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Abstract

Over the past few years several geochemical evaluations of CO, storage in Dutch potential reservoirs are carried out, including
predictions of the short- and long-term impact of CO, on the reservoir using geochemical modelling. The initial mineralogy of
the reservoir is frequently obtained from core analysis and is then used to compute the formation water composition. In this paper
geochemical modelling with TOUGHREACT is used to predict and compare the short- and long-term geochemical impact of CO,
injection into three reservoirs. The mineralogical composition of these reservoirs is an assemblage based on commonly observed
minerals from the Buntsandstein and Rotliegend formations. These formations contain potential onshore and offshore CO,
storage locations in the Netherlands. The results predict drying out and salt precipitation in the near-well area, due to water
evaporation by the injected dry CO,. Several mineral transformations are predicted, dominated by the transformation of albite
into dawsonite, thereby fixing CO,. Due to the relatively low density of dawsonite, the porosity significantly decreases, which
can lead to a pore pressure increase. Disabling of dawsonite precipitation in the simulations, thereby taking into account the
ongoing debate on dawsonite stability, only shows a small increase of the porosity. Future (experimental) work should be focused
on dawsonite occurrence for accurate predictions of the long-term reservoir integrity.

(© 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
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1. Introduction

The Netherlands play a key role in the implementation of CCS in northwestern Europe. Relatively large storage
capacity is available, distances between CO, sources and storage reservoirs are relatively short, and infrastructure
for (cross-border) gas transport over large distances is already installed. Application of CCS within the next 5 years
is promoted in the Netherlands and there is strong commitment to reach the emission reductions. Oil and gas
production from Dutch reservoir is maturing and the expectation is that many fields will be abandoned in the coming
two decades. CCS should be applied within the same period or shortly after, to benefit from the use of (adapted)
existing infrastructure such as platforms, wells, and pipelines.
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Figure 1: 2D window (cell-centered) of the radial model containing four layers of 100 grid cells. Near-well effects are taken into account by
defining fine grid cells close to the well.

Several oil and gas fields in the subsurface of the Netherlands are currently evaluated as potential location for
CO, storage, for example K12-B in the offshore part of the Netherlands (Van der Meer et al., 2005; Audigane et al.,
2008). There is a need for finding a clear and consistent methodology to support policy makers and field operators to
evaluate the short-term operational effects and long-term containment of CO, storage in the reservoir. One of the
important aspects is the geochemical response of the potential storage reservoir upon CO, injection, as shown by
several case studies of potential CO, storage sites (Xu et al., 2004; Gaus et al., 2005; Audigane et al., 2008;
Tambach et al., 2009). The predicted geochemical effects are not known for causing potential delays of worldwide
CO, storage projects, although geochemical modelling, especially long-term, has many uncertainties (Gaus, 2010).

In The Netherlands the main CO, storage capacity is expected in Permian Rotliegendes reservoirs, Triassic
Buntsandstein reservoirs, and Cretaceous Rijnland reservoirs. In such reservoirs the mineralogy is dominated by
quartz, usually reaching more than 60 wt%. Other minerals that are present consist of feldspars (plagioclase,
orthoclase etc.), carbonates (calcite, dolomite etc.), and clay minerals (smectite, illite, kaolinite etc.). The pore space
of the reservoir is filled with formation water (brine) and gas, with gas saturations varying from 50% to 85%. The
composition of the gas phase predominantly consists of methane (CH,), but may also contain N, CO,, and higher
alkanes. The brine contains high concentrations of dissolved halite (NaCl) and it is commonly assumed that over
geological time thermodynamic equilibrium is established between the formation water, the reservoir mineralogy,
and the gas phase.

In this paper a possible methodology is discussed, as well as the results of geochemical modelling of CO,
injection into three sandstone reservoirs. The mineralogy of these sandstones is not directly related to specific
locations or case studies, but are simplified representations for potential reservoirs in The Netherlands, as discussed
above. The number of primary minerals is limited and is systematically increased for better understanding of the
mineral transformations and associated effects. A selection of secondary (precipitating) minerals is specified,
including the mineral dawsonite. The ongoing debate on the stability of this mineral is taken into account by
disabling it in one of the simulations.
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Table 1: Mineralogical composition (volume %) of three sandstone reservoirs, resembling the mineralogy of offshore gas fields in the
Netherlands. Magnesium and calcium bearing minerals are only considered in Reservoir B and C. Precipitation of dawsonite is not considered in
reservoir C’, thereby taking into account the ongoing debate on dawsonite stability (Gaus, 2010).

Volume fraction

Mineral Chemical formula Reservoir A Reservoir B Reservoir C Reservoir C’
Quartz SiO; 0.72 0.64 0.60 0.60
Albite NaAlSi;Os 0.04 0.04 0.04 0.04
K-feldspar ~ KAISi;Og 0.04 0.04 0.04 0.04
Dolomite CaMg(COs), - 0.08 0.08 0.08
Illite Ko sMgo2sAL 3Si35010(OH), - - 0.04 0.04
Porosity 0.20 0.20 0.20 0.20
Secondary (precipitating) minerals considered:

Dawsonite + + + -
Diaspore, Kaolinite, Muscovite, Pyrophyllite, Paragonite + + + +
Anorthite, Calcite, Magnesite, Oligoclase, - + +

Montmorillonite(Ca,K,Mg,Na), Smectite(Ca,K,Mg,Na)

2. Simulation details
2.1. Reservoir description and CO; injection

A radial (R,Z) reservoir model was used with depth of 2010 m, a radius of 1,000 m, and a thickness of 40 m (see
Figure 1). Four layers of 100 grid cells are imposed with grid refinement close to the well and dimensions ranging
from 7.0x10” m to 91 m in the R-direction. A porosity of 20% was defined for the reservoir, giving a total pore
volume of 2.51x10” m® for the full radial model. The irreducible water content is defined as 15%, which is too low
for water flow (relative permeability of 0) and describes full gas flow (relative permeability of 1.0). It is reasonable
to ignore the influence of mineral dissolution and precipitation on the flow, thereby speeding up the simulations
significantly. The model has no-flow boundaries, representing impermeable layers and bounding faults surrounding
the reservoir. The permeability is 100 mD in all three directions, and no faults are present in the reservoir. The
temperature is 70°C and the initial pressure is 30.0 bars. The initial gas composition consists exclusively of CO,, as
given by the ECO2N module in TOUGHREACT, which describes the interactions between brine and CO,. The CO,
is injected with a rate of 10 kg/s (0.32 Mton/year) for 41.5 years, followed by a shut-in of the well. The simulations
were continued up to 100,000 years to study the long-term geochemical effects of CO, injection. Reference cases,
without perturbations such as CO, injection, were also computed to account for mineral reactions in the reservoir.

2.2. Reservoir mineralogy

In many case studies the measured mineralogical composition was used, as for example illustrated in a recent
paper (Tambach et al., 2009). In the current paper we use simplified models that represent the mineralogical
characteristics of reservoirs in the Netherlands. The mineralogy of the reservoirs that we study predominantly
consists of quartz and includes K-feldspar and albite (reservoir A). As we are interested in the effects of individual
minerals present, we then extend the reservoir with other minerals. This includes dolomite (reservoir B) and
dolomite and illite (reservoir C). Geochemically, these reservoirs are more complex than reservoir A, as Ca and Mg
are also included. None of the three reservoirs contains iron and sulphate, which will be part of future work. An
overview of the mineralogical composition of the reservoir, as used in the simulations, is given in Table 1. The table
also includes the selection of common secondary minerals that are allowed to precipitate. Kinetic constants for most
mineral precipitation and dissolution reactions were taken from the literature (Palandri and Kharaka., 2004), while
calcite precipitation is assumed to be instantaneous.
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2.3. Formation water

After definition of the reservoir mineralogy the composition of the formation water needs to be defined before
starting the computations on a reservoir scale. The formation water composition is computed from the reservoir
mineralogy and thermodynamic equilibrium is assumed. The most important advantage of computing the formation
water, rather than using experimental measurements, is that the actual simulations will then start from a well-defined
and reproducible initial situation. Experimentally measured formation water compositions will not be in equilibrium
with the measured reservoir mineralogy once supplied to and modelled with geochemical software. In such cases the
judgement of the user on defining the initial (equilibrium) situation may then contain subjective elements.
Furthermore, downhole formation water samples are quite often not available for specific sites and very expensive
to retrieve. If they are available they may contain contamination from, for example, drilling muds. Degassing of
dissolved CO, during sampling and storing may influence the measured pH. Thoughts about the experimentally
measured formation water were also brought up by others (Gaus et al., 2005; Audigane et al., 2008). It can, on the
other hand, also be discussed whether the simulations should start from thermodynamic equilibrium, as thin sections
may show that specific minerals are covered by other minerals or occur as mineral inclusions, thereby (temporally)
limiting their accessibility (Peters, 2009). In addition to this, the measured reservoir mineralogy composition may
not represent an equilibrium situation as slow transformation of clay minerals, for example, is still ongoing. Despite
these considerations, the thermodynamic equilibrium starting point is used here for clarity and reproducibility.

Below the workflow is described for computing the formation water composition in thermodynamic equilibrium
with the defined reservoir using TOUGHREACT and a relatively basic equation of state (EOS1):

a) Only one grid block (no flow) with the initial mineralogy (no secondary precipitating minerals) is defined.

Kinetic parameters are not necessary, as the thermodynamic equilibrium is computed.

b) All the pores are completely filled with brine (Cyrine = 100 g/1), defining the Na™ and CI” concentrations, while

the concentrations of other primary species are defined as negligibly small.

¢) A background partial pressure of CO, (Pcoy=0.1 bar) is defined in addition to the temperature (T) and total

pressure (P) in the reservoir.

The equilibrium formation water compositions were computed for all reservoirs mentioned in Table 1. The
results were then used in all 400 grid cells of the upscaled 2D radial model, as given in Figure 1.

3. Results
3.1. Short-term effects

The quantitative effects of pressure increase, drying-out and salt precipitation in the near-well area are quite
similar for all three reservoirs. During the period of CO,-injection (i.e. 41.5 years) the pressure steadily increases to
approximately 200 bars and the occurrence of mineral transformations is computed to be negligible at this time-
scale. The initial water saturation in the pores is 15%. Water evaporates in the dry CO, gas stream during injection,
leading to a dry-out area in the vicinity of the well-bore. This is illustrated in Figure 2, showing the gas saturation
(Sy) as a function of the distance to the wellbore. After shut-in of the well, only marginal changes are encountered.
The results show a drying-out front that is increasing over time, with a final radius of 96.8 m. This radius is a direct
function of the total amount of CO, injected, porosity, initial water saturation, temperature, and (final) pressure.
After a relatively small transition zone, the gas saturation is computed to remain constant (S, = 0.848) in the
remainder of the reservoir up to 1000 m away from the well. The amount of salt that precipitates in the dried out
area takes up approximately 0.5% of the total pore volume, which is much less than recently computed for saline
aquifers (i.e. 9.1%) by Pruess and Muller (2009). The reason for this difference is that more water and hence more
salt is present in saline aquifers.
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Figure 2: Gas saturation (S,) or drying out front as a function of the distance to the well during the CO, injection into the reservoir (similar for
all reservoirs defined in Table 1), after 5, 10, 20, and 30 years. After an injection period of 41.5 years the well is shut-in and the gas saturation
does not change significantly. Salt precipitation occurs in the drying out area.

3.2. Long-term effects

Mineral transformation occurs with time, even without the presence of CO,, caused by slow reacting minerals in
the reservoir. The computed changes in volume fraction of dissolving and precipitating minerals in reservoir C, as a
result of CO, injection and re-equilibration, are shown in Figure 3. The most dominant reaction is the conversion of
albite into dawsonite, but transformation of a small amount of K-feldspar into illite is also predicted. Negligible
amounts of dolomite and calcite dissolve and precipitate, respectively. Compared to the reference cases without CO,
injection (fixed background partial pressure of 0.1 bar), feldspar dissolution and illite precipitation (reservoir B and
C) is faster. Alteration of K-feldspar depends on the pH and on the activity of dissolved silica and potassium
(Gardner, 1972; Deer et al., 2001). Given the conditions of Bunter sandstone reservoirs it is likely that K-feldspar is
transformed into alumina silicates, such as kaolinite, pyrophyllite, mica, illite, and muscovite. In this study it is
computed that illite is the dominant transformation product for reservoirs B, C, and C’ (using Mg** from dolomite
dissolution), while small amounts of muscovite, kaolinite, and pyrophillite are formed in case of reservoir A (no
Mg** present). Small amounts of kaolinite and pyrophillite are also formed together with illite in the absence of
dawsonite (reservoir C’). In dissolution experiments, K-feldspar transformation into illite was observed at
decreasing pH for temperatures higher than 150°C, while kaolinite is usually dominant at lower temperatures
(Meunier and Velde, 2004).

In Figure 4 we show the computed volume fractions of albite and dawsonite as a function of time, as well as the
porosity. The results for the reservoirs A, B, and C are quite similar. It is predicted that albite is almost completely
transformed into dawsonite, with an associated porosity decrease from 20% to approximately 19.0% (corresponding
to a 5.0% reduction of the pore volume) after 100,000 years. This is related to the relatively low density of
dawsonite of approximately 2.42 g/cm’, compared to a density of 2.56 g/cm’ for K-feldspar. The pressure may
increase due to the reduction of pore volume, assuming no effect of pressure on the geochemical reactions. Figure 4
also shows that disabling of dawsonite precipitation (reservoir C’) leads to a marginal porosity increase to about
20.1%. Although dawsonite has been observed in some natural analogues (Worden, 2006; Gao et al., 2009) it is not
found in other analogues, probably suggesting much lower Kkinetic reaction rates than currently measured and
applied in geochemical modelling (Gaus, 2010). Albite transformation into dawsonite (or any other secondary
phase) was not observed in experiments by Hangx and Spiers (2009), most probably due to relatively short reaction

times in the order of weeks. The results presented here do not take into account porosity reduction as a result of
geomechanical compaction, which will be part of future study.
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Figure 3:Volume fractions of the minerals in reservoir C as a function of time, representing the reservoir area that is not dried out. The volume
fraction of quartz is one order of magnitude higher and therefore not shown.
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Figure 4: Volume fractions of albite (all reservoirs) and dawsonite (reservoir A, B, and C) as function of time (left) and the porosity as a
function of the time for all reservoirs (right). The results represent the reservoir area that is not dried out.

4. Conclusions

This paper reports computations of the geochemical impact of CO, injection into three sandstone reservoirs,
containing several primary minerals and allowing secondary minerals to precipitate. A workflow for defining the
formation water, before injecting CO,, is discussed. The simulation results of CO, injection into the reservoirs show
that the near-well area is dried out by water evaporation into the dry CO, stream, leading to salt precipitation and a
small reduction in the porosity. The transformation of albite into dawsonite is the most predominant reaction,
thereby fixing CO, and leading to a reduction of the porosity. The transformation of K-feldspar into illite is less
predominant, while other mineralogical changes are almost negligible. The low density of dawsonite is
predominantly responsible for the computed reduction in porosity, as shown by disabling dawsonite precipitation in
an additional run. As the stability of dawsonite is still under debate, it is recommended to focus future work on this
topic.
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