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Abstract 

We show that on a hypermap (a,~) of genus g > 2, an automo~hism r(l is either order 
o(ll/) = p(1 + 2g/(p - 1)) if (p, 1 + 2g/(p - 1)) = 1 or o($) G 2pg/(p - l), where p is the 
smallest divisor of the order of Aut(a,a). We also give hounds on IAut(a,a)I, namely, 
IAut(cc,o) d 2p(g - l)/(p- 3)ifp 3 S,lAut@,~)l G 15(g - 1)ifp = 3; thus,only whenp = 2is 
the Hurwitz bound IAut(a, a)1 G 84(g - 1) effective. We define p-Harvey hypermaps as hyper- 
maps ad~tting an automo~~m of order p(1 + ~/(p - 1)) (type I) or 2pg/(p - 1) (type II) 
and character&e them as p-elliptic hypermaps. 

Nous montrons que sur une hypercarte (a,~) de genre g 3 2, un automo~~sme J/ est soit 
d’ordre o($) = p(I + 2g/(p - 1)) si (p, 1 f 2g/(p - 1)) = 1 soit o($) G 2pg/(p - l), ou p est le 
plus petit diviseur de l’ordre de Aut(a,a). Nous donnons egalement des homes sur I,4ut(a,u)l, 
a savoir 1Aut(a,cr) G 2p(g - l)/(p - 3) sip 2 5, IAut(a,a)l Q lS(g - 1) sip = 3; ainsi, la borne 
d’Hurwitz n’est atteinte que pour p = 2 et done IAut(a, o)l < 84(g - 1). Nous definissons les 
hypercartes de p-Harvey comme c&s qui admettent un automorphisme d’ordm p( 1 + 2g/( p - 1)) 
(type I) ou 2pg/( p - 1) (type II) et les caracterisons comme hypercartes p-elliptiques. 

On a compact Riemann surface of genus g > 1 the maximal order for an auto- 
morphism is 4g + 2 [12]. Harvey [8] generalized the result by arithmetic methods to 

the following theorem: 

Theorem 1.1. Let S be a Riemann surface of genus g 2 2, p be the smallest divisor of 
Au@) and Iet $ be an auto~rphism of S. Then: 

(i) either o(#) < p(1 + 2g/(p - l)), go($) = pm where p and m are eoprime, 

@f or 019) G Gd(p - 1). 
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Very sophisticated and complex computation was usually required to solve these 
geometrical problems and attaining a result was always a enormous work, until 
geometers decided to introduce an algebraic version of Riemann surfaces (see [9]). In 
parallel, group and graph theorists where working on embedded graphs in surfaces 
(see [7]). They met on the concept of map or its generalized version - introduced by 
Cori - of hy~erma~. 

Their approach is combinatorial in nature; they represent a surface by a pair of 
permutations (ol, a) such that the group they generate is transitive: such a pair is called 
a hypermap. They Aut(S) becomes AI+, CT) the centralizer of the two permutations. 
Machi gave a combinatorial proof of the classical result 1 Aut(a, a)1 6 S4(g - 1) for 
g > 2, where g is the genus of the hypermap (see Section 2). 

In this paper, we keep this approach which allows results with elementary combina- 
torial proofs. 

We first give a refinement of Machi’s result, namely that when Aut(a,a) is of odd 
order, then Iffut@,cr)j < 15(g - 1) if p = 3 and IAut(a,o)l < Zp(g - l)/(p - 3) if 
p > 5 where p is the smallest divisor of lAut(cr,cr)J (Theorem 4.2). 

It is then possible to reprove Harvey’s theorem from the hypermap point of view. 
We note with interest that the combinatorial vision o$ers a geo~trical interpretation 

of this theorem! It can be seen as a generalization of results concerning a restricted 
type of surfaces: the so-called p-elliptic surfaces defined in [2]. These can be viewed as 
p-sheeted coverings of the sphere, where p is a prime. In [23 we have generalized the 
notion of a hyperelliptic hypermap to that of a p-elliptic hypermap: this is a hypermap 
admitting an automorphism of prime order p such that it is normal in Aut(a, 0) and 
fixes the maximum of points that an element of order p can fix, that is 2 + 2g/(p - 1) 

(see below for a detailed explanation). 
Now, we achieve an improvement of Harvey’s theorem: 

Theorem 1.2. Let (a, a) be a hypermap of genus g > 2, p be the smallest divisor of 

Aut(a,cr) and let 9 be an a~tomorphism of (a,o}). Then 

(i) either o($) = p(1 + 2g(p - l)), where p and 1 + 2g/(p - 1) are comprime and 
the quotient hypermap with respect to the subgroup of order p is planar, 

(ii) or o($) < 2pflAp - 1). 

As in the case of a Riemann surface, a hypermap is hyperelzipti~ if it admits an 
involution 4 fixing 2g + 2 points; this implies that 4 is central in Aut(a,a) (see 
[7, p. 4591). When p is fixed, both bounds are sharp since they are reached on 
p-elliptic hypermaps for infinitely many g, as we already showed in [4]. 

Kulkami [lo] defines a Wiman curve as Riemann surface which admits automor- 
phisms of order 4g + 2 (type I) or 4g (type II). Accordingly, we define a Wiman 
hypermap as a hypermap admitting automorphisms of order 4g + 2 (type I) or 4g 
(type II). We then give combinatorial equivalents to Kulkarni’s results: 

A Wiman hypermap of type I is hyperelliptic and its automorphism group is precisely 
the cyclic group C++ 2. 
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A Wiman hypermap of type II is hyperelliptic and its automorphism group is precisely 
C, or D, (dihedral) except for g = 2 and g = 3. 

Finally, we define a p-Harvey hypermap as hypermap admitting automorphisms of 
order ~(1 + 2g/(p - 1)) (type I) or 2pg/(p - 1) (type II). Of course, Wiman hyper- 
maps are just 2-Harvey hypermaps. 

Now, Propositions 6.6 and 6.7 below show that these hypermaps admit an auto- 
morphism of order p fixing 2 + 2g/( p - 1) points. Proposition 6.1 shows that such an 
automorphism in the center of the pSylow subgroup containing it. Proposition 6.3 
shows that such an automo~~sm generates a subgroup which is normal in the whole 
group Aut(a,a), for p # 3. Thus, for p # 3: 

A p-Harvey hypermap of type I is p-elliptic and its automorphism group is precisely 
C P(l+w(P- 1)). 

A p=H~vey hype~p of type II is p-elliptic and its auto~rphism group is precisely 

C2P~lW 1) or %Ym- 11. 
In order to prove these results, we characterize the automorphisms of the torus. 

For a general introduction to the theory of hypermaps see [7). In this section we 
recall a few definitions and results that will be needed in the sequel. 

Definition 2.1. A hypermap is a pair of permutations @,a) on B (the set of brins) such 
that the group they generate is transitive on B. When a is a fixed point free involution, 
(a,~$ is a map. The cycles of a, c and a-% are called edges, vertices and faces, 
respectively; but if their specification in terms of edges, vertices or faces is not needed, 
we will refer to them as points. 

Euler’s formula gives the relationship between the numbers of cycles of these three 
permutations: 

z(a) + z(a) + ~(a-%) = n + 2 - 211, 

where n = card(B), g is a non-negative integer, called the genus of (u, a), and where for 
any permutation &z(e) denotes the number of its cycles (cycles of length 1 are 
included) (see [7], p. 4221). If g = 0, then (x, a) is planar. 

De&&ion 2.2 An automorphism Q of a hypermap (a, a) is a permutation commuting 
with both a and cr: 

a4 =(bu and a# = #~a. 

Thus, the full automorphism group of (a, a), denoted by Aut(a, a) is the centralizer in 
Sym(n) of the group generated by a and (z. A subgroup G of Au&z, a) is an ~t~~h~ 
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group of (a, a); the transivity of (tl, a) implies that Rut@, Q) is semi-regular. Recall here 
that a semi-regular group is defined by the fact that all its orbits are of the same length, 
namely; J Gf. 

We &note by && the number of cycles of a ~~utation 0 fixed by an automor- 
phism 4 and by ~(4) the total number of cycles of CI, Q, and IY- ‘6 tixed by (b; o(4) will 
be the order of 4. If (a, o) is planar (g = 0) then ~(4) = 2 for all non-trivial automor- 
phisms (6. Moreover, Au@ a) is one of C, (cyclic), D, (dihedral), Aq, S4 and A5 (see [7, 
p. 4641). Finally, we recall a result which is well known in the theory of Riemann 
surfaces: an auto~orp~is~ of prime order cannot jix only one point. For a proof of this 
in the case of hypermaps see [S]. We shall need these results later. 

We now define an equivalence relation R on the set 33. 

Definition 2.3. Let G be an automorphism group of the hypermap @,a). Two brins 
bl and bz are equivalent, bl Rbz, if they belong to the same orbit of G. 

This leads to the following definition. 

Deli&ion 2.4 The quotient hypemap (&, ii) of (a, a) with respect to an automorphism 
group G, is a pair of permutations (a, 8) acting on the set B, where B = B/R and 8, ii 
are the permutations induced by c1 and B on 8. 

The following Riemann-Hurwitz formula relates the genus y of (E, 8) to the genus 

9 of (o&o) (see VW: 

2g - 2 = card(G)(2y - 2) + c x(4). (1) 
#eG - fiti) 

It follows that y < g. In case G is a cyclic group, G = ($), (1) becomes 

o(O)- 1 

2g - 2 = card(G)(2y - 2) + c x(4’). (2) 
i=l 

As mentioned above one can prove that for g 2 2, IAut(a,a)l < 84(g - 1). 
If 4 is an automorphism of order 111, then, for all integers i, ~(4) < x(4’), and when 

m and i are coprime ~(4) = x(#). 
Let (~,cr) be a hypermap, G an automorphism group of (~,a) and let (68) be the 

quotient hypermap of ((y1 a) with respect to G. The proof of the following results can be 
found in [3]. For any element $ in the normalizer of G in Aut(a, c), the permutation $, 
defined as $ = II//G, is an automorphism of (&, 6). The two following operations on 
(a, a) are equivalent: 

(i) taking the quotient (a, g) first by G and then by I$ 
(ii) taking the quotient (IX, 0) by (G, 1,6>. 

DefInitioa 2.5. The permutation $ is called the induced automorphism of II/ on (&,c?). 
We also say that @ induces $ on (a,(5). 
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We consider now the case in which an automorphism cf, of prime order p is normal 
in (I& $>, where t,b is any element of AU@, a). 

Proposition 2.6. Let 9 commute with Cp. 
(i) If $ is of order m where p and m are coprime, then 

X($)P = XW) + (P - l)xC#J~)* 

(ii) rf $ is of order pn, p and n coprime, and Cp belongs to (JI), then 

X(&P = X-W”) “t (P - 1)x($)* 

(iii) If 1,6 is of order p”n, m > 1, p and n coprime, and 4 belongs to (J/), then 

(iv) If JI is of order pm, m being any integer, and C/J does not belong to (I/>, then 

and 

~(~~) = 0 (mod p). 

(v) If # does not commute with #, then 

In the classical theory of Riemann surfaces, a hyperelliptic surface S is a surface 
admitting an involu~on which is central in Au@) and fixes 2 + 2g points. This notion 
applies to hypermaps [7]. In the next definition we consider autmorphisms of prime 
order p to generalize the notion of hyperelliptic hypermaps. 

Dehition 27. A hypermap (a, a) of genus g > 1 is said to be p-elliptic if it admits an 
automo~hism #J of prime order p such that: 

(1) the quotient hypermap (a, 5) with respect to 4 is planar, 
(2) (4) is normal in Aut(or,a). 

Remark 2.8. This definition is equivalent to that given in Section 1. 

Since an automorp~sm on the sphere fixes exactly 2 points, an automo~~sm r,b on 
a p-elliptic hypermap of genus g fixes x($) = 0,1,2, p,p f 1,2p or 2 + 2g/(p - 1) 
points. It is a consequence of Proposition 2.6 together with the fact that a planar 
automorphism fixes exactly 2 points (see [4]). 

Fropodtion 2.9. Let (CL, a) be Q hy~~p and G an auto~r~ism group; let N(G) be the 
normalizer of G in Aut(ct, a) and t > 0 the number of points fixed by all non-trivial 
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elements of G. Then there exists a homomorphism h from N(G) to S, whose kernel is 
a cyclic group. 

We remark that when G = (4), then the image of h is contained in Srfcpj. 
For complete proofs of these results see [3]. 

Theorem 2.10. Let (a, a) be a p-elliptic hypermap and let $ be an automorphi~ of (a, o), 
Then either o(JI) = ~(1 -t 2&p - 1)), where p and 1 + 2g/(p - 1) are coprime, or 
W) G 2Pg/(P - 1). 

Theorem 211. Let (a, a) be a ~ellipt~ hype~p. Then Aut(a, a) is either C,(cyclic) 
where n is a divisor of 1 + 2g/(p - 1); C,, or D, (di~dral) where n is a divisor 
of 2g/( p - 1); a semi-direct product of either C, or a lifting of D,, by C, where n is 
a divisor of 2 + 2g/(p - 1); or is of order 12p, 24~ or 60~ (extensions of A&, &, As, 
respectively). 

Corollary 2.12. Let (a, o) be a hyp~elli~tic hypermap. Then Aut(a, a) is either Czn where 
n is a divisor of 2g + 1, Cz, or D,, where n is a divisor of 2g; C, x Cz or an extension of 
D, by Cz, where n is a divisor of 2g + 2; or Aut(a, o) is of order 24,48 or 120 (extensions 
of A.+, &, A5, respectiuely). 

Proposition 213. Let @,a) be a hypermap of genus g > 1 such that there exists an 
automorphism q$ of prime order 2g + 1. Then, except for the case g = 3 and 
Aut(a, a) = i?SL2(Z,) (the sample group of order 168), (a, a) is a(2g + l)-elliptic hyper- 
map. 

volition 2.14. Let (a,o) be a hype~p of genus g > 30 such that there exists an 
auto~rphism d, of prime order g + 1. Then (a,o) is a (g + l)-elliptic hyper~~. 

Proposition 2.15. Let (a, a) be a hypermap of genus g = 2. Then Aut(a, a) is either trivia2 
or Cz, or else (a, o) is 5-elliptic, 3-elliptic or hyperelliptic. 

3. Automorphisms of the torus 

Proposition 3.1. Let (a, o) be a hypermap of genus 1 and $ an automorphism. Then only 
two cases can happen: 

(i) either $ fixes no point and neither does any non-trivial power of $. 
(ii) or JI fixes at least one point and then JI is of order 2,3,4 or 6 with 4,3,2 or 1 fixed 

points, respectively. 
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Proof. Suppose first that d, an automorphism of prime order p fixes points. Then, by 
(2), ~(4) = 2p/(p - 1); Only two cases are possible: o(4) = 2 and ~(4) = 4 or o(#) = 3 
and ~(4) = 3. 

Suppose now that $ is an automorphism such that one of its power #I of prime 
order fixes points. If p = 2, then by Theorem 2.9, there exists an homomorphism 
h from (+) to Se, and Ker(h) = (#) since by (2) no other automorphism can fix 
these 4 points in common with (4). S, possesses elements of order 1,2,3,4 thus 
o(9) = 1,2,3,4,6,8. Let us show that o($) = 8 is impossible. If we consider the 
induced automo~hism $ on the quotient hypermap with respect to (#), we 
know that 2 = x($) since this hypermap is planar. But by Proposition 2.6, 
x(q) = x(I,+). These 2 points are fixed in common with 4 thus o( h($)) = 2, o($) = 4 
and x($) = 2. 

If p = 3, then by Theorem 2.9, there exists an homomorphism h from (JI) to S3 , and 
Ker(h) = (4) since by (2) no other automorphism can fix these 3 points in common 
with ($>. S’s possesses elements of order 1,2,3 thus o(e) = 1,3,6,9. Let us show that 
o($) = 9 is impossible. If we consider the induced automorphism $ on the quotient 
hypermap with respect to (#J), we know that 2 = x(g) since this hypermap is planar. 
But by Proposition 2.6, x(J;> = x(t,&). These 2 points are fixed in common with Q and it 
is impossible to fix 2 points in common with an element that fixes 3 points. When 
o(JI) = 6 we have x($) = 1. c] 

4. Bounds on automo~m groups orders 

By the Riemann-Hurwitz formula, we know that if a hypermap (01, LT) of genus g > 1 
admits an automorphism group G such that the quotient hypermap with respect to it 
isofgeuusy>l,thenlG)<g-1; 

We now give a bound when y = 1. 

Theorem 4.1. Let (01, a) be a hypermap of genus g > 1 and G an automorphism group 
such that the quotient hyp~map with respect to it is of genus y = 1 then: 

IGj ~2 *(g - 1) where p is the smallest prime that divides the order of Aut(a,a). 

Proof. Let us consider (1) when y = 1: 

2g - 2 = C4eG-(idjX($); we note that C+,c-<aX(4) = &.,,,(lGCl - 1) where G, is 
the stablizer of a point c (any cycle of ~11, Q and CC- ‘c). When two cycles belong to the 
same orbit of G then the order of the stabilizer is equal. Let ni = 1 Ge,l where the c/s 
constitute a set of representatives of G-orbits. Then C~.~-~,&#J) = 
lGlC;=i(& - 1)/n*. We now rewrite (1). 2g - 2 = IGlx;=r(ni - 1)/n*. The minimum 
value of the sum C is obtained for ni = p, all I”s. Thus, C < r(p - 1)/p and 

WI G Mg - WP - 1). 0 
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In the next theorem we show that if Aut(a,o) is of odd order, then in the Hurwitz 
bound 84(9 - l), 84 can be replaced by 15 if lAut(a,cr)l is divisible by 3 and 2p/(p - 3) 
if its smallest divisor p 2 5. 

Theorem 4.2. Let (a, a) be a hypermap of genus g > 1, G an automorphism group such 
that the quotient hypermap with respect to it is of genus y = 0 and p the smallest prime 
that divides the order of Aut(a, a). Then: 

If p 3 5, IGI Q +%(g - 1); 
If p = 3, ICI < 15(g - 1); 
If p = 2, IGI < 84(g - 1). 

Proof. Let us consider (1) with y = 0 and as for the precedent theorem we rewrite (1): 
(2g-2)//Gl=r-2-Cf,, l/rti, We suppose ni < nj for i cj. 

r 3 3 otherwise g = 0. The minimum value of the sum C is obtained for ni = p, all 
i’s. Thus (28 - 2)/IGI 2 r - 2 - r/p = [(p - 1)r - 2p]/p, Now, (p - 1)r - 2p = 0 
implies r = 2p/(p - 1) which is an integer only for p = 2 or p = 3. Thus for 
p 2 5,JGI < &$+(g - 1) and r k 3 implies fG1 Q $$(g - 1). 

If p=3 and ra4, (2g-2)/IGI>r-2-r/3>4-2-44/3=2/3 thus 
IGl < 3(g - 1). If p = 3 and r = 3, (28 - 2)//G] = 1 - l/n1 - l/n2 - l/n3. If 
ni = n2 = 3 then g = 0 and n3 > 5 then (29 - 2)/lGI = 2/15; hence, lG1 < 15(g - 1). 

If p = 2 we have the Hurwitz bound. 0 

We now give a technical lemma which will be of help in the sequel: 

Lemma 4.3. Let (a, a) be a hyp~~p of genus g > 2, G an automorphism group such 
that p is the sickest divisor of its order, Cp an automorphism of order p, morel in G and 
jixing two points. Then either G = C,, or G = D, with n < 2pg/(p - 1). 

Proof. Since C$ is normal in G there exists a homomo~~sm h from G to S,; thus, 
either G = C, or G = D, and p = 2. Let 8 E C,, be an automo~hism of prime order 
4 fixing the maximal number of points and y the genus of the quotient hype~ap with 

respect to 8. If p = q, then by (l), g = y I her{ h)l thus I Gl < 2g < 2pg/( p - 1). We will 
now suppose that p # q. If y = 0, x(e) = 2 + 2g/(q - 1) then the results on P-elliptic 

hypermaps apply and n < 2qg/(q - 1) < 2pdfp - 1). If y = 1,x(@ = 2(g - Mq - 11, 
then n = 24,3q,4q, 64 i.e. p = 2 and x(#) 2 4 or p = 3 and ~(4) 2 3, by 
Proposition 3.1 and results on induced automorphis~. This is a contradiction. If 
y 3 2, we proceed by induction on the genus. n/q < 2py/(p - 1) and by (1) 
2g - 2 2 q(2y - 2) + 2(4 - 1) i.e. w < 2q; hence, n K 2pg/(p - 1). Cl 

Theorem 4.4. Let (IX, o) be a hypermap of genus g 3 2, JI be an automorphism of (a, a) 
and p the smallest divisor of o(e). Then either 

(i) o(JI) = p( 1 + 2g/(p - l)), where p and 1 + 2g/(p - 1) are coprime and the quo- 
tient hypermap with respect to the subgroup of order p is planar, or 

(ii) o($) g 2pgAp - 1). 



proof. Let JI be an automo~hism of (a,~) such that the quotient hypermap with 
respect to it is of genus y. = 0 (otherwise Theorem 4.1 applies). Let 9 be a power of 
Jt of prime order p where p is the smallest divisor of o(JI) and y the genus of (Z, 6) the 
quotient hypermap with respect to (4). We denote induced automorphisms on 
(& 5) by a bar. If ~(4) = 0, 2g - 2 + 20($) = zTItii)- ’ x($‘) = C$:)‘*- i x(JI”‘) = 
2g - 2 + 20($)/p, which is impossible. Thus, ;r(#) 2 2. By Lemma 4.3, we know that 
~(4) = 2 implies of+) < 2g. Thus assume that x(#) 3 3. 

if y = 0, then the results on p-elliptic hypermaps apply and o($) = 
p(1 + 2g/( p - I)), where p and 1 + 2g/(p - 1) are coprime, or o(e) < 2pg/(p - 1). 

if y = 1, x(#) = 2(g - l)/(p - 1) and by Proposition 3.1 o(JI) = 6, 4, 3 or 2 since 
y. = 0. Since p is the smallest divisor of o($), either p = 2 and o($) = 12,8,6 or 4, or 
p = 3 and o(tl/) = 9. When p = 2 the bound is 4g and 3g for p = 3, since it is easy to 
verify that there is no automorphism of order 9 nor 12 on a hypermap of genus 2 
(considering induced automorphisms). 

If y > 1, we proceed by induction on the genus. Let g be the smallest prime that 
divides the order of the induced automorphism group. 

By induction, o(g) d 2qy/((q - 1) and by (1) 2g 2 2py thus o(e) = PO($) G 
2p4~/(q - 1) < 2qg/(q - 1) < 2pg/(p - I). Or o(J) = g(1 f 2y/(g - l)), where g and 
1 + 2y/(q - 1) are coprime and the quotient hypermap with respect to the subgroup of 
order g is planar. Let B be a generator of it. Thus, o(e) = g and ~(0) = 2 + 2y/(q - I), 
so that o(e) = pg(l + 2y/(q - 1)). If ~(4) > p + 2, then 2g - 2 2 p(2y - 2) + 
(p - l)(p + 2) i.e. 2g > 2py + p(p - 1) that is 2g/(p - 1) > ~(1 + 2y/(p - I)). Thus, 
o($) < p2(l + 2y/(p - 1) G 2pg/(p - 1). If ~(4) < p + 2, then there exists 
a homomorphism h from ($) to S,,, and (#)/ker(h) = C, or is trivial since p is its 
smallest divisor. If <Jl)/ker(h) = id then by (1) 1 ker(h)) < 2g t 1 < 2pg/(p - 1) thus 
o(e) 6 2pg/(p - I). If (Jl)/ker(h) = C, then x(#) = p or ~(4) = p + 1 and g = p. 
Since x(g) = x(B) = 2 + 2y/(p - 1) and o(g) = p2, 8 fixes 2 f 2y/(p - 1) points in 
common with (p but then h(8) = id since ~(4) = p or ~(4) = p + 1; and since p does 
not divide 1 f 2y/(p - 1) by hypothesis it means that ($)/ker(h) = C, does not 
happen. Thus the result follows. 0 

The following improvement of Harvey’s theorem can now be obtained: 

Theorem 4.5. Let (a, a) be a hypermap of genus g 2 2, p be the smallest divisor of 
Aut(u, o) and let I#I be an automorphism of (a, o). Then either 

(i) o(e) = ~(1 + 2g/(p - l)), where p and 1 -t 2g/(p - 1) are coprimes and the 
quotient hypermap with respect to the subgroup of order p is planar, 

(3 or o(+) < 2pg/(p - I). 

Proof. Let o(JI) f 2qg/(q - 1) where (I is the smallest divisor of o($). Since the 
function f(q) = 2qg/(q - 1) is decreasin& Result (ii) is true for p the smallest prime 
that divides the order of Aut(cc,a). 
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Suppose now that o($) = q(l + 2g/(q - 1)), with o($) > 2pg/(p - 1). Since g is the 
smallest divisor of o(JI), ~Au~((x,o)I > pgfl + 2g/(g - 1)) > 2p2g/(p - 1). 

For p > 5, we know by Theorem 4.2 that fAut(cl,a)l G 2p(g - l)/(p - 3); thus, 
2p2g/(p - 1) < 2p(g - l)/(p - 3), i.e. p(p - 3)g c (p - 1) (g - 1) which is impossible. 

If p = 3, g(1 + 2g/(g - 1)) > 2pg/(p - 1) = 3g implies q(l + 2g/(q - 1)) = 3g + 1 
or g(1 + 2g/(q - 1)) = 3g I- 2. Thus, g = (q - 1)2,‘(q - 3) or g = (q - 2)(q - l)/ 
(g - 3). Hence, q - 3 divides 4 or 2 that is q - 5andg=8orq=7andg=ginthe 
first case and q = 5 and g = 6 in the second case. But then 2 or 3 divides o(+) in the 

first case and 3 divides o($) in the second case. 
If = 2, q( 1 + 2g/( - 1)) p 4 > 2pg/( - 1) = 4g implies g( 1 -t- 2g/(q - 1)) = 4g + 1, p 

i.e. 2g = (g - 1)2/(q - 2) but then g is not an integer, a contradiction. I-J 

5. Wiman hypermaps 

Definition 5.1. A Winzan hyper~p, is a hypermap of genus g 2 2 admitting an 
automorphism of order 4g + 2 (type I) or an automorphism of order 49 (type II). 

Theorem 5.2. Let (cr, (7) be u Wimun hype~~ of type I; then (a, o) is hy~ere~~iptic and 
Aut(a, 0) = c,, + 2. 

Proof. By Theorem 4.4 we know that the square of the automorphism of order 4g + 2 
fixes 2g + 2 points, Thus (a,(T) is ~ype~e~~i~~ic and the theorems on hyperelliptic 
hypermaps allow to conclude that Aut(a, o) = C,, + 2. •l 

We give now a technical lemma which is used in the proof of the next theorem. 

Lemma 5.3. Let (a, cr) a hypermap of genus 3, admitting an automorphism of order 12 
such that its power of order 2 fixes 4 points then (a,a) is not hypere~liptic and 
Aut(a,o) = Cl2 or is of order 48. 

Proof. Let JI be the automorphism of order 12 and 4 its power of order 2. tj4 is of 
order 3 and fixes 2 or 5 points by (1). If II/” fixes 2 points then for all i x(tl/ ‘) < 2 which 
contradicts (1) applied to (J/). If J1* fixes 5 points then it fixes one point in common 
with 4; thus, x(q) = 1. Hence, (I,G) is its own normalizer in Aut(a,o). If (a,a) is 
3-elliptic, then Aut(a, o) = C12. If(a, a) is not 3-elliptic, then 1 Aut(a, cr)l is 48,84,120 or 
144 by the Sylow theorems and the fact that I Aut(g a)1 < 84(g - I). Now, there is no 
automorphism of order 5 on a hypermap of genus 3 (since it would fix only one point) 
and a hypermap of genus 3 admitting an automorphism of order 7 = 2g + 1 Aut(a, cr) 
is C,, Cl4 or is of order 168. 

These hypermaps are not hyperelliptic for otherwise the hyperelliptic involution 
would normalize (9) in Aut(a, a) and thus would be equal to 4 itself. However 4 fixes 
only 4 points, hence the contradiction. 0 
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Theorem 5.4. Let @,a) be a Wiman hypermap of type II. Then, two cases may occur: 
(i) (a, a) is hy~ere~~j~t~c and Aut(a, a) = C+, Deg, or 1 Au&x, a)1 = 48, an extension of 

S, by C2 and g = 2. 
(ii) (a, a) is not hy~ere~~~~tic then g = 3 and Aut(a,o) = Cl2 or jAut(cl,o)) = 48. 

Proof. Let 1,6 be the automo~~sm of order 4g where # is its power of order 2. Note 
that an automorphism of order 2 fixes an even number of points. We know that the 
quotient hypermap with respect to ($> is of genus y. = 0, since 1 (+)I Z 4g - 4. Thus, 
by (2), C;:;‘x(@) = log - 2. 

If x(#) = 0, then 1Og - 2 = C;:;’ x(+‘) = C~~;‘x(JI”‘) < 6g - 2, which is 
impossible. 

If x(#) = 2, then Proposition 4.3 applies and there is no automorphism of order 4g; 
a contradiction. 

If x(#) = 4, there exists a homomo~hism h from (1c/) to Sq; then her(h) contains 
(tj4) or ker(h) = (I++~). If ker(h) contains (e4), thenCfZiX(($4)*) 2 4g - 4 by (1) we 
have that C:Z;~((1Cf~fi) < 4g - 2 and we have an equality. The non-trivial elements of 
the group ($4) must all fix 4 points except two of them which fix 5 points and are 
therefore of order 3; but it is impossible for an element to fix 4 points in common with 
an element that fixes 5 points. If ker(h) = (ti3), then 3 divides g and by (1) we have 
2g - 2 2 (- 2)4g/3 + 4(4@/3 - 1) i.e. 2g + 2 2 8@/3. Thus g = 3 and o($) = 12. By 
Lemma 5.3, we have the result. 

If ~(4) > 6, then 2g - 2 > 2(2y - 2) + 6, that is, after computation, 2g > 4y + 4 
which is impossible for y 3 2 (by Theorem 4.4). 

Let y = 1. Since there exist powers of J, not in (4) that fix points, the same holds for 
$. Now, o(g) # 3 since 2g is even and o(q) = 2 means g = 1, a contradiction, o(q) = 4 
or o(G) = 6 mean Q = 2 or Q = 3 but ~(4) 2 6 implies that Q > 3. 

Hence, y = 0 that is ~(4) = 2g + 2; the hypermap is hyperelliptic and 
Aut(a, 0) = Cae, Aut(cc, d) = D4g or Q = 2 and IAut(a,o)( = 48 a central extension of 
&by& q 

6. Harvey hypermaps 

We recall that a normal subgroup of order p in a p-group is contained in the center 
of the p-group. 

Propos&itm 6.1. Let (a, a) be a hypermap of genus g > 2, p a prime diuiding the order of 
Aut(a, a), and B a p-group. Let 4 E 69 be an automorphism of prime order p such that 
~(4) = 2 + 2g/(p - 1). Then 4 is in the center of 8. 

Proof. Let @ of order p be a central element in 4” and y the genus of the quotient 
hypermap (E, a) with respect to ($); on this quotient hypermap, all automorphisms 
are induced. Since $4 = &G we can also consider the quotient hypermap with respect 
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to (#); on this quotient hypermap $ is induced and since this hypermap is of genus 0, 
x($) = 0, p or 2p. We suppose for convenience that p is an odd prime since if p =f 2 the 
map is hyperelliptic and $ is in the center of AZ&@, a), 

Let y 2 2. By induction on the genus, we suppose that VBo@/<$), @ = @. If fl 
is identity then 0 is a power of $ therefore commutes with (6. If B is not identity 
then O@- ’ = $‘# for some i # 0 mod p. Thus, @#i-j = JI” for all j # 0 modp. 

Since <JIj> = <JI>, Now, by (l), ~(2 + ~Y/(P - 1)) = px(& = ~~zix($i~44 = 

~(2 + 2g/(p - 1); hence, g < 1, a contradiction. 
Let y = 1. Then x(G) = (29 - 2)/(p - 1) and ~(4) = 2 + 2g/(p - 1). Thus p - 1 

divides 2, i.e. p = 3. Then g = 4 or g = 7 since x(e) = p or 2~. By (1) x($) = 3. If g = 4, 

since ~(4) = 6, x(d;) = 2, a contradiction. If g = 7, ~(4) = 9 and x(e) = 6. Thus, there 
exists a homomorphism from 9p to Se. Hence, 191 < 27. Thus, VBE p/($), 

@ = @ and we use the same argument then for the case y & 2. Let y = 0, the induced 

p_Sylow is C,e because of planarity. Thus, ‘dB~g/(+), (be = @ and we use the same 
argument as that for the ease y 2 2. El 

Corollary 6.2. Let (a, a) be a hypermap of genus g 2 2 and G a nilpotent automorphism 
group. Let b, E G be an automorphism of prime order p such that x(#) = 2 + 2g/(p - 1). 
Then 4 is in the center of G. 

Proof. By Proposition 6.1, Q is central in the p_Sylow group and since G is nilpotent it 
is a direct product of its Sylow so that (p is in the center of G. !J 

Theorem 6.3. Let (a, a) be a hypermap of genus g 2 2,~ # 3 the smallest prime 
dividing the order of Aut(a,o). Let 4 be an automorphism of order p such that 
~(4) = 2 + 2gj(p - 1). Then (a,o) is p-elliptic for the automorphism #. 

Proof. Let m be the number of conjugates of <4). By (l), we know that 
2g-22 - 2lAut(a,o)J + m(p - 1)[2 + 2g/(p - l)] i.e. lAut(a,o)l > -g + 1 + 
m(p - 1 + g). Thus [Aut(a,o)[ 2 (m - l)(g - 1) + mp. 

If p L 5, we know by Theorem 4.2 that IAut(a,o)l < 2p(g - l)/(p - 3). Thus, 
(m - l)(g - 1) + mp < 2pfg - l)/( p - 3) and (m - 1) < 2p/( p - 3) = 2 + 4/( p - 3). 
Hence, if p > 5 then m < 5 and any element which conjugates # would be of order 
smaller than or equal to 5, a contradiction. 

Note now that if there are exactly p conjugates of 4, there exists an element 8 of 
order o(0) = p which conjugates 4; then 8 cyclically permutes all p conjugates of r$. 
But we know by Proposition 6.1 that g must commute with at least the one which 
belongs to its p-Sylow, which is impossible. Thus, p = 2 and m ,< 6 is a contradiction. 

If p = 3 and 1 Aut(a, o)i < 4( g - 1) then m < 4 the observation we made for p = 5 
applies here and we get a contradiction. 

If p = 3 and 4(g - 1) > [Aut(go)l < 15(g - I), then, with the notation of 
Theorem 4.2, r = 3 and 3 $ l/n1 -t- l/n2 + l/n3 < 1 i.e. 6 < l/n2 + l/n3 < 3. 
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Such a situation is reached for instance when n2 = n3 = 5 and then tdut(a,cr)l~= 

15(g - 1). q 

Definition 6.4. A p-Harvey hypermap, is a hypermap of genus g > 2 admitting an 
automorphism of order p(1 -I- 2g/(p - 1)) (type I) or an automorphism of order 
2pg/(p - 1) (type II) where p is the smallest prime dividing the order of AZ@, s). 

Remark 6.5. A Wiman hypermap is a 2-Harvey hypermap. 

Theorem 6.6. Let (~1, a) be a p-Harvey hypermap of type I where p # 3. Then (a, o) is 
p-elliptic and Au& ct) = CPcl +zeltp- 1jJ. 

Proof. By Theorem 4.4 we know that the power of order p of the automo~hism of 
order pfl + 2&p - 1)) fixes 2 + 2g/(p - 1) points. Since p # 3, Proposition 6.3 
applies, so that (a, CF) is p-elliptic and the theorems on p-elliptic hypermaps allows us to 
conclude that Aut(a,(~) = C,,, c2gju,_ i)). [7 

Proposition 6.7. A p-Harvey hypermap of type II admits an automorphism of order 
p fixing 2 + 2g/(p - 1) points. 

Proof. Let $ be the automorphism of order 2pg/(p - 1) and (b is one of its power 
of order p. Because of Theorem 5.4 we can assume p to be odd. We know that 
the quotient hypermap with respect to ($> is of genus y. = 0, since 

I( 2 2p(g - l)/(p - 1). Thus, by (2), C;!‘:p-“x($‘) = 2g - 2 + 4pg,‘(p - 1). 
If ~(4) = 0, then 2g - 2 +- 4pg/(p - 1) = ~~~~‘“-“-‘&.j’) i.e. 2g - 2 + 4pg/ 

(p - 1) = gy”‘-” x($*‘) = 2g - 2 f 4g/(p - l), which is impossible. 
If ~(4) = 2, then Lemma 4.3 applies and there is no automorphism of order 

2pg/(p - l), a contradiction. 
If 3 < X(&J) < 2p, there exists a homomorphism h from (Ic/> to Srtrpj. If 

<t,b)/ker(h) = id, then by (l), o($) = ker(h)l C 2g f 1. Thus p = 2g + 1 and $ = 4 
which fixes 3 = 2 + 2g/(p - 1) points. If ($)/ker(h) # id, then o(h($)) = q a prime 
such that p < q < 2p otherwise p would not be the smallest prime. Thus, x($‘) 2 q 
and by (1) and if y > 0,2g - 2 2 q(2pg/q( p - 1) - 1 i.e. g - 2 3 2g/( p - 1) which is 
impossible since g divides 2g/( p - 1). Thus y = 0 and ~(4) = 2 + g/(p - 1) points, 

If ~(4) >2p, then 2g - 2 >p(2y - 2) + 2p(p - 1); that is after computation 
2g/(p - 1) 2 p - 2 + p(1 + 2y/( p - 1)) which is impossible for y 3 2. 

Let y = 1. Since there exist powers of $ not in ( $J) that fix points, the same happens 
for $. Now, o(q) # 2,4,6 since p is odd and the smallest. If o(q) = 3 = g thus ~(4) = 2 
which is a case already considered. 

Hence, y = 0 that is ~(4) = 2 + 2g/(p - 1). 0 
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Theorem 6.8. A p-Harvey hypermap of type II where p # 3 is p-elliptic and 

ANa, 4 = Gpm- 1) 01 &pg/jp- 1). 

Proof. Immediate consequence of Propositions 6.7 and 6.3. 0 
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