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In this paper we work in a categorical setting which includes the most
usual algebraic categories, for example, groups, rings (associative, com-
mutative), or algebras (associative, commutative, Jordan, Lie, etc.). Such a
setting is supplied by the theory of 2-groups in the sense of Higgins [5].

Let 9 be a variety of Q-groups and # < Z a subvariety, with associated
quotient functor U: &2 — &. Several authors have shown that the first Baer
invariant of an object 4 in &, #,(A4)= L, U(A), plays an important role in
the study of the relationship between extensions of U(A4) in the subvariety
# and general extensions of 4 in 2. In the particular case where 9 is
a variety of groups, Leedham—Green and Mackay showed, in [8], the
existence of a five term exact sequence of abelian groups, for any group A
in 2 and any U(4)-module M in £,

0 B'(U(A), M) > 2' (4, M) - Hom ,(B,(A), M)
B (U(A), M) - 2*(A4, M). (Sy)

The sequence (S,) relates the first cohomology groups in & with those in
4. In [11], Lue also showed the existence of a sequence in which the first
four terms of S, appear. These sequences generalize the well known exact
sequence of universal coefficients for groups cohomology

0 - Ext(A,,, M) — H*(A4, M) - Hom(H,(4, Z), M) -0,

which results from (S,) when @ is the variety of all groups and 4 the
subvariety of abelian groups.

In [12] Modi defined the nth Baer invariant of an object A4 in 2 relative
to the variety &, using Keune’s homotopical theory [7], as the value of the
nth left derived functor of the quotient functor U in A, #,(4)=L,U(A),
n > 1. In this paper we prove that %,(4) is a U(A)-module in 4, and there-
fore it is an 4-module in 2 via the canonical projection 4 — U(A4). Then
we show that the sequence (S;) always exists, for any U(A)-module M in
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A, and in the case where #,(4)=0, 1 <r<n— 1, there also exists an exact
sequence

0> B"(U(A), M) > @"(4, M) — Hom ,(%,(A), M)
S B U(A), M) > 9"+ (A, M). (S,)

When & is the variety of all groups and # the subvariety of abelian
groups, the nth Baer invariant of a group A is just the integral homology
group H,(A, Z), and then the sequence S, gives the well known universal
coefficients isomorphism

H"(A, M)=~Hom(H (4, Z), M)

for any group A with H,(A4, Z)=0, 2<r<n—1, and any trivial 4-module
M. So, the existence of the sequence (S,) can be seen as a generalization
to arbitrary varieties of 2-groups of the above classical result for cohomol-
ogy of groups.

As an immediate consequence of the existence of the sequences (S,), we
will prove that the Baer invariants of an object 4 in & are trivial at dimen-
sions less than n (#.(4)=0, 1<r<n—1) if and only if for any U(A4)-
module M in %, the canonical morphism #'(U(A4), M) > 2"(4, M) is an
isomorphism for r <n— 1 and a monomorphism for r = n. Let us note that
there are some interesting examples in which %,(A4) is zero (see [6, 9, 10]).
If we moreover suppose that A is a #-perfect or a #-splitting object (ie.,
U(A) is zero or a retract of a %-free object, respectively), we obtain an
isomorphism 2?%(4, M)=~Hom ,(%,(A), M) as a direct consequence of the
sequence (S,).

1. MODULES IN A VARIETY OF 2-GROUPS

This section recalls some facts about modules over an object in a variety
of Q-groups. We will need these facts in the rest of the paper.

Let us suppose Q=0,uU R, U, a set of operators (none of weight
greater than 2), with only one operator of weight zero (denoted by 0), just
two of weight two (denoted by + and x, respectively), and at least one of
weight one (denoted by —).

An Q-group is a set 4 together with n-ary operations, one for each
operator in Q of weight n, which satisfy:

(i) The set 4, together with the operations which correspond to the
operators +, —, and 0, is a group.

(ii) The operation which corresponds to = is distributive with
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respect to that which corresponds to + (i.e, x* (y+2z)=(x* p)+ (x *2)
and (x+ y)*xz=(x*z)+(yxz)forall x, y,ze A).

(ili) For all weR, o(x* y)=w(x)*y=x*xw(y) and if o# —,
then w(x+ y)=w(x)+ w(y) for all x, ye A.

The category of 2-groups has Q-groups as objects and £-group
homomorphisms as morphisms, where an Q-group homormorphism is a
map which preserves all the operations.

We will suppose 2 a variety (in the sense of Birkoff ) of the category of
Q-groups. Then @ is complete, cocomplete, and has a zero object. Note
also that for any surjective morphism in 2, p:4—- B, the set
N={ae A/p(a)=0} is an object in 2, the inclusion v: N5 A is the kernel
of p, and p is the cokernel of v.

An ideal of an object A4 is a subobject which is the kernel of some
morphisms with domain 4. It is clear that a subobject N of 4 is an ideal
iff it is a normal subgroup of 4 and for all xe N and ae€ 4 the elements
x*a and a * x are in N.

An object M in 2 is called singular if it is abelian as a group and if
M * M =0. Given an object 4, by an A-Module in 2 we mean a right split
exact sequence in 4, 0 - M - E 5° 4 - 0, with M a singular object. Such
a sequence is determined, up to isomorphism, by 4, M, and the induced
actions of 4 on M,

“x =s(a)+ x—s(a),

axx=s(a)*x and xxa=xx*s(a), forall xeM,acA,;

note that E is isomorphic to the Q-group M x A4 (semidirect product), whose
underlying set is the cartesian product M x A and whose operations are

w(x, a) = (w(x), (a))
(x,a)+(x,d')=(x+“x",a+a’)
(x,a)*x(x',a')=(x*xa +axx',axa')

Then an A-module is just a singular object M together with certain actions,
in such a way that the Q2-group M x 4 is an object in 2.
An A-module morphism is a commutative diagram

00— M — Ee=—A4—0

(N

0O— M — F = A4—0

or equivalently a morphism f: M - M’ which is compatible with the
actions. The corresponding category of A-modules is equivalent to the
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category of abelian group objects in the comma category 2/A4, ie., the
category of A-modules in & in the sense of Beck. An equivalence is given
by the functor which associates to any A-module M the object
MxA-P 4in 2/A.

PROPOSITION 1. Let M be an A-module in 9
(i) Given a morphism \: A" = A, M is an A'-module in & with actions
4y = Yy
a xx=y(a’)*x, and
x«d' =xxyY(d'), forallxeManda' €A’
We will say that M is an A'-module via .
(ii) If N is an ideal of A, and it acts trivially on M (ie., “x=x and

axx=0=xxa, for all xe M and ae N), then M is an A/N-module in 9,
with the corresponding induced actions.

Proof. (i) Mx A’ is the pullback object in &

Mxd <= g

|l
MxA «——= A4
(ii) N acts trivially on M if and only if N is an ideal of M x A4 by
the inclusion x+- (0, x). In this case the semidirect product M x (A4/N),

according to the induced actions of A/N on M, is an object of & since it
is isomorphic to (M x 4)/N. |

Finally, recall that for any object ¢y: B— A in &/A, there is a natural
bijection Homy (B —~Y 4, MxA— A)=Der(B, M), where Der(B, A)
denotes the abelian group of derivations of B into the B-module, via the
morphism ¥, M (i.e., maps n: B — M satisfying

n(x+ y)=n(x)+ n(y),
n(x * y)=(n(x) * y)+ (x * n(y)) and n(w(x))=w(n(x)), for all x, ye B).

For more details see Orzech [13].

2. THE Homotory GrROUPS ARE MODULES

In this Section we prove that all homotopy groups of a simplicial object
A. in a variety of 2-groups & are I1,(A.)-modules in &. This fact will be
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used to see how Baer invariants are modules, since they can be calculated
as the homotopy groups of certain simplicial objects.

Simpl(2) will denote the category of simplicial objects in . The
(Moore) homotopy groups of a simplicial object A. (shown in Scheme 1)
are defined, as in the case of simplicial groups, by

i_oKer(di:A,—~ 4, )

IT.(A)=
A = (o Ker(d A, 1= A)'

n=0.

S

1
m s
m LN
. AZ__———::iAI———:‘AO
d d
[¢] ]

SCHEME 1

We will denote
N, (A)= (n) Ker(d;: 4, - 4, )
i=0
and
I(A)=d,, ( ﬁ Ker(d;: A, ; —>A,,)>,
so IT(A.)= N, (A)/I(A.). -
LeMMA 2. Let A. be a simplicial object in 9. Then, for all n=0, I,(A.)

is an ideal of A, and therefore I1,(A.) is an object in 2.
Moreover, for all xe A, and ae N,(A.), n= 1, we have

[x+a—x]=[ssdy(x)+a—szdy(x)],
[x*a]=[s3d5(x)*a], and
[a*x]=[ax*s;dy(x)],

where square brackets are used to denote equivalence classes in I1,(A.).
Proof. For all xe 4, and ye (\/_,Ker(d;: 4,,, — A,), the elements
x+d,, (y)—x=d,, (5,(x)+ p—s,(x)),
X*dy 1 (y)=dyi(5,(x)* y), and
Ay () *x x=d, (¥ *5,(x))
are in /,(A.). Consequently 7,(A.) is an ideal of 4,,.

481/132/2-5
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Now, to prove the identities in the lemma, let us first observe that
[x+a—x])=1La] and [x*al=0="[a=*x],

for all ae N, (A.) and xe 4,, with d;(x)=0 for at least one index j in
{1,2,..,n—1}.
In fact, let us write u + v —u — v = [u, v] (the commutator); the elements

zZ= H:Sn(x)’ Sn{a)]] - [[Sn‘ l(x)’ Sp - ](a)]] + o
+ (=" sy ix)y s (@] + (= 1) Vs 1(x), s@)] € 4,

and

t

Z :sn(x) * S;z(a) S8y l(x) *S§, l(a) + o
+(=1)"7 lSj+ (x) * 5,4 (@) +(— 1)"“"‘5j+ (x)*s{a)e A,
are in ()/_,Ker(d;:4,,,—>A,). Moreover, d, (z)=[x,a] and
d,.(Z)=x%aqa, so [x+a—x—a]=0=[xxa] in IT,(A.); analogously
[a*x]=0.
Consequently, if x, y € 4, are elements such that d;(x)=d,(y) for some

0<jg<n—1, then [x+a—x]=[y+a—y], [x*xal=[y=*a], and
l[a*x]=[axy] forall ae N,(A.). So

[x+a—x]=[s, d(x)+a—s,_ d,(x)]
=[s7_2d, H(x) =5, _,d;, 4(x)]
=[s2 sd} J(x)+a—s] d, ;(x)]
= . = [sodg(x) + a—s5dg(x)]

and analogously

[xxa]=[ssdo(x)*al and laxx]=[axsidy(x)]. 1

The following proposition is already known in particular contexts, for
example, groups or associative algebras.

PrRoOPOSITION 3. Let A, be a simplicial object in @. Then I .(A.) is a
(A )-module in 2, for all n= 1, with actions

Ex] = [so(y) + x —s5( )],
[y1+[x1=0s5(p)«x]  and  [x]*[y]=[x*s5(y}]
for xe N(A.) and ye No(A.)=A,.
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Proof. The identities in Lemma 2 warrant that I7,(A.) is a singular
object in 9.

To prove that IT,(A.) is a ITo(A.)-module in &, let us first observe that
it is an A ,-module.

N,(A.) is an ideal of A,, then we have a short exact sequence
N (A)c A4, " A,/N,(A.) and by pulling back a long p, we obtain a
right split short exact sequence

N(A) = A, X g nyan An —z—” A,

where i(a)=(a,0), g(x,z)=z and A(x)=(x, x). Since I,(A.) is an ideal
of A, it is also an ideal of A4,x, n.,4, via the inclusion
I(A)S N, (A)s A, % 4 x4, S0 we have a diagram of short exact
sequences in 2

L(A)=——=1,(A.)

| [

N.(A.) i A X g nan An % A,

| Lo
(A< xAnxA,,/N,,(A.)An(__Z__An

(A:) I,(A.) 7

in which the bottom row is an A,-module in 2. The actions of 4, on
IT,(A.) are

Tal=[x+a-—x], x*[a]=[x=*a], and [a]l*x=[axx]

Now, we consider /1,(A.) as Agmodule in £ via the morphism
sq: Ag — A,. Then, using Proposition 1, since I7o(A.) is the quotient of 4, by
the ideal d,(Ker(d,: 4, — A,)), to see that IT,(A.) is a ITo(A.)-module with
the announced actions, we only have to observe that d,(Ker(d,: A, = A,))
acts trivially on IT,(A.).

Let ae N,(A.) and yeKer(d,: A, - A,). The elements of A4

n+1
z=s55(y)+5,(a) = 55(y) = su(s5~ ' (¥) +a—s571(p))
and
z'=55(y) * s,(a) = 5,(55 ' (y) * @)
are in (\/_, Ker(d,: 4,,, , — 4,). Moreover

d, (2} =(s5di(¥)+a—s5ds(¥) = (s (¥)+a—s5'(y)



328 CEGARRA AND BULLEJOS

and
do1(2')=spdi(p)xa—s5 '(y) xa.

Then

Wal=[sg ' (¥)+a—sg”'(»)] and di(p)* [al=[s5"'(y)*al,
but do( y)=0, so using Lemma 2 we have
Lo~ '(»)+a—sg” (»)]=Lsodo(y) + a—s5do(y)] = [a]
and
[so~'(»)* al=[s5do(y) % a]=0.

Therefore “[a]=[a], d,(y)* [a]=0, and, analogously, [a] *d ()
=0. 11

3. AN ExacT SEQUENCE IN COHOMOLOGY OF SIMPLICIAL £2-GROUPS

The object of this section is to establish an exact sequence of abelian
groups

0 — H"(Cosk"(A.), M) -5 H"(A., M) %> Hom, 4 ,(/T,(A.), M)

H"+'(Cosk"(A.), M) -2 H"+'(A., M),

nz 1, for any simplicial object A. and any IT,(A.)-module M in a variety
of Q-groups 2. This sequence will be used to deduce the exact sequence
(S,) (which was announced in the Introduction). We will also identify the
corresponding sequence for n=1 with that obtained by Leedham-Green
and Mackay in [8].

We will start by recalling some aspects of simplicial objects and their
cohomology.

Let A. be a simplicial object in 9, A =II,(A.), and M an A-module in
9 ; the nth cohomology group of A. with coefficients in M. H"(A., M), is
defined as the nth cohomology of the cochain complex of abelian groups

Der(A., M) = ---Der(4, ,, M)~ Der(4,, M)
_6”_’ Der(An+laM)_’ R

where 6"=Y"_,(—~1)'d* and M is an A4,module via the canonical
morphism A4, - A.
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The elements of the group Z"(A., M)=Ker(d") are called n-cocycles
and those in B"(A., M)=Im(6" ') n-coboundaries. Thus H"(A., M)=
Z"(A.,, M)/B"(A., M), n20. Clearly H"(A., —) is a functor from the
category of I7,(A.}-modules in & into the category of abelian groups;
moreover, a simplicial morphism f.: A.— B. induces a natural group
homomorphisms H"(f., M): H'(B., M) > H"(A., M), for any II,(B.)-
module M, where M is also considered as a IT;(A.)-module via the
morphism IT4(f.) : IT)(A.) = I[Ty(B.), in such a way that

H'({., —): H'(B., —) > H"(A., —)
is a natural transformation between functors from the category of /7,(B.)-
modules to abelian groups. Let us note also that if f. and g.: A. > B. are
homotopic simplicial morphisms then the homomorphisms H"(f., M) and
H"(g., M) are the same, and in particular if A. and B. are homotopically
equivalents then H"(A., M)~ H"(B., M).

Let us now recall that an n-truncated simplicial object consists of objects
Ag, Ay, ..., A, and the usual face and degeneracy morphisms between them.
If we designate by Tr” Simpl(2) the category of n-truncated simplicial
objects of 2, the functor “truncation at level n”

tr”: Simpl(2) —» Tr” Simpl(2),

admits a right adjoint cosk”, called the n-coskeleton functor. A construc-
tion of the n-coskeleton of a truncated complex can be done by using
simplicial kernels, as follows:

Given an n-truncated simplicial object A.,, n>1, the n+ l-simplicial
kernel of A.,, is an object, denoted by 4, ,(A.,,), together with morphisms
di:d,,(Ay) > A, 0<i<n+1, which is universal with respect to the
property d;d;=d;_,d, for all 0<i<j<n+1. The object 4,,, ,(A.,,) is, up
to isomorphism, the subobject of the product A, x4, x"*?x 4, whose
clements are those (n+2)-tuples (xo, X,,.., X,, ) satisfying di(x;)=
d;_(x;), 0<i<j<n+1 And the morphisms d;: 4, ,(A.,) — A, are the
projections.

Let us note that there are degeneracy morphisms s,: 4, — 4, (A.,),
0 < j<n, determined by the identities

ds;=s; .d; if i<},
disi=d;,15,=1,, and
dis;=d;s;_, if i>j+1,
in such a way that Scheme2 is an (n+ 1)-truncated complex. Then,

cosk™: Tr" Simpl(2) — Simpl(2) is obtained by iterating simplicial kernel
construction.



330 CEGARRA AND BULLEJOS

n n-1
. .
‘s s s
0 0
a VNG ¢ X
n+1 n 1
A (A, ) A A A, —————3 A
n+l tr n n 1 o]
d d d
0 o] 0
SCHEME 2

Given A. a simplicial object, its n-simplicial kernel is defined by
A, (A)=4,t" YA if n>1 and 4,(A.)=A4¢x;5,a.) 4o, 1€, the kernel
pair of the canonical epimorphism 4, —» IT5(A.). The unity of the adjunc-
tion d.: A. — cosk” tr"(A.) consists of identities at dimensions <#, and the
canonical morphism

d,yi: A4, > 4,,41(A); d, 4 ((x) = (do(x), dy(x), ..., d,, 1 (X))

at dimension n + 1.

The endofunctor Cosk” = cosk” tr": Simpl(2) — Simpl(Z), n> 1, is also
called the n-coskeleton functor.

A simplicial object A. is called aspherical if the morphisms
d,: 4,— 4,(A.) are epimorphisms for all »>2. The O-coskeleton functor
Cosk®: Simpl(2) — Simpl(2) is defined by

Cosk®(A.) = cosk!(4,(A.) 3 4o).

The above facts are what we will need to develop this section. More
details about the above constructions can be found in [3].

The following proposition characterizes the homotopy groups I7,(A.) of
a complex A. as ITo(A.)-modules, by a universal property.

ProrosITION 4. Let A. be a simplicial object in 9 and n2 1. Then there
exists a natural derivation £: 4, . (A.)— II,(A.), such that the composition
A, o4, (A)> T (A.) is zero, where IT,(A.) is considered as a
A, . (A.)-module via the canonical morphism 4, , (A.) - II,(A.).

Moreover, for any I (A.)-module M and any derivation a: 4, (A.) > M
with ad,, =0, there exists a unique I1\(A.)-module morphism, f, which
makes the diagram

A, (A)—> IT,(A.)

o

!
M
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commutative. In other words, for any Il14(A.)-module M, the sequence
0 —— Hom s (/T,(A.), M) —— Der(4, . 1(A.), M)
2, Der(4, 1, M) M

is exact and natural (in A. and M).

Proof. Let us denote ©,:4,,, (A.)—> 4, , (A.) as the map given by
O (X0 X5 coor Xy 1) = (X5 X5 vy Xy 1) — S:( X)), 0<i<gn.
Observe, using the simplicial identities, that the element
0,0, 1 Og(x, Xy, ey X, 1)
has all its components, up to the last one, equal to zero. Then we write
0,0, | --Ouxg, X150y Xy 1)=1(0,0,..,0,O0(xy, X, e Xy 4 {))
for @(x,, x4, ..., X, 1) an element in N,(A.) and we define

f(xo, Xis s Xpy 1): [@(XO’ Xy oms Xy l)]a

where square bracket denotes equivalence class in I7,(A.).
If we consider z = (xq, X;, ..., X, ) any element in 4, . (A.), the follow-
ing facts have a straightforward proof:

(a) z—0(z)=s,x,)=4d,,,s:{x)ed,, (4,,,) and therefore z—
0,..0,0(z))ed, , (4,,,)

(b) IfaeN,(A.)is an element such that z— (0, ..., 0,a)ed, (4, ),
then ¢(z)=[a].

(¢) For0<i<n, éO,=¢

{d) For any xe A4, and 0<i<n,

&d,15:(x) +z—d, ,y5:(x)) = [5;d,(x) + O(2) —5:d,(x) ]
— Wg‘-‘”g’(z).

(e) For 1<ign+1, consider B; the ideal of A4,,,(A.) whose
elements are in the form (0, .., 0, y;, .., y,, ). Then @y(z)e B, and if ze B,,
also ©,(z)e B;, ,.

To prove that ¢ is a derivation, let us first see that the restriction of &
to B; are morphisms in &, for all 1 <ig<n+1.

For i=n+1, the restriction &/B, | is just the composition of the two
canonical projections B, . — N,(A.) and N,(A.)—> IT(A.), and therefore
¢/B, ., is clearly a morphism.
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Suppose now that &/B;, is a morphism. Then, for any elements
z=(Xg, X, -y X, 1) and 2’ = (x4, x}, ..., X, . ;) in B, ;, we have

E(z+2) =80, (z+2))
O ((2)+d, s 1(x)+60, (2)—d, 5 41(x))
SO (2)+ed, s 1(x)+ 0, (2)—d, 5 1(x))
(since £/B; is a morphism)
=80, ,(2)) +4(6, (z')=E&(z) + &)
(using (d), since dy(x,;)=0).

Il

Il

Now, let z and z’ be two arbitrary elements in 4, , ;(A.). Then

Ez+2)=EOg(z+2))=E(O0(2) + b, . 1 So(X0) + Op(z') — d, , 150(X0))
= &(z) + [D00IE(),

analogously &(z * z')=¢&(z) %z + z % £(2') and &(w(z)) = w(&(z)), therefore
¢ is a derivation, which clearly verifies &d, | =0.

Finally, given a: 4, , ((A.) » M a derivation with ad,, , , =0, the unique
morphism f: I1,(A.) > M such that f& =« is given by

f([a])==(0, ..., 0, a), forall [a]ell(A.). |

As an immediate consequence of the above Proposition 4, a simplicial
object is aspherical if and only if its homotopy groups at dimensions >
are all trivial.

ProposiTION 5. Let A. be a simplicial object in &, nz1, and
E:4,, (A) > I1(A.) the derivation introduced in Proposition 4. Then ¢ is
an (n+ 1)-cocycle in Z"+'(Cosk™(A.), I1,(A.)).

Moreover, the exact sequence (1) in proposition 4 induces an exact
sequence of abelian groups

Hom 4 ,(IT,(A.), M) =< H"*!(Cosk™(A.), M) > H"*'(A., M) (II)

Sfor all ITy(A.)-modules M.

Proof. Let us first prove that £ is a cocycle, or equivalently that for all
(Zos Z1s ooy Zn+2) € Cosk™(AL), , » the alternating sum > 7*2 (—1) &(z)) is
Zero.

Since Cosk”(A.),, =4, (A.), the elements z; are in 4, , (A.). Then
Wwe can suppose z;= (X;g, X;1, s Xiny 1), With x;€ 4,, such that x,;=x,_,,
0<j<i<n+ 1. Now, any simplicial object in & satisfies Kan’s condition
[77 and therefore for any z,, 0<i<n+ 1, there exists w,€ 4, ,, such that
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di(w;)=x;, 0<j<n, and also there exists we 4, , such that d,(w)=w,.

Consequently the element d, ,,(w)e A, . has dd, ,(w)=d,, (w;), and

the elements a;=d,, (w;)—x,,,; are in N (A.) forall 0<i<n+ 1.
Using now condition (b) (in the proof of Proposition 4) we have

é(zi)z[ai]y 0<l<n+]’

and
dyia(W)=(d, 1 (Wo)s dy (W), s dy 1 (W1 1)
= (o + Xont 15 A1t Xpusts oo At F X s 14 1)
= (804 Xy 1200 A1 T Xni21s oo 1 T Xy 200 1)
=(ag,s A1y ey Q1)+ 2,45
Therefore

0= é(d)1+ldn+2(w)) = é((a07 Ay, -y an+l) +Zn+2)
= é(aos al 5 eery an+l)+ é(zn+2) (Since d?)(ar)z 0)

H+2

=Y (=1)¢z) (since a,e N, , [(A.)),

i

and so ¢ is a cocycle.
Consider now the group homomorphism

é* . Homﬂo(A.)(Hn(A')’ M) - Der(An+ I(A'), M)9

since ¢ is a cocycle, £* takes any homomorphism to a cocycle and so it
induces a group homomorphism

&*: Hom o (11,(A.), M) - H"*'(Cosk”(A.), M).
Then we have the sequence
Hom ;4 ,(IT,(A.), M) -5 H"*(Cosk™(A.), M) L5 H"+1(A., M)

in which clearly d*¢* =0, since éd,, ; =0.

Moreover, if a cocycle a:4,,,(A.)> M represents an element in
H"+!(Cosk"(A.), M) which is taken to zero by d*, then there exists a
derivation f: A, - M such that

n+1

od, ;=) (—1)pd,

i=0

But, since Cosk”(A.),=A, and d,=d.d,,, (where d’s denote the face
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operators at dimension n+1 of A. and Cosk™A.), respectively),
a—Y"rl(—1)pd; is a cocycle in Z"*'(Cosk™(A.), M). This cocycle
represents the same element in H"**(Cosk”(A.), M) that a does, and it is
taken by d¥,, to the zero derivation in Der(A4,, ,, M). So, by the exact-
ness of sequence (I), there exists a ITy(A.)-module homomorphism
[, (A)—> M such that &*(f)=a—37%) (—1) Bd; and therefore «
represents an element in the image of £*. |

Finally we obtain the announced five term exact sequence.

PROPOSITION 6. Let A. be a simplicial object, A= 1I1,(A.), and M an
A-module in 9. Then there is an exact sequence of abelian groups

0-——— H"(Cosk™(A.), M) -5 H™(A., M)—“> Hom ,(IT,(A.), M)

&*

H" "1 (Cosk"(A.), M) 5 H' ™ '(A., M),

forall n= 1.

Proof. The connecting morphism y is defined as follows:
Given a cocycle a: A,— M in Z"(A., M), consider the derivation

n+1

B=Y (—1)ad:4,, (A)~M.

Then Bd,, , =0 and therefore, using Proposition 4, there exists a unique
morphism of ITy(A.)-modules f: IT,(A.}) - M such that f¢é=p. Now it is
clear that § depends only of the class of « in H"(A., M) and so we can
define the image, by y, of such a class as f, i.e., y[a]=f

After Proposition 5, we only need to prove the exactness of the sequence
in the three first points:

— d* is indeed an inclusion since tr"(d.) = 1,4,

— Given [a]le H"(A., M), y[«]¢=0ifand only if ¥/ ¥ (—1) ad, =0
and this is just the condition of [«] being an element in H"(Cosk"(A.), M).
Therefore we have exactness in H"(A., M).

— For any ae Z™MA., M) we have C&*y[a] = [glalé] =
(i (—1) ad;]=0. Conversely, if f:1I,(A.)—> M is a morphism of
A-modules such that £*(f) = [f¢]=0, there exists a derivation a: 4, > M
with fE=3"*1(~1) ad,. Then o€ Z"(A., M) since ¢d,, ., =0 and clearly
tlal=f So the sequence is exact in Hom ,(IT,(A.), M). |}
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4. COHOMOLOGY AND BAER INVARIANTS

Here we obtain the exact sequences (S,) as a consequence of the exact
sequences in Proposition 6.

Given an object A in &, a simplicial object F. in 2 is said to be a resolu-
tion of A if F. is aspherical and I7,(F.)= A.

A resolution F. of A4 is said free if all F, are free and the free generators
are stable under the degeneracy operators; ie., if X; < F, are the sets of free
generators, then s,(X,)< X, forall i>0 and 0<j<i

Note that, for any object A, the cotriple resolution of 4, G.(A4), is always
a free resolution. And also that any truncated free resolution of 4 can be
extended, step by step, to a free resolution.

The comparison theorem asserts that given F., a free resolution of 4, B.,
an aspherical simplicial object, and f: 4 — II,(B.), a morphism, there exists
a simplicial morphism f.: F.— B. (lifting of /), unique up to homotopy,
such that I7,(f.)=f. This theorem allows us to define the cohomology
groups of an object 4 in &, with coefficients in an 4-module M, as the
cohomology of any free resolution F. of A4

9"(A, M)=H"(F., M), n=0.

General properties of this cohomology as well as the fact that it par-
ticularizes to those well known, such as Filenberg-Mac Lane cohomology
for groups, Shukla cohomology for associative algebras or André—Quillen
cohomology for commutative algebras, can be found in [1, 2, 13, 14].

Let T: 2 — 2’ be an arbitrary functor between varieties of Q-groups.
The nth left derived functor of T, L, T: 2 — 2', n=0, is defined by

L, T(4)=II(T(F.)) and  L,T(f)=I,(T(f.)),

for any object 4 and any morphism f: 4 > B in 9, where F. is a free
resolution of A and f. is a lifting of £, from a free resolution of A4 to a free
resolution of B.

Note that if T preserves colimits, then L, T2 T. Moreover, by Proposi-
tion3, L,T(A4) is in a canonical way a T(A)-module in &'. (For general
properties of these functors, see [7, 127).

Let us now consider # a variety of &, with associated quotient functor
U. The nth Baer invariant of an object A in @ with respect to the variety
4, denoted by %,(A), n=1, is defined to be the value of the nth left
derived of U in A4,

B(A)=L,U(4), n>l.

Since the functor U preserves colimits, the Baer invariants %,(4) are, in
a natural way, U(A4)-modules in 2 and therefore A-modules in 2, via the
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canonical projection 4 — U(A). This last fact has been observed
individually for » =1 in many particular contexts, for example in varieties
of groups or associative algebras ([8, 9, 11]), where %,(A4) is isomorphic to
the first Baer invariant in the sense of Frohlich [4]. Our method gives
nevertheless a unified treatment to the problem of making #%,(4) an
A-module for all n> 1.

As a direct consequence of Proposition 6 we have

PROPOSITION 7. Let # be a variety of 9, A an object in 9, and M a
U(A)-module in B. Then for any free resolution F. of A in 9 and any n> 1
there exists a natural exact sequence of abelian groups

0 — H"(Cosk"(U(F.)), M) » 9"(4, M) —» Hom ,(&,(A), M)

H"*(Cosk™(U(F.)), M) > 2"+ (4, M).

where M is considered as an A-module in @ via the canonical projection
A - U(A).

Proof. Consider the simplicial object U(F.) in 4 and the
IT(U(F.))=U(A) module M. Since I1,(U(F.))=3%,4), by Proposition 6,
there exists a natural exact sequence of abelian groups

0 — H"(Cosk(U(F.)), M) » H"(U(F.), M) » Hom ,(%&,(A4), M)

e

H"*Y(Cosk™(U(F.)), M) - H"* '(U(F.), M)

for any n> 1. But using the adjunction Z 5, on 2, U —iinclusion, we

obtain an isomorphism of cocomplexes Der(U(F.), M) =Der(F., M) and
therefore isomorphisms of abelian groups

H"UF.), My~ H"(F., M\)=9"(A, M), nz1 }

The following lemma will allow us to identify the first and fourth terms
in the sequence of Proposition 7, in the special cases of n=1 or #,(4)=0
for 1<r<n—1, with the cohomology groups in the subvariety £,
B"(U(A), M) and "+ (U(A), M), respectively.

LEMMA 8. Let P. be a B-free resolution of an object B in # and M a
B-module in #. Then for any n=0, the morphism d.:P.— Cosk™(P.)

induces isomorphisms
B'(4, M) = H(Cosk™(P.), M),

forall0<i<n+1 and nz0.
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Proof. Since d. consists of the identity morphisms at dimensions <#»
and d,,,:P,. —>4,.(P.) is an epimorphism, it is clear that
AB'(A, M)~ H(Cosk”(P.), M) for all 0<i<n. Let us see that d. induces
also an isomorphism for i=n+ 1.

Let a: P,,, — M be a cocycle in Z"*'(P., M) and consider Scheme 3,
where the morphism s: P, %, (p,P,1—4,,2(P.) is defined by
s(x, y)=1(0,..., 0, x, y).

Poor®a (P)Fnnt

NN,

. P } P
n+2 n+1 n
s
0, | N
n+2 n+1
An+2(P' ) o y Am1 (P.)
/ 3
M« ©
SCHEME 3

Then « coequalizes (p,, p,). In fact, let (x, y)e P, X,  (p.,Pns1 and
consider s(x, y)ed, ,,(P.). Since P. is aspherical, there exists ze P, ,
such that d, . ,(z) =s(x, y). But « is a cocycle and therefore

0="Y (=1 ad,(z)=a(x)a(y)

i=0
Consequently, since d,,, ,: P,,; = 4,,(P.) is an epimorphism, there
exists a': 4, (P.)> M such that «'d,,, =« Moreover, since o is a
cocycle and d.: P.— Cosk"(P.) is epic, we have that o’ is a cocycle in
Z"* Y(Cosk"(P.), M).
This construction defines a group homomorphism from H"*(P., M) =
A" (A, M) to H"*'(Cosk”(P.), M), which is an inverse of d*:
H"tY(Cosk"(P.), M) > H"*Y(P., M). }

We can establish now the main result in this paper:

THEOREM 9. Let # be a variety of 2, A an object in 4, and M a U(A)-
module in B. Then there exists an exact sequence of abelian groups

0— B (U(A), M) > 2" (A, M) > Hom ((%,(A), M)
- BX(U(A), M) —> 2*(A, M). (S))
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Moreover, if B,(A)=0 for all 1<i<n-—1, there also exists an exact
sequence of abelian groups

0— B (U(A), M) > 2"(A, M) » Hom 4(%,(A4), M)
A" (U(A), M) > 2" (4, M), (Sa)

Proof. Let F. be a free resolution of 4 in 9. Then U(F,) 33 U(F,) is
always a free truncated resolution of U(A4) in 4. Let G. be an extension of
U(F,) 3 U(F,) to a free resolution of U(A4) in #.

Using Lemma 8, we have isomorphisms for /=1 and 2,

B(U(A), M)=H'(G., M)= H(Cosk*(G.), M) = H(Cosk '(U(F.)), M).

Then the sequence S, is just that in Proposition 7 for n=1.

Let us note now that, for n>1, the n-truncated simplicial object
tr"(U(F.)) is a truncated free resolution of U(A) in # if and only if
H(U(F.))=%.(A4) is zero for all 1 <i<n—1. An in this case, the process
used to obtain (S,) can be applied to obtain the sequence (S,). §

As an immediate consequence we have

COROLLARY 10. Let # be a variety of & and A an object in %. Then, for
r = 1, the following conditions are equivalent:

(1) B(A)=0 for all 1 <i<r.
(i) BU(UA), M)=D(A, M) for all 1 <i<r, and the morphism

B W(U(A), M) > D"+ (A4, M)

is a monomorphism, for any U{A)-module M in 3.

Let us finally observe that when the object 4 is #-perfect, #-splitting, or,
in general, it verifies #"(U(A4), —)=0, n>2, then there is a short exact
sequence of Groups

0— B(U(A), M) > 2" (A, M) — Hom ,(%B,(A), M) - 0.

If in addition we suppose %;(4)=0 for all 1 <i<<n—1, then 2'(4, M)=0
for all 2<r<n—1 and 2"(4, M)=~Hom(#,(4), M). These facts
generalize other already known in cohomology of groups, in fact:
Suppose Z is the variety of all groups and # the subvariety of abelian
groups. Then for any group 4 and any abelian group M, the cohomology
in @ is just the Eilenberg-Mac Lane cohomology of groups, 2"(4, M) =
H'" YA, M), n=1 (see [2]), and the cohomology in the subvariety is
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#"(U(A), M) =Ext"(4,,, M). Now, since for any free resolution F. of 4
there are natural isomorphisms

U(Fn); (Fn)ub = [(Fn)®Z(F,,) Za

where I(F,) is the ideal augmentation, the nth Baer invariant of A4 is just
the integral homology of 4 at dimension #n + 1,

ﬂn(A); Hn+ I(A’ Z)

Therefore, Theorem 9 states now that there is a short exact sequence of
abelian groups

0— Ext'(4,,, M) —» HXA, M) » Hom(H,(A, Z), M) >0

and if, moreover, the homology groups H;(A, Z) are trivial for 2<i<n,
then H'(A, M) is trivial for 3<r<n and

H"" (4, M)=Hom(H, (4, Z), M).
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