
ELSEVIER Discrete Mathematics 167/168 (1997) 237-248 

i |  

DISCRETE 
MATHEMATICS 

Gallai-type theorems and domination parameters 

Gayla S. Domke a, Jean E. Dunbar b, Lisa R. Markus c,* 
aDepartment of Mathematics and Computer Science, Georgia State University, Atlanta, 

GA 30303, USA 
bDepartment of Mathematics, Computer Science and Physics, Converse College, Spartanburg, 

SC 29302, USA 
CDepartment of Mathematics, Furman University, Greenville, SC 29613, USA 

Received 7 July 1995; revised 5 February 1996 

Abstract  

Let 7(G) denote the minimum cardinality of a dominating set of a graph G = (V,E). A 
longstanding upper bound for 7(G) is attributed to Berge: For any graph G with n vertices and 
maximum degree A(G), 7(G) <~ n - A(G). We eharacterise connected bipartite graphs which 
achieve this upper bound. For an arbitrary graph G we furnish two conditions which are necessary 
if 7(G) + A(G) = n and are sufficient to achieve n - 1 ~< 7(G) + A(G) <~ n. 

We further investigate graphs which satisfy similar equations for the independent domination 
number, i(G), and the irredundance number ir(G). After showing that i(G) <~ n - A(G) for all 
graphs, we characterise bipartite graphs which achieve equality. 

Lastly, we show for the upper irredundance number, IR(G): For a graph G with n vertices 
and minimum degree 6(G), IR(G) <<, n - 6(G). Characterisations are given for classes of graphs 
which achieve this upper bound for the upper irredundance, upper domination and independence 
numbers of a graph. 

1. I n t r o d u c t i o n  

Let G = (V ,E)  be a graph. For any vertex x E V we define the neighbourhood o f  x, 

denoted N(x) ,  as the set of all vertices adjacent to x. The closed neighbourhood o f  x, 

denoted N[x], is the set N ( x )  U {x}. For a set of vertices S, we define N ( S )  as the 

union of N(x )  for all x E S, and N[S] = N ( S ) U  S. If  x E S, a private neighbour o f  x 

with respect to S is a vertex v EN[S]  - N[S  - {x}]. The degree of a vertex is the 

size of its neighbourhood. The maximum degree of a graph G is denoted A(G) and 

the minimum degree is denoted by 6(G). In this paper, n will denote the number of 

vertices in a graph. 
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A set S _C Y is said to be independent if every pair of vertices in S is nonadjacent. 
Let i(G) denote the size of a smallest maximal independent set and let fl(G) denote the 
size of  a largest independent set. Equivalently, i(G) is the size of a smallest independent 
dominating set. The number i(G) is called the independent dominating number and 
fl(G) is called the independence number. 

A set S C_ V is a dominating set if  N[S] = V. In other words, every vertex in V is 
either in S or adjacent to a vertex of S. Let y(G) and F(G) denote the sizes of smallest 
and largest minimal dominating sets of a graph G, respectively. The number ),(G) is 
called the domination number and F(G) is called the upper domination number. Note 
that any maximal independent set is a dominating set. For a dominating set S to be 
minimal, each vertex x c S must have a private neighbour, otherwise the smaller set 
S - {x} is dominating. 

A set S is irredundant if  for all v E S, v has a private neighbour with respect to S. 
That is, for all v E S, N[v] - N [ S  - {v}] ~ 0. Any minimal dominating set is therefore 
irredundant. Moreover, an irredundant set which is dominating is a minimal dominating 
set. Let ir(G) and IR(G) denote the sizes of smallest and largest maximal irredundant 
sets of a graph G, respectively. The number ir(G) is called the irredundance number 
and IR(G) is called the upper irredundance number. Cockayne et al. [3] proved the 
following inequality: 

Theorem 1 (Cockayne [3]). For any graph G, 

ir(G) ~< y(G) ~< i(G) <~ fl(G) <~ F(G) <<. IR(G). 

The parameters ir(G), 7(G) and i(G) are collectively known as the lower domination 
parameters. The parameters fl(G), F(G) and IR(G) are known as the upper domination 
parameters. 

A classical theorem in graph theory is due to Gallai [4]. Here, ~0(G) is the vertex 
covering number, the smallest size of a set of vertices needed so that every edge has 
at least one end vertex in the set. 

Theorem 2 (Gallai [4]). For any graph G, 

fl(G) + ct0(G) = n. 

A spanning forest of a graph G is a spanning subgraph which contains no cycles. 
Let e(G) denote the maximum number of pendant edges in a spanning forest of G. In 
[6], Nieminen proved the following: 

Theorem 3 (Nieminen [6]). For any nontrivial connected graph G, 

y(G) + e(G) = n. 

A Gallai-type Theorem has the form x(G)+ y ( G ) :  n where x(G), y(G) are param- 
eters defined on the graph G. In [2], Cockayne et al. survey Gallai-type theorems. In 
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this spirit, we will investigate the lower domination parameters and combine them with 
the maximum degree, then look at the upper domination parameters combined with the 

minimum degree. 

2. Graphs which satisfy i( G) + A( G) = n 

The first parameter we will consider is i(G), the independent domination number. 

Theorem 4. For any graph G, i(G) + A(G) <% n. 

Proof. Let x be a vertex of degree A(G). Let the set S be the vertex x together with 
any independent dominating set of V -  N[x]. Then S will independently dominate the 

graph and i(G) + A(G) <~ IS[ + A(G) <,% n. [] 

From this theorem and the inequality in Theorem 1, we get the following corollary: 

Corollary 1. For any graph G, ?(G) + A(G) % n and ir(G) + A(G) <~ n. 

For any inequality, it is interesting to discover conditions which guarantee 
equality. In this section, we are interested in finding those graphs which have 
i( G) + A( G) = n. Examples of  graphs for which i( G) + A( G) = n include Kn and any 
graph with A ( G ) =  n -  1 or A ( G ) =  n -  2. 

Theorem 5. Let G be a graph with i(G) + A(G) = n and let x be a vertex o f  degree 

A(G). Then V -  N[x] is an independent set. 

Proof. Suppose there is an edge in V -  N[x]. Any independent dominating set of 

V - N [ x ]  will have size at most I V -  N [ x ] [ -  1. Thus 

i(G) <~ IV - N [ x ] l -  1 + I{x}[ = n  - A ( G ) -  l 

a contradiction. [] 

A subdivision of an edge uv is obtained by introducing a new vertex w and replacing 
the edge uv with edges uw and vw. The converse of Theorem 5 does not hold. For 
example, the graph constructed by taking a vertex with 3 independent neighbours and 
subdividing each edge once has A ( G ) =  3, i = 3 and n = 7. 

We will now turn our attention to bipartite graphs which satisfy i ( G ) +  A ( G ) =  n. 

A graph is bipartite if it has a bipartition, A U B, of the vertices such that every edge 
joins a vertex of A to a vertex of B. Thus a graph is bipartite if and only if it contains 
no odd cycles. A bipartite graph with all possible edges between A and B is called 

complete bipartite, and is denoted KI~I, IB I. 
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L e m m a  1. I f  G is a connected bipartite graph with i(G)+ A(G)=n,  and x is a vertex 
of  maximum degree, then IV - N[x]l ~< A ( G ) -  1. 

Proof .  Let G be a connected bipartite graph with i ( G ) +  A(G)~-n .  By Theorem 5, 
V -  N[x] is an independent set. Since G is connected, N(x)  must be an independent 

dominating set of  G. So i(G) <~ IN(x)l -- A(G) and n = i(G) + A(G) <~ 2A(G). Thus 

I V - N [ x ] I  ~< A ( G ) -  1. [] 

Theorem 6. Let G be a connected bipartite graph with bipartition A U B. Then 

i(G) + A(G) = n i f  and only i f  A(G) = max{lAI, I~1} and i(G) = min{[A[, IBI). 

Proof .  Let G be a connected bipartite graph with bipartition A U B. Clearly, i f  

A(G) -- max{lA[, IBI} and i(G) ~- min{[A[, [B[}, then i(G) + A(G) = n. 
Conversely, suppose i(G) + A(G) = n. Let x be a vertex of  degree A(G). By 

Theorem 5, V - N [ x ]  is an independent set, and by Lemma 1, I V - N [ x ] l  ~< A ( G ) -  1. 
Without loss of  generality, let x EA. Then N ( x ) = B  and V -  N[x] CA. Thus IBI = 

A(G) = IN(x)l. Also, A = V -  N[x] U {x}, so IAI ~< A(G). Then A ( G ) =  max{lA l, Ial}, 
and since i(G) + A(G) = n, we have i(G) = min{IA[, [B[}. [] 

Suppose G is a connected bipartite graph with bipartition AUB such that [B[ > [A[ > 2. 
By the above theorem, if  i (G)÷  A(G)= n, then there is a vertex in A which is adjacent 

to every vertex in B. 
A connected graph is a tree i f  it contains no cycles. Thus any tree is also bipartite. 

For trees, the conclusions of  Lemma 1 together with Theorem 5 form necessary and 
sufficient conditions for a tree T to have i(T) + A(T)  = n. 

Theorem 7. Let T be a tree and let x be a vertex o f  T with degree A(T). Then 
i ( T ) + A ( T ) = n  i f  and only i f  V -N[x]  is an independent set and [V-N[x]I <~ A ( T ) -  1. 

Proof.  Let T be a tree, let x be a vertex of  degree A(T). 
Suppose first that i ( T ) +  A ( T ) =  n. Then the result follows from Theorem 5 and 

Lemma I. 
Conversely, suppose that V - N [ x ]  is an independent set and I V - N [ x ] l  ~< A(T)--1 .  

Let I be an independent dominating set o f  size i(T). I f x  E l ,  then I = { x }  U ( V - N [ x ] )  
and i(T) + A(T)  = n. So suppose x ~ I .  Then every vertex in N(x)  of  degree 1 is 
in I.  Also, any vertex in N(x)  of  degree >~ 3 is in I ,  in order to make II[ as small as 
possible. Any vertex y C N(x)  of  degree 2 is adjacent to x and one vertex z in V-N[x] .  
Then either y or z is in I ,  so [II I> A(T). Now N(x)  is an independent set and all 
of  T is dominated by the A(T) vertices in N(x),  so [I[ ~< A(T). Thus I I [ =  A ( T ) =  

IN(x)[, and recall that I V -  N[x][ ~< A ( T ) -  1. Now n = [xl + IN(x) I + I V -  N[x]l ~< 
1 + i ( T ) + A ( T ) -  1, which implies n <~ i ( T ) + A ( T ) .  By Theorem 4, i ( T ) ÷ A ( T )  <~ n, 
and so i(T) + A(T)--- n. [] 
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A graph is a split graph if  there is a partion V = I U K of  the vertices into 

an independent set I and a clique K, where a clique is a set of  vertices whose 

induced subgraph is complete. It turns out that every connected split graph G has 

i (G)  ÷ A(G)  : n: 

Theorem 8. I f  G is a connected split graph, then i (G)  + A(G)  = n. 

Proof.  Let G be a connected split graph. Partition the vertices into K U I ,  where K is 

a clique and I is an independent set. I f  ]I] = 0, then the graph is complete and clearly 

i (G)  + A(G)  = n. So assume that III >t 1. Note that A(G)  >~ ]K], since each vertex of  

K is adjacent to IK I - 1 vertices in the clique K and the graph is connected, so at 
least one vertex of  K is adjacent to a vertex of  I. 

Using Theorem 4, it will suffice to show that i (G)  >~ n - A(G).  Let D be an in- 

dependent dominating set with ID I = i(G),  and suppose that ID] < n - A(G).  Now 

I D n K I ~< 1 since D is an independent set. We consider two cases for ID N K I. 

First suppose that [D N K I = 0. Then D = I, and 

n = IKI + III = IKI + IOl < IKI + n - A ( G )  <. IKI + n - IKI -- n 

a contradiction. 

Now suppose that IDNKI = 1. Let x = D N K .  Then D =  { x } U ( I - N [ x ] ) :  V - N ( x ) .  

Then 

n -  A(G)  > ID} = n -  deg(x) >~ n -  A(G)  

a contradiction. 

Thus, i (G)  = ]D] ~> n - A(G), so i (G)  + A(G)  = n. [] 

3. Graphs which satisfy ~(G) + A ( G )  = n 

We will now consider graphs which satisfy 7 ( G ) +  A ( G ) =  n. Note that if  a graph 

has 7 ( G ) +  A ( G ) =  n, then i ( G ) +  A ( G ) =  n also. A star is a graph isomorphic to 
Kl,r, r >>1 2. A double star is a graph obtained by taking two stars and joining the 

vertices o f  maximum degree with an edge. Any double star is an example of  a graph 

with i (G)  + A(G)  = n but 7(G) + A(G)  < n. The complete bipartite graph K,~,n for 

2 < m ~< n is another such example. Here, 7(Kin, n) = 2, A(Km,~) = n and i(Km,n) = m. 

The following result follows from Theorem 5. 

Theorem 9. I f  G is a graph with y ( G ) +  A ( G ) = n  and x is a vertex  o f  degree A(G)  

then V -  N[x] is an independent set. 

Theorem 10 gives an additional necessary condition for a graph with 7 ( G ) + A ( G ) = n .  

Theorem 10. I f  G is a graph with y ( G ) +  A ( G ) = n  and x is a vertex  o f  degree A(G), 
then each vertex o f  N ( x )  is adjacent to at most  one ver tex  in G -  N[x]. 
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Proof.  Suppose G is a graph with 7(G) + A(G)  = n and let x be a vertex o f  degree 

A(G).  Let y E N ( x )  and suppose y is adjacent to r vertices in V -  N[x], with r > 1. 

Then we can dominate the whole graph using y, x and the n - A (G)  - 1 - r vertices 

o f  V - N[x] that are not in N ( y ) .  Then we have 7(G) <~ n - A (G)  - 1 - r + 2-- 

n - A (G)  - r + 1 < n - A(G),  a contradiction. [] 

Theorem 10 is not a necessary condition for a graph G which satisfies f i G ) +  

A(G)  = n. For example, any double star has i (G)  + A(G)  = n and a vertex o f  N ( x )  

adjacent to more than one vertex in V -  N[x]. The converse of  Theorem 10 does 

not hold. For example, the star Kl,r with every edge subdivided has 7 ( G ) =  r, 

A( G) = r a n d n = 2 r + l .  

Theorem 11. Le t  G be a graph with A ( G ) =  1. Then 7 ( G ) +  A ( G ) =  n i f  and only i f  

G = K21.3 (n - 2)K1. 

Proof.  Certainly, if G = K 2 U ( n - 2 ) K 1 ,  then A ( G ) =  1 and 7 ( G ) + A ( G ) = n .  So suppose 

A(G) -- 1 and 7(G) + A(G)  = n. Then each component o f  G is a K1 or K2, with at 

least one K2 component, and 7 ( G ) =  n - 1. I f  there is more than one K2 component, 

then G can be dominated in fewer than n -  1 vertices. Thus G has one K2 component 
and every other component is a K1. [] 

Theorem 12. Le t  G be a graph with A ( G ) = 2 .  Then ? ( G ) +  A ( G ) = n  i f  and only i f  

either 

(1)  G = H U (n - 3 )K1 and H = P3 or C3, or 

(2) G = H U ( n - 4 ) K 1  and H = P 4  or Ca. 

Proof.  Certainly, any of  the graphs listed have A ( G ) = 2  and ~ ( G ) = n -  2. So suppose 

that G is a graph with A ( G ) - - 2  and 7 ( G ) + A ( G ) = n .  Since A ( G ) = 2 ,  each component 
is Ck with k i> 3, Pk with k />  2 or K1. Also, there must be at least one component that 

is Ck with k t> 3 or Pk with k />  3. Let H be a largest component with k vertices. Then 

7(H)  = [k/3], and 7(G - H )  ~< n - k, so that 7(G) ~< rk/3] + n - k. So if  7(G) = n - 2 
then k - [k/3] ~< 2, and k >/3. Therefore k = 3 or 4. I f  H is P4 or C4, then the rest 

o f  the graph is (n - 4)K1, since 7(G) = n - 2. I f  H is P3 or C3 then the rest o f  the 

graph is ( n -  3)KI. [] 

It is straightforward to see that any graph G with A ( G ) = n -  1 or n - 2  also satisfies 
7(G) + A(G)  = n. We will now turn our attention to bipartite graphs. 

Theorem 13. Le t  G be a connected bipartite graph with bipartition A U B, and let 

x C A  be a ver tex  o f  degree A(G).  Then 7 ( G ) +  A ( G ) = n  i f  and only i f  

(1) A(G) = IBI,  

(2) each ver tex  in B has degree at most  2, and 

(3) B contains a vertex  o f  degree 1 or every vertex in A has degree at  least 2. 
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Proof.  Suppose G is a connected bipartite graph which satisfies 7(G) + A(G)  = n. Let 

x be a vertex of  degree A(G),  and without loss o f  generality suppose that x E A. Then 

N ( x )  C_ B, so that IN(x)] = A(G)  ~ [B]. Now 7(G) + A(G)  = n implies i (G) + A(G)  = n. 

By Theorem 6, IN(x)I = A(G)  = max{IA 1, [BI} >~ ]B I. Thus A(G)  = ]B I and U(x)  = B. 

By Theorem 10, each vertex o f  B is adjacent to at most one vertex in V - N [ x ] ,  and 

since G is bipartite, each vertex in B has degree at most 2. 

Suppose that B has no vertex o f  degree one. Then every vertex in B has degree 

exactly 2. If  V - N[x] has a vertex a of  degree one, then a has neighbour b E B. Then 

the set ( V - N [ x ] ) - { a } U { b }  is a dominating set for G, and so 7(G) ~< n - A ( G ) -  1, 

a contradiction. Thus either B has a vertex o f  degree one or every vertex in V - N[x] 

has degree at least 2. 

Conversely, suppose that G is a connected bipartite graph, with a vertex x ~ A of  

degree A ( G ) =  ]B] and suppose every vertex of  B has degree at most 2. 

Suppose first that B has a vertex b o f  degree one. We will show that 7 ( G ) + A ( G ) = n .  

Of all dominating sets of  G of  size 7(G), let D be one containing the fewest members 

of  B. Since either b or x is in D and [BAD I is minimal, we may assume x ~ D. Suppose 

there exists d ~ B O D. Then d cannot be its own private neighbour, since x E D. So 

d has a private neighbour a EA. Now d has exactly one neighbour in V - N i x ]  since 

deg(d) ~< 2, so the dominating set D - { d } U { a }  has size 7(G) and has fewer members 

of  B than D, a contradiction. Thus ]B n D I = 0 and 7(G) + A(G)  = n. 

Now suppose that every vertex in B has degree 2, and every vertex in V -  N[x] has 

degree at least 2. Of  all the dominating sets of  size 7(G), let D be one with fewest 
members of  B. 

Suppose x ~ D. Then x is dominated by a vertex bl E B, where bl is adjacent to 

a E V - N [ x ] .  Note that a has at least 2 neighbours in B. I f a  ED,  we get the dominating 

set D - {bl } U {x}, contradicting the choice of  D. So a ~ D, and then all of  N ( a )  are 
in D, since each vertex of  N ( a )  is adjacent to exactly one vertex in V - N i x ] .  But 

then the dominating set D -  N ( a ) U  {x,a} contradicts the choice of  D. Thus we must 
have x E D. 

Suppose b z E B O D .  Then b2 has a neighbour aE  V -  N[x]. The dominating set 
D - {b2} U {a} contradicts the choice of  D. 

Thus ]D N B[ = O, so 7(G) = [DI = IA] =: n - A(G).  [] 

Trees form a subclass o f  bipartite graphs. A tree is a wounded spider if the tree is 

Kl,r, r />  0, with at most r - 1 o f  the edges subdivided. Thus, a star is a wounded 
spider. It is easy to see that every wounded spider T satisfies ? ( T ) +  A ( T ) =  n. 

Corollary 2. Let  T be a tree. Then 7(T)  + A ( T )  = n i f  and only ! f  T is a wounded 

spider. 

Proof.  Clearly by Theorem 13 every wounded spider has 7 ( T ) +  A ( T ) = n .  So suppose 
that T is a tree with 7 ( T ) +  A ( T ) =  n, and suppose that d e g ( x ) =  A(T). Let A U B be a 
bipartition o f  V such that x EA. By Theorem 13, N ( x ) = B .  Since T contains no cycles, 
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there cannot be a vertex o f  degree 2 in A - {x}. Thus, either there are no vertices in 

A - {x}, in which case T is a star, or there is at least one vertex in A - {x}, which 

has degree one. By Theorem 13, there must be a vertex of  degree one in B. Hence T 

is a wounded spider. [] 

Theorems 9 and 10 yield conditions which are necessary for an arbitrary graph G 

to achieve 7 ( G ) +  A ( G ) =  n. We finish this section by showing these conditions are 
sufficient for a graph G to satisfy 7(G) + A(G)  >~ n - 1. 

Theorem 14. Let  G be a connected graph, and let x be a vertex o f  degree A(G). I f  

V - Nix] is an independent set and every vertex in N ( x )  is adjacent to at most  one 

vertex in V - N[x], then either 7(G) + A(G)  = n or 7(G) + A(G)  = n - I. 

Proof.  Suppose G is a connected graph and x is a vertex of  degree A(G).  Suppose also 

that V - N [ x ]  is an independent set and every vertex in N ( x )  is adjacent to at most one 

vertex in V -  N[x]. Any minimal dominating set o f  G will contain at least ] V -  N[x]l 

vertices in order to dominate all the vertices in V - N [ x ] .  Also, we can dominate G 

by using x and all o f  V - X [ x ] .  So we have IV - N[x]] ~< 7(G) <~ ]V - X [ x ] l  + I{x}[. 
Thus n - A ( G ) -  1 ~< 7(G) <. n - A(G).  [] 

By strengthening the hypothesis, we find a sufficient condition to guarantee that a 

graph G satisfies 7(G) + A(G)  = n. 

Theorem 15. Let  G be a connected graph and let x be a vertex o f  degree A(G). I f  

V - N i x ]  is an independent set, every vertex in N ( x )  is adjacent to at most  one vertex 

o f  V - Nix] and N ( x )  contains a vertex o f  degree one, then 7(G) + A(G)  = n. 

ProoL Let G be a connected graph and let x E V be a vertex of  degree A(G).  Suppose 

further that V -  N[x] is an independent set, every vertex in N ( x )  is adjacent to at most 

one vertex o f  V - N [ x ]  and y c N ( x )  has degree one. 
Let S be a minimal dominating set o f  size 7(G). By Theorem 14 either ] S I = n - A ( G )  

or [S I = n - A(G)  - 1. Suppose [S I = n - A ( G ) -  1. Since y has degree one, S must 
contain either x or y. So there are at most n - A(G)  - 2 vertices in S available to 

dominate V -  N[x]. But at least I V -  N[x][ = n -  A ( G ) -  1 vertices are necessary to 

dominate V - N[x]. This contradicts our assumption that [SI = n - A(G)  - 1. Therefore 

IS[ = 7(G) = n - A(G).  [] 

This added condition is not, however, a necessary one. The graph C4 satisfies 7(C4)+ 

A(C4) = 4 but C4 does not satisfy the hypothesis o f  Theorem 15. 

4. The irredundance number, ir(G) 

We now turn our attention to the lower irredundance number, Jr(G). By Corollary 
1, J r ( G ) +  A(G)<~ n for any graph G. Since if(G)~< 7(G), we know any graph G 
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satisfying i r ( G ) +  A ( G ) =  n will also satisfy 7 ( G ) +  A ( G ) =  n. Thus any graph with 
i r ( G ) + A ( G ) ~ n  and a vertex x of  degree A(G) will satisfy the hypothesis for Theorems 

9 and 10, So V - N [ x ]  will be an independent set and any vertex in N(x)  will be 

adjacent to at most one vertex of  V -  N[x], It is straightforward to check that for the 

bipartite graphs listed in Theorem 13, i r ( G ) +  A ( G ) =  n. Thus, the bipartite graphs 
with "/(G) + A(G) = n also will have i t(G) + A(G) = n. Furthermore, for any tree T, 

i t(T) + A(T)  = n if and only if T is a wounded spider. 
It is possible to find examples of  graphs for which 7(G) + A(G) = n and i t(G) + 

A(G) < n. For example, consider the graph G constructed as follows: Let k be a posi- 

tive integer. For 1 ~< i ~< k, form the graph Gi by taking vertices u/l, ui2, ui3, bli4, IAil, Ui2, Ui3. 

Add edges UilUi2, bli2ui3,Ui3Ui4 and UilUil,ViZUi2,Ui2bli3,Ui3Ui4 • Take a vertex x and join 
it to uii for 1 ~ j ~< 4 and 1 ~< i ~ k. Add a vertex y and edge xy.  The graph G has 
[N(x)] = A(G) = 4k + 1. Since V - N[x] is an independent set, every vertex in N(x)  

is adjacent to at most one vertex of  V - N[x] and x has a neighbour of  degree one, 

by Theorem 15, ~'(G) + A(G) = n. An irredundant set S can be found by taking y 

together with ui2, ui3 for I ~< i ~< k. This set S is a maximal irredundant set for G. 

Therefore ir(G) ~< 2k + l and this is an example of  a graph with 7 ( G ) +  A ( G ) =  n and 

i t(G) + A(G) <~ n - k. 

5. The upper parameters and minimum degree 

The upper domination parameters, ~ ( G ) , F ( G )  and IR(G) will be combined with 

minimum degree for Gallai-type results. 

Theorem 16. For any graph G, IR(G)  + 3(G) ~< n. 

Proof.  Let S be a maximal irredundant set of  size IR(G)  and let x ~S.  Since S is 

irredundant, there is a vertex y such that y E Nix] - N [ S  - {x}]. We consider two 

c a s e s .  

Case 1: y = x. Then x is not adjacent to any vertex in S, and must have at 

least 6(G) neighbours in V -  S. Thus n -  I R ( G ) =  I V -  S] >1 6(G) and I R ( G ) +  

~(G) ~< n. 
Case 2: y ¢ x. By the choice of  y, y ~ S and N ( y )  A S = {x}. Then 

N[y] - {x} C V - S, so that n - IR(G)  = [V - SI >~ IN[y] - {x}] >~ 6(G) and so 

IR(G)  + 6(G) <~ n. 

Using Theorems 16 and 1, we get the following corollary: 

Corollary 3. For any graph G, F(G)  + ~(G) <_ n and fl(G) + 6(G) <~ n. 

We will first consider graphs for which /~(G) + 6(G) = n. 
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Theorem 17. Let G be a connected graph and let I be a maximal independent set o f  

G such that I1[ = ~(G). Then ~(G) + 6(G) = n i f  and only i f  for each x E 1, we have 

deg(x) = 6(G) and V - N ( x )  is an independent set. 

ProoL First suppose that fl(G) + 6(G) = n. Let x E I,  then I C_ V - N(x),  so /~(G) = 

Izl ~< n - [N(x)l  ~< n -- fi(G) = fl(G). Thus IN(x) l  = 3 ( 6 ) ,  and I V - N(x)[ = I I I  so 

V -  N(x)  is an independent set. 

Now suppose that for each x E l ,  d e g ( x ) =  6(G) and V -  N(x)  is an indepen- 

dent set. Then /~(G)~> I V -  N(x)[ = n -  6(G), and by Corollary 3 we must have 

fl(G) = n - 6(G). 

It follows from Theorem 17 that the vertices of  any graph which satisfies fl(G) + 

6(G) = n can be partitioned into two sets, I U J ,  where 1 is an independent set o f  size 

fl(G), J is a set of  size 6(G) and each vertex in I is adjacent to every vertex in J .  

The above result also implies that if T is a tree, then 6(G) + fl(G) = n if and only 

if  T = Kj , , - t .  In fact, Kl,~-i is the only graph with fl(G) + 6(G) = n and 6(G) = 1. 

Furthermore, if  G is bipartite, we have f l (G)+ 6 ( G ) = n  if and only if  G = K~(a),/s(a). 
I f  G is a split graph, then 6(G) + fl(G) = n if and only if the vertices o f  G can be 

partitioned into K U I,  where IKI = 6(G), Ill = fl(G), 1 is an independent set and K is 
a clique. 

We now turn our attention to graphs which satisfy F ( G ) +  6(G)= n. The Cartesian 

product of  two graphs G and H is denoted G x H.  The vertices o f  G x H are the 

ordered pairs (g,h) where 9E  V(G) and h E V(H). The edge set is given as follows: 

(91, hi ) is adjacent to (g2, he) in G x H if and only if either 91 = g2 and hlh2 E E(H),  

or  hi = h2 and 9192 E E( G). For any graph, if fl( G) + 6( G) = n then F( G) + 6( G) = n. 
The converse does not hold, for example the graph K2 x K~, the generalised prism, 

has f l (G)= 2, F ( G ) =  r, 6 (G)=  r and n = 2r. It is known that for chordal graphs [5] 

and bipartite graphs [1] we have f l (G)= F ( G ) =  IR(G). Thus the bipartite and split 

graphs with F(G) + 6(G) = n also will have fl(G) + 6(G) = n. 

Theorem 18. Let G be a graph with F ( G ) + 6 ( G ) = n  and f l ( G ) + f ( G )  < n. Then G 

contains H = K 2  x Kr as an induced subgraph, and every vertex in G - H is adjacent 

to every vertex in H. 

Proof.  Let G be a graph with F ( G ) +  f i (G)= n and /~ (G)+  6 ( G ) <  n. Let S be a 

minimal dominating set of  size F(G). 

Claim. Every vertex in S has a neighbour in S. 

Proof.  Suppose to the contrary that there is a vertex x E S such that x has no neighbours 

in S. There are at least 6(G) vertices in N(x),  none of  which is in S. Since F ( G ) +  

6(G) = n, we must have d e g ( x ) =  6(G) and V - N ( x ) =  S. Since every vertex in S 
must have a private neighbour, S must be an independent set, so that F(G) <~ fl(G), a 

contradiction. [] 
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Since every vertex in S has a neighbour in S, each vertex in S must have a private 

neighbour in V - S. 

Claim.  Every vertex in S has exactly one private neighbour. 

Proof .  Suppose that x E S has at least two private neighbours. Let y E S, where y ~ x. 

Then y is not adjacent to itself, and is not adjacent to any private neighbour o f  S - y. 

But the number of  private neighbours of  S - y is at least F(G), so we have found 

F(G) + 1 vertices not adjacent to y. But y has at least 6(G) = n - F(G) neighbours, 

a contradiction. [] 

Proof  of  Theorem 18 (conclusion). From this, we can see that the number o f  private 

neighbours o f  S is exactly F(G), one for each vertex in S. Let P denote the set of  

private neighbours o f  S. Now each vertex in P is adjacent to exactly one vertex in S, 

so has at least 6 ( G ) -  1 neighbours in V - - S .  Thus every vertex in P is adjacent to 

every vertex not in S, in particular, the private neighbours form a clique of  size F(G). 

Each vertex in S has one private neighbour, so is not adjacent to i tself  and F ( G ) -  1 of  

the private neighbours. Thus each vertex in S has degree at least 6(G) so is adjacent to 

its one private neighbour, to every other vertex in S and to every vertex not in S U P. 

Hence, S forms a clique of  size F(G). Thus the graph induced by S U P is the graph 

H = K2 × K r I G ) ,  and every vertex not in S U P is adjacent to every vertex in H. ~J 

Finally, we turn our attention to graphs tbr which I R ( G ) +  6(G)= n, and show that 

they are precisely the ones with F ( G ) +  6 ( G ) =  n. 

Theorem 19. For any graph G, IR(G)  + 6(G) = n i f  and only i f  F( G) + 6(G) = n. 

ProoL First, let G be a graph with F ( G ) +  6 ( G ) =  n. Then it follows immediately 

from the fact that F(G) <~ IR(G)  and Theorem 16 that IR(G)  + 6(G) = n. 

Now suppose that G is a graph with I R ( G ) +  6 ( G ) =  n and let S be a maximal 

irredundant set for G with IS I = IR(G) .  We will show that S is dominating, and since 

S is irredundant it will be a minimal dominating set. So suppose that S is not domina- 

ting. Then there is a wC V - S  such that w is not adjacent to any vertex of  S. We must 

then have N[w] C_ V - S. But tN[w]l ~> 6(G) + 1, which implies 6(G) + 1 ~< IN[w]l ~< 

I V -  S I = n -  IR(G),  and so I R ( G ) +  6(G)  ~< n -  1, a contradiction. Thus S is a domi- 

nating set. Since F(G) ~> ISI = IR(G)  ~> F(G), we must have I R ( G )  = F(G). [] 
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