetry, but it shows all possible cases.

6. Numerator of the j-invariant

Unfortunately, it is not true that the Gröbner fan of the numerator A of the j-invariant is a coars-
ening of the secondary fan, as follows from Example 22.

Example 22. We provide an example which shows that the Gröbner fan of A is not a coarsening of
the secondary fan for curves of a particular form. The case of the full cubic is more complicated but
analogous. It can easily be proved by a computation using polymake—this can be done using the
procedure nonrefinementC in the library jinvariant.lib (see [7]).

Let us consider curves of the form

y2 + axy − x3 − bx2 − 1 = 0.

This corresponds to considering the set A = {(0,2), (1,1), (3,0), (2,0), (0,0)} of lattice points and
the corresponding marked polygon. The secondary fan is then 5-dimensional with a 3-dimensional
linearity space L. The fixing of the constant coefficient and the coefficients of y2 and x3 provides an
isomorphism R2 ∼= RA/L.

By the usual formulas for the j-invariant, we have

A = (
a2 + 4b

)6
and Δ = −(

a2 + 4b
)3 − 432,

http://www.mathematik.uni-kl.de/~keilen/en/jinvariant.html
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so that

j = − (a2 + 4b)6

(a2 + 4b)3 + 432
.

The following picture shows the tropicalization of the numerator A, the tropicalization of the de-
nominator Δ, and the secondary fan in RA/L.

Observe that the tropicalization of the denominator is supported on the codimension one skeleton
of the secondary fan while that of the numerator intersects a top-dimensional cone of the secondary
fan.

However, we are only interested in plane tropical cubics which have a cycle, that is, those that are
dual to marked subdivisions for which the interior point can be seen. All these cones of the secondary
fan are completely contained in one cone of the Gröbner fan of A. We verified this computationally
using polymake (see [4]). As usual we use the coordinates uij with (i, j) ∈ Ac on RAc and we
denote by ekl = (δik · δ jl | (i, j) ∈ Ac) the canonical basis vector in RAc having a one in position kl and
zeros elsewhere.

Lemma 23. Let U be the union of all cones of the secondary fan of Ac corresponding to marked subdivisions
T = {(Q i, Ai) | i = 1, . . . ,k} of (Q c, Ac) for which (1,1) is a vertex of some Q i . Then U is contained in
a single cone of the Gröbner fan of the A, namely in the cone dual to the vertex 12 · e11 of the Newton polytope
of A.

Proof. As input for polymake we use all exponents of the polynomial A ∈ Q[a]. The convex hull
of the set of all exponents is the Newton polytope, say N(A), of A and its vertices are the out-
put of polymake. The Newton polytope has 19 vertices. Dual to each vertex is a top-dimensional
cone of the Gröbner fan F (A) of A, because the Gröbner fan is dual to the Newton polytope (see
[11, Theorem 2.5 and Proposition 2.8]). The inequalities describing the cone C dual to the vertex V
are given by the hyperplanes orthogonal to the edge vectors connecting V with its neighboring ver-
tices in N(A). We compute the neighboring vertices for each vertex using polymake and deduce
thus inequalities for each of the top-dimensional cones of the Gröbner fan of A.

In order for a marked subdivision Tu = {(Q i, Ai) | i = 1, . . . ,k} of (Q c, Ac) given by u ∈ RAc to
have the point (1,1) as vertex of some Q i it is obviously necessary that the uij satisfy the following
inequalities:

3 · u01 + 2 · u30 + u03 > 6 · u11, 3 · u10 + 2 · u03 + u30 > 6 · u11,

3 · u12 + u30 + 2 · u00 > 6 · u11, 3 · u21 + u03 + 2 · u00 > 6 · u11,

2 · u30 + 3 · u02 + u00 > 6 · u11, 2 · u03 + 3 · u20 + u00 > 6 · u11,

u12 + u30 + u00 + u02 > 4 · u11, u21 + u03 + u00 + u20 > 4 · u11,
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u01 + u10 + u03 + u30 > 4 · u11, 2 · u01 + u12 + u30 > 4 · u11,

2 · u10 + u21 + u03 > 4 · u11, 2 · u12 + u20 + u00 > 4 · u11,

2 · u21 + u02 + u00 > 4 · u11, 2 · u02 + u10 + u30 > 4 · u11,

2 · u20 + u01 + u03 > 4 · u11, u20 + u01 + u12 > 3 · u11,

u02 + u10 + u21 > 3 · u11, u30 + u02 + u01 > 3 · u11,

u03 + u10 + u20 > 3 · u11, u00 + u12 + u21 > 3 · u11,

u00 + u30 + u03 > 3 · u11, u21 + u01 > 2 · u11,

u10 + u12 > 2 · u11, u20 + u02 > 2 · u11. (5)

These inequalities determine a cone in RAc which contains U . A simple computation with polymake
allows to compute the extreme rays of this cone and to check that they satisfy the inequalities of the
single cone of the Gröbner fan of A which is dual to the vertex 12 · e11 in N(A). This proves the
claim. �
Remark 24. The inequalities in (5) precisely determine the cone U as can again be easily tested using
polymake. The computations were done with the procedure testInteriorInequalities in
the library jinvariant.lib (see [7]).
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