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development of direct inhibitors of Keapl-Nrf2 PPI. This article reviews these recent research efforts
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molecule direct inhibitors, and the biophysical characterization of the binding of these inhibitors to the
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potentially be developed into effective therapeutic or preventive agents for a variety of diseases and

conditions.

© 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical
Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Redox reactions are a vital component of many natural physiolo-
gical processes, and as a result, the human body is constantly
exposed to numerous oxidative and electrophilic chemicals. The
imbalance between biochemical processes leading to the produc-
tion of oxidative and electrophilic species and those responsible
for the removal of these chemicals is referred to as oxidative
stress'. Oxidative stress can be caused by excess reactive oxygen
species (ROS) and reactive nitrogen species (RNS) generated from
both exogenous and endogenous sources. Exogenous oxidative
sources include carcinogenic chemicals, environmental carcino-
gens, and radiation. Endogenous oxidative sources include che-
micals involved in intracellular processes such as cellular
signaling, metabolic processes, and inflammation that produce
oxidative conditions within the body'~. ROS include superoxide
(O, ), hydrogen peroxide (H,O,), hydroxyl radical (OH - ), and
singlet oxygen ('0,) and they can oxidize DNA, leading to DNA
damage. RNS include peroxynitrate (ONO, ) and nitric oxide
(NO), which are also DNA oxidants'>. ROS and RNS are
generated in the body as the result of natural physiological
processes such as aerobic respiration in mitochondria and during
inflammatory responses that protect our body from foreign
pathogens and, in some cases, serve as signaling molecules.
Sustained oxidative damage is associated with inflammation, aging
and a number of diseases including cancer, diabetes, atherosclero-
sis, hypertension, cystic fibrosis, Parkinson's and Alzheimer's
diseases™. Since sustained oxidative stress conditions can cause
damage to DNA and vital cellular structures, the human body has
developed antioxidative and cytoprotective mechanisms against
various kinds of oxidative stress™.

The antioxidant defense system is the major protective mecha-
nism used by cells to defend against and neutralize the damaging
effects of oxidants and electrophiles™”. As shown in Fig. 1, the
antioxidant defense system can involve the direct reduction of the
reactive oxygen or nitrogen species by low molecular weight
compounds from endogenous sources or our diet. These antioxi-
dants are redox-active, short-lived, and consumed or modified
during the process and therefore they need to be replenished or
regenerated to offer further protection. Examples of these anti-
oxidants include glutathione, ascorbate (vitamin C), tocopherols
(vitamin E), lipoid acid, vitamin K, and ubiquinol, and other
polyphenolic compounds”. In addition, there are various antiox-
idant enzymes that are involved in the more effective, catalytic
detoxification of reactive oxygen or nitrogen species. These
enzymes include NAD(P)H, NAD(P)H quinone oxidoreductase I
(NQOL), superoxide dismutase (SOD), glutathione S-transferase
(GST), glutathione peroxidase (GPx), heme-oxygenase-1 (HO-1),
glutamate-cysteine ligase (GCL), catalase, and thioredoxin
(TRX)*°. These cytoprotective proteins have relatively long
half-lives, are not consumed in their antioxidant actions, and can
catalyze a wide variety of chemical detoxification reactions; some

of them are involved in regeneration of the small molecule
antioxidants®. Many of these antioxidant cytoprotective enzymes
are controlled by the same three-component transcription pathway:
the antioxidant response element (ARE), the nuclear factor
erythroid 2-related factor 2 (Nrf2), and the Kelch-like ECH-
associated protein 1 (Keap1)4’7.

2. Components of the Keapl-Nrf2-ARE pathway
2.1.  Antioxidant response element (ARE)

ARE, also known as the electrophile response element (EpRE), is a
cis-regulatory element or enhancer sequence, which is found in the
promoter region of numerous genes encoding detoxification
enzymes and cytoprotective proteins®. The nucleotide sequence of
ARE has been investigated in numerous mutagenic analysis
studies”™'!. The exact ARE sequence varies between genes; how-
ever, the typical functionally active ARE is a 16 nucleotide sequence
of 5-T*cAnn*IGTGAS/GTGA /gnnnGC*/g-3', where n is any
nucleotide”!". Under conditions of oxidative stress, stabilized Nrf2
translocates to the nucleus, where it forms a heterodimer with Maf,
and binds to the ARE sites, leading to the activation of downstream
target genes™'>'?. Bachl (BTB and CNC homology 1) is a
transcriptional repressor of ARE. Under normal physiological
conditions, Bachl forms a dimer with Maf protein, preventing
Nrf2 from binding to DNA. In response to ARE inducers, Bachl
undergoes rapid nuclear export and proteasomal degradation.

2.2. Nuclear factor erythroid 2-related factor 2 (Nrf2)

Nrf2 is a transcription factor which is essential for maintaining cellular
homeostasis'*. It is a 66-kDa cap ‘n’ collar (CNC) protein with a basic
leucine zipper (bZip) DNA binding motif that is characteristic of NF-
E2"°. Nrf2 contains 6 highly conserved domains named Nrf2-ECH
homology domains (Nehl-6, Fig. 2)'°. The first domain, Nehl
domain, corresponds to the bZip motif necessary for dimerization
with Maf and binding to DNA'’. Additionally, the DNA binding
domain within Nehl was found to have a nuclear localization
sequence (NLS, residues 494-511), which is necessary for the nuclear
localization of Nrf2'®. The highly conserved Neh2 domain lies at the
N-terminal region of the protein. It serves as a negative regulatory
domain in Nrf2 transcriptional activity. Neh2 contains DLG and
ETGE motifs which correspond to the two binding sites for the Keapl
Kelch domain that facilitate the formation of a complex composed of
one molecule of Nrf2 and two molecules of Keap1'**". The presence
of seven lysine residues within Neh2 allows for negative regulation of
Nrf2 transcriptional activity via proteasome-mediated Nrf2 degrada-
tion®!. The presence of a serine residue (Ser™) in the Neh2 domain is
essential for release of Nrf2 from Keapl. Phosphorylation at Ser*” is
required for Nrf2 to dissociate from Keapl and thus avoid Keapl-
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Figure 1 The antioxidant defense system employed by our body to defend against and neutralize the damaging effects of oxidative stress.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are constantly produced by normal cellular processes and environmental
sources. Their damaging effects are mitigated through direction reduction by dietary or endogenous antioxidants or through the more efficient
catalytic detoxification by various antioxidant enzymes under the control of transcription factor Nrf2. Keapl serves as an important redox sensor

involved in the feedback regulation of oxidative stress response.
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Figure 2 The organization and domain structure of Nrf2.

mediated ubiquitination. However, Ser*” is not needed for Nrf2
stabilization and accumulation in the nucleus'®. The Neh3 domain
of Nrf2 is among members of the CNC bZIP transcription factors. It is
located at the C-terminus of the protein and is essential for the
transactivation of ARE gene by Nrf2*?. The Neh4 and Neh5 domains
are considered transactivation domains that cooperatively bind to
cAMP response element binding (CREB) protein (CBP), which has
been shown to be essential co-activator for many transcription factors.
Finally, Neh6 domain which is located in the middle of Nrf2 and has
been reported to be associated with redox-insensitive degradation of
the Nrf2”>*,

2.3.  Kelch-like ECH-associated protein 1 (Keapl)

Keapl is a 69.7-kD actin-binding protein composed of 625 amino
acid residues, 27 of which are cysteine residues®. As shown in
Fig. 3, Keapl consists of five distinct domains: (i) the N-terminal
region (NTR), (ii) the broad complex, tramtrack and bric-a-brac
(BTB) domain, (iii) the intervening region (IVR), (iv) the double
glycine repeats (DGR) or Kelch domain, (v) and the C-terminal
region (CTR)>. The BTB domain is an evolutionary conserved
domain also found in actin-binding proteins and zinc finger

transcription factors®. Keapl forms a homodimer through
the BTB domain and dimerization is required for binding to
Nrf2%°. In addition, the BTB domain is also responsible for the
interaction between Keapl and Cullin3-Rbx1 E3 ubiquitin ligase
(Cul3-E3-ligase)*"*’. The cysteine rich IVR is sensitive to
oxidation and the nuclear export signal (NES) motif, and is
necessary for Keapl activity’*?®. In the IVR domain of Keapl,
four especially reactive cysteine residues have been identified:
Cys®’, Cys®"?, Cys®®® and Cys*’. Cys®"* and Cys*®® are essential
for Keapl-dependent ubiquitination of Nrf2 and Keapl-mediated
repression of Nrf2 activity’®*’. Both the BTB and (IVR) domains
were shown to be essential for Nrf2 degradation®”. The Kelch
domain consists of six repeating Kelch motifs (KR1-KR6) that
form a six-bladed f-propeller structure’’. The Kelch domain is
where Keapl binds to the Neh2 domain of Nrf2*2,

3. Mechanism and regulation of the Keapl-Nrf2-ARE
pathway

Keapl functions as a master regulator of the Keapl-Nrf2-ARE
pathway by controlling the steady state level of Nrf2 based on
cellular redox conditions™. Under basal conditions, Nrf2 is bound
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Figure 3 The organization and domain structure of Keapl.
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Figure 4 The Keapl-Nrf-ARE pathway. In the "hinge" and "latch” mechanism of Nrf2 regulation, the high affinity ETGE motif of Nrf2 initially
binds to Kelch domain of Keapl and the lower affinity affinity DLG motif binds to the second Keapl to close the conformation. Nrf2 is
polyubiquitinated at its Lys rich (7K) region and targeted for subsequent degradation by the 26S proteasome.

as shown in Fig. 4 to Keapl and targeted for ubiquitination and Cul3-E3-ligase activity’>*'. Cys'>! has been found to be necessary
proteasomal degradation by Cul3-E3-ligase, with a #,,, of less than to achieve this effect®’*'. Substitution of serine for Cys'! in the
20 min. The rapid turnover of Nrf2 prevents the unnecessary BTB domain renders Keapl unable to dissociate from Nrf2 even in
expression of Nrf2 target genes®*’. Keapl forms a homodimer the presence of oxidative stress. This suggests that Cys'®!
via its BTB domain. The Neh2 domain of Nrf2 contains two functions as a sensor for oxidants and electrophiles and plays a
binding motifs: the high affinity ETGE and the low affinity DLG ~ crucial role in Nrf2 activation®”******=*5_ Other mechanisms for
motifs***®. The ETGE and DLG motifs each bind to a separate Nrf2 stabilization in response to inducers have been proposed, but
Kelch domain in the Keapl dimer. The binding of each motif to a will not be discussed here. These alternative mechanisms include
Kelch domain (“two-site substrate recognition”) is required for the nucleocytoplasm shuttling of Keapl, ubiquitination of Keapl, and
ubiquitination of Nrf2 that leads to its rapid degradation by 26S Nrf2 as a direct sensor’’.

proteasome under basal conditions. The ubiquitination of Nrf2 In the “hinge and latch model” shown in Fig. 4, Nrf2-Keapl
occurs at an a-helix with seven lysine residues located between the contact is mediated by a strong binding interaction between the

binding motifs*®. Under induced conditions, the Keapl-Nrf2— ETGE motif and one Kelch domain of Keapl (the “hinge”), and a
Cul3 complex is disturbed. As a consequence, Nrf2 is stabilized weaker binding interaction between the DLG motif and the other
(ty» of up to 200 min) and can translocate to the nucleus. Two Kelch domain of Keapl (the “latch”)**-*°. The high-affinity ETGE
mechanistic models have been proposed for Nrf2 stabilization: the motif functions as a “hinge” by fixing Nrf2 to Keapl. The low-
“Keapl-Cul3 dissociation model” and the “hinge and latch affinity DLG motif functions as a “latch” by locking or unlocking

model”*7°, the position of Nrf2 depending on the redox state of the cell.

In the Keapl-Cul3 dissociation model, it is proposed that Under basal conditions, the DLG motif locks the Neh2 domain in
inducers stabilize Nrf2 by dissociating the Keap1-Cul3 complex, the correct position to enable the ubiquitination and degradation of
resulting in the inhibition of ubiquitination and stabilization of Nrf2 in proteasomes®****°. When under oxidative stress, cysteine
Nrf2*’. Under induced conditions, covalent modification of residues in Keapl become oxidized and this modification unlocks
cysteine residues in the BTB domain of Keapl leads to a “steric the “latch”. Under these conditions, the orientation of Nrf2
clash” between Keapl and Cul3*’. This results in the dissociation prevents ubiquitination by the Keapl-Cul3 complex and this

of the Keap1—Cul3 interaction and, therefore, disruption of Keapl- process leads to Nrf2 stabilization®*****" As a result, Nrf2
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bypasses proteasomal degradation and accumulates in the cell,
translocates to the nucleus, forms a heterodimer with Maf, binds to

ARE and therefore promotes the transcription of ARE-dependent
genes 0323448,

4. The Keapl-Nrf2-ARE pathway as a therapeutic target

Inflammation and oxidative stress play an essential role in the
pathogenesis of many human diseases and conditions*’. Inflam-
mation in the body produces large amounts of ROS and RNS that
can induce oxidative damage to DNA and other cellular molecules
including membrane lipids and proteins®. The Keapl-Nrf2-ARE
pathway is a major defense mechanism used to counteract
oxidative stress. This pathway protects many organs and cells
and the pathway's protective role has been implicated in many
human disorders””, including cancer, neurological diseases, airway
disorders, cardiovascular diseases, diabetes, inflammatory bowel
disease (IBS), and autoimmune diseases. Regulation of the Nrf2—
ARE signaling has also been implicated in basic health, lifespan,
and aging®. The role of the Keapl-Nrf2-ARE pathway in
oxidative stress and age related diseases offers novel therapeutic
and pharmacologic opportunities as we reviewed previously’. This
section discusses briefly the major diseases and conditions that
involve oxidative stress and the Keapl-Nrf2-ARE pathway and
that could potentially be treated by modulators of this pathway.

4.1. Cancer

ROS and oxidative stress are a hallmark of human cancer*’. The
initiation of the formation of many tumors results from damage to
DNA by electrophilic carcinogen metabolites or by ROS. The
hypothesis that oxidative-stress induced lesions contribute to
carcinogenesis is supported by the increased susceptibility to
cancer observed in patients with a variety of chronic inflammatory
diseases including ulcerative colitis, viral hepatitis, prostatitis,
Helicobacter pylori infection, parasitic diseases, and many others.
In patients with inflammatory diseases such as these, cancer
induction may be a pathological consequence of elevated ROS
levels which lead to increased levels of oxidative DNA damage
which increases the risk of mutations that may lead to the
development of cancer’. Given the ubiquitous involvement of
oxidative damage in carcinogenesis, the Keapl-Nrf2-ARE path-
way has been widely regarded as a potential therapeutic target for
chemoprevention.

Various studies have revealed that Nrf2 plays a central role in
cancer chemoprevention by promoting the expression of detox-
ification enzymes and cytoprotective proteins. Inducers of Nrf2
function as chemopreventive agents by preventing carcinogens
from reaching their target, inhibiting parent molecules from
undergoing metabolic activation, or preventing carcinogens from
interacting with vital biomolecules such as DNA, RNA, and
proteins. Disruption of the Nrf2 gene leads to increased suscept-
ibility to environmental carcinogenesis by altering the expression
of detoxifying enzymes and leads to the loss of chemopreventive
efficacy by inducers. Therefore, induction of the Nrf2-ARE has
been recognized as an important molecular and therapeutic target
for chemoprevention.

Despite its promising potential for chemoprevention in normal
and premalignant tissues, Nrf2 has also been shown to have a role
in tumor cell growth and survival in malignant cells’'. High levels
of Nrf2 have been found in several types of human cancer cells,

resulting from mutations in Keapl or Nrf2 that result in consti-
tutive expression of up-regulated genes >>>. Nrf2 overexpression
appears to exert its protective role in both normal and cancer cells.
Studies show that elevated levels of Nrf2 can lead to increased
expression of detoxification enzymes, cytoprotective proteins, and
transporters. This gives cancer cells an advantage by enhancing
cell proliferation and can cause resistance to chemotherapy”'=°.
Recent studies have shown that inhibition of Nrf2 in malignant
cells suppresses tumor growth and enhances the efficacy of
chemotherapy’®>’. Therefore, Nrf2 could be targeted for the
treatment of cancer by either inducing activity for chemopreven-
tion or inhibiting activity in existing tumors.

4.2.  Neurodegenerative diseases

The brain is highly susceptible to oxidative damage due to its high
lipid content, high oxygen consumption, and the high presence of
redox-active metals, including Cu and Fe capable of catalytic ROS
production. Neurodegenerative diseases share several pathological
features including the accumulation of aberrant protein aggregates
and mitochondrial dysfunction, excitotoxicity, and proteasomal
dysfunction™. Enhanced ROS production and oxidative damage
play the pivotal role in the onset and advancement of neurode-
generative diseases such as Alzheimer's disease (AD), Parkinson's
disease (PD)*®. The protective effect of Nrf2 against oxidative
stress and neurotoxicity has been reported and the Keapl-Nrf2—
ARE pathway have been proposed and investigated as a potential
therapeutic target in AD and PD**%°, Activation of Nrf2 has been
investigated for its potential therapeutic applications in other
neurological disorders such as Huntington's disease, amyotrophic
lateral sclerosis (ALS or Lou Gehrig's disease), multiple sclerosis,

. R 3.4
traumatic brain injury and cerebral hemorrhages®>*°".

4.3.  Diabetes and diabetic complications

Experimental evidence has established that oxidative stress is
involved in the pathogenesis of diabetes and the development of
diabetic complications, including diabetic cardiomyopathy and
nephropathy. Hyperglycemia has been shown to induce oxidative
stress due to an increase in glucose metabolism and, thus,
mitochondrial production of ROS®***. The Nrf2-ARE pathway
has been shown to play an important role in the regulation of
energy metabolism, which has led to interest in the pathway as a
potential target for the prevention and treatment of metabolic
diseases such as diabetes. Nrf2 levels have also been shown to be
lower in pre-diabetic and diabetic patients as compared to patients
without diabetes, which suggests that diminished Nrf2 expression
is involved in the development of oxidative stress in diabetes®>°°.
Induction of Nrf2-ARE regulated genes attenuates insulin resis-
tance and even inhibits the accumulation of fat®”°®, The role of
Nrf2 in the regulation of metabolism and blood glucose levels has
generated interest in targeting the pathway for the prevention and
treatment of diabetes.

In addition to metabolic regulation and the pathogenesis of
diabetes, Nrf2 appears to have an important role in diabetic
complications. Oxidative stress is known to have a role in diabetic
complications, including diabetic cardiomyopathy and nephropa-
thy. Studies have indicated increased production of ROS in
diabetic cardiomyocytes. This suggests that high levels of glucose
induce ROS production and, thus, oxidative damage to the
vasculature that directly contributes to the evolution of diabetic
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cardiomyopathy. Nrf2 has been demonstrated to be required for
protection against glucose-induced oxidative stress and diabetic
cardiomyopathy. Multiple studies have shown experimental evi-
dence that demonstrates the involvement of Nrf2 in diabetic
nephropathy. Streptozotocin (STZ) treated-Nrf2-null mice were
determined to be more susceptible to oxidative damage and renal
impairment than wild type mice®>”’°. The protective role of Nrf2
in diabetic nephropathy suggests that activation of Nrf2 could be
used to prevent or impede the advancement of the disease. For
example, bardoxolone methyl (CDDO-Me) is a potent activator of
Nrf2 and was clinically evaluated for the treatment of chronic
kidney disease in patients with type 2 diabetes’".

4.4.  Chronic obstructive pulmonary disease (COPD) and other
respiratory diseases

The respiratory system can be particularly susceptible to oxidative
stress. Since the airways are the first point of contact for inhaled
oxidants, the redox balance in the airway can be continuously and
repeatedly disturbed by the increased accumulation of oxi-
dants’>"*. Pulmonary expression of Nrf2 is primarily found in
the epithelium and alveolar macrophages. The absence or deple-
tion of Nrf2 expression has been shown to aggravate lung toxicity
caused by multiple oxidative sources including cigarette smoke,
allergens, viral infections, bacterial endotoxins, hyperoxia, and
various environmental pollutants’”. Several studies have also
revealed that Nrf2 deficiency is associated with a greater suscept-
ibility to COPD, emphysema, asthma, pulmonary fibrosis, acute
respiratory distress syndrome and sepsis’>~’. Therefore, activation
of Nrf2 in alveolar macrophages appears to be a promising
therapeutic target for the treatment of numerous respiratory
diseases.

4.5. Cardiovascular disease (CVD)

Oxidative stress has been implicated in a number of cardiovascular
diseases (CVDs) including atherosclerosis, hypertension, and
cardiomyopathy. Therefore, the role of Nrf2 in CVD and its
potential as a therapeutic target for the treatment of CVD has been
of recent interest. N1f2 is ubiquitously expressed in the cardiovas-
cular system and plays a crucial role in maintaining cardiovascular
homeostasis via the induction of ARE-dependent genes’®. Nrf2 has
been investigated as a therapeutic target for the treatment of
cardiomyopathy and atherosclerosis; however, the results of these
experiments have been inconclusive’’. Although Nrf2 has shown
vascular protective effects and has been suggested as a potential
strategy for the treatment of atherosclerosis, several studies have
proposed that Nrf2 promotes the pathogenesis of atherosclerosis
through a different mechanism®>®'. Therefore, the potential pro-
atherosclerosic effects of Nrf2 activation should be considered
when designing Nrf2-targeted therapies for the treatment of CVD
and other diseases.

4.6.  Other diseases and conditions involving the Nrf2-ARE
pathway

In addition to the diseases described above, the role of Nrf2 and its
therapeutic potential have been investigated in numerous other
diseases and health issues. The role of Nrf2 in gastrointestinal
diseases, such as ulcerative colitis and chronic gastritis, has been
investigated and appeared to strongly inhibit pro-inflammatory

signaling associated with these conditions®>™°. The involvement

of Nrf2 in the pathogenesis and treatment of liver disease and
hepatotoxicity has been extensively investigated. Nrf2 was found
to be crucial in combatting hepatotoxicity and liver injury®®=°.
Nrf2 also regulates the innate immune response and modulation of
the Nrf2 pathway has been involved in diminishing various
immune and inflammatory responses associated with infec-
tions”'™, autoimmune diseases’ ™, and other innate immune
responses’’ ", The vast number of diseases and biological
mechanisms that involve the Keapl-Nrf2-ARE clearly indicate
its importance. The potential applications make the pathway a very
interesting and promising target for drug design.

5. Direct inhibition of Keapl-Nrf2 protein—protein
interaction (PPI)

The large amount of evidence indicating the importance of Nrf2
activation to human health has prompted interest in the discovery
of small molecule and peptide activators of the Keapl-Nrf2-ARE
pathway. Numerous natural (e.g., curcumin, sulforaphane, and
isothiocyanate) and synthetic (e.g., bardoxolone methyl, oltipraz
and Tecfidera™) small molecules that induce ARE-dependent gene
expression have been investigated for their medicinal and ther-
apeutic properties. However, most of these Nrf2 activators
currently known are indirect inhibitors of the Keapl-Nrf2 inter-
action. The indirect inhibitors are electrophilic species or are
metabolically transformed in vivo to become electrophilic, and
subsequently react with the sulfhydryl groups of cysteine residues
in Keapl by oxidation or alkylation'®>'°". Indirect inhibitors and
their molecular mechanisms of action have been reviewed
previously’. The electrophilicity of indirect inhibitors poses a
problem. Their lack of specificity and selectivity increases the risk
of “off-target” toxic effects due to their ability to react with the
cysteine residues of other enzymes and proteins. Therefore, direct
inhibition of the Keapl-Nrf2 PPI has recently become an
appealing strategy for activation of Nrf2. The discovery of non-
reactive direct small molecule inhibitors of the Keapl-Nrf2
pathway appears to be the most promising strategy due to the
diminished possibility of toxic effects, as compared with indirect
inhibitors, and increased stability and bioavailability, as compared
with peptide inhibitors'**'%?,

5.1.  Screening assays for the discovery of small molecule direct
inhibitors of KeapI-Nrf2 PPI

Several different assays have been developed for the screening and
identification of small molecule inhibitors of the Keap1-Nrf2 PPIL.
These include surface plasmon resonance (SPR)-based solution
competition assay, fluorescence polarization (FP) assay and the
cell-based Neh2-luciferase assay.

5.1.1.  SPR-based solution competition assay

The SPR-based solution competition assay selectively screens for
Nrf2 activators that directly inhibit Keap1-Nrf2 interaction”'**, In
this assay, the Kelch domain of Keapl is allowed to flow in
solution over an SPR sensor chip with the 16mer Nrf2 peptide
immobilized on the sensor chip surface. The optimal immobiliza-
tion method is the use of a biotin-labeled 16mer Nrf2 peptide
immobilized as the ligand on a streptavidin sensor chip. These
conditions provided sensitive and stable surfaces for both kinetic
analysis of the Keap1-Nrf2 PPI and detection of free Keapl Kelch
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domain protein concentration in solution competition assays. This
method was used to determine the minimal Nrf2 peptide sequence
required to bind Keapl Kelch domain'®. The advantage of this
assay is that it allows for the measurement of direct inhibition of
Keap1-Nrf2 interaction. However, the limited throughput of the
SPR-based assay prevents it from being used as the primary assay
in high-throughput applications’'**,

5.1.2.  Fluorescence polarization (FP) assay

FP is a powerful tool used to study the interactions between
biomolecules in solution. FP competition assays can be used to
screen for small molecules that inhibit ligand-receptor interactions'®.
We previously reported the development of an FP assay that can be
used for high-throughput screening of large chemical libraries in an
effort to identify small molecule inhibitors of Keapl-Nrf2 interac-
tion'™®. Fluorescently-labeled-Nrf2 peptides containing the ETGE
motif were designed and synthesized as tracers to detect direct
inhibitors of Keapl-Nrf2 interaction. Flurescein isothiocyanate
(FITC)-labeled Nrf2 9mer peptide amide was determined to be the
optimal tracer and was used in our FP assay. We have successfully
used this assay in the high-throughput screening (HTS) of the NIH
MLPCN small molecule library to discover small molecule inhibitors
of Keapl-Nrf2 interaction’'**1°,

5.1.3.  Cell-based Neh2-luciferase assay

In the cell-based Neh2-luciferase assay, a Neh2-luciferase reporter
system is constructed with the Neh2 domain of Nrf2 fused to a
luciferase gene as a tool to monitor Nrf2 activation in real time'?’.
The overexpressed Neh2-luciferase fusion protein competes with
endogenous Nrf2 for Keapl binding and subsequent ubiquitination
and degradation. Nrf2 activators disrupt the Neh2-luc-Keap1-Cul3
complex and, thus, the Neh2-lucisferase protein is not degraded.
The increase in luciferase activity serves as a direct measure of the
ability of a compound to disrupt the Keapl1-Nrf2 interaction. The
advantage of this assay is that there is an immediate response upon
the addition of Nrf2 activators, which allows for differentiation of
Nrf2 activators by monitoring their kinetics of reporter activation.
This system is suitable for HTS with Z-values of >0.7"'"".

5.2.  Peptide inhibitors and Nrf2-based peptide probes

The elucidation of the structure of the Keap1-Nrf2 binding interaction
provided important insight into the development of peptide inhibitors
of the interaction. Specific amino acids that are critical for Keapl—
Nrf2 binding were first determined using extensive alanine-scan
mutagenesis of the Keapl protein'®. Replacement of the residues
Tyr334, Asn®®?, His436, Tyr525, and Tyrj72 with alanine residues
considerably disrupted the ability of Keapl to bind to Nrf2. It was
also determined that the Phe*”® residue is not required for Keap1-Nrf2
binding, but it is required for suppression of Nrf2-dependent gene
expression. When Phe*’® was replaced with an alanine residue, the
mutant was unable to direct Nrf2 ubiquitination. Additionally, there
are three arginine residues that were determined to be critical for
Keapl-Nrf2 binding: Arg®’, Arg*"® and Arg*®’. By understanding
the structure Keapl-Nrf2 binding interface, various peptides have
been designed to either simply inhibit the interaction or serve as a
probe to gauge the activity of small molecule inhibitors in screening

assays' %%,

5.2.1. Peptide inhibitors of Keapl—Nrf2 PPI

Our laboratory designed a series of truncated peptides based on the
ETGE motif of Nrf2 and evaluated them as direct inhibitors of the
Keapl-Nrf2 PPI using the SPR assay and the FP assay we
developed'**'%. The affinity of the non-acetylated Nrf2 peptides
increases with increasing peptide length as shown in
Table 1'%%1% The 7mer peptide (entry 1, Table 1) was totally
inactive and the 8mer (entry 2, Table 1) was only weakly active,
while the 9mer (entry 4, Table 1) was shown to be significantly
more active with a Ky of 350 nmol/L in the SPR assay and ICs of
3.48 pmol/L in FP assay corresponding to an K; of 865 nmol/L.
Longer Nrf2 peptides (10mer to l6mer peptides (entries 8—12,
Table 1)) are much more active with Ky ranging from 22 to
31 nmol/L. and ICsy values from 0.163 to 0.298 pmol/L. We
observed the N-terminal acetylation of 9mer Nrf2 peptide sig-
nificantly increased the binding affinity to Keapl Kelch domain to
a level that is similar to the binding affinities of the longer Nrf2
peptides while C-terminal amidation of 9mer Nrf2 peptide had
little effect'®*'%°. Based on these studies, we concluded that
minimal binding sequence of Nrf2 ETGE motif to Keapl Kelch
domain is the 9mer sequence of LDEETGEFL'**'%¢,

Table 1  The inhibition of the Keapl-Nrf2 interaction by Nrf2 peptides as determined using SPR and FP assay.

Entry Peptide name Peptide sequence Koo (nmol/L)* ICso (pmol/L)" K; (nmol/L)"
1 Tmer Nrf2 H-EETGEFL-OH > >1000 >>100 —
2 8mer Nif2 H-DEETGEFL-OH > >1000 21.7+20.1 7010
3 8mer Nrf2-NH, H-DEETGEFL-NH2 — 30.54+22.7 9870
4 9mer Nrf2 H-LDEETGEFL-OH 352 3.484+0.92 865
5 9mer Nrf2-NH, H-LDEETGEFL-NH, 355 3.57+2.20 1140
6 Ac-9mer Nrf2 Ac-LDEETGEFL-OH 23.1 0.19440.049 47.4
7 Ac-9mer Nrf2-NH, Ac-LDEETGEFL-NH, 214 0.196+0.032 48.1
8 10mer Nrf2 H-QLDEETGEFL-OH 27.3 0.2724+0.026 72.7
9 I 1mer Nrf2 H-LQLDEETGEFL-OH 313 0.298 £0.033 81.1

10 12mer Nrf2 H-QLQLDEETGEFL-OH 23.8 0.249+0.022 65.2

11 14mer Nrf2 H-FAQLQLDEETGEFL-OH 225 0.243 £0.020 63.3

12 16mer Nrf2 H-AFFAQLQLDEETGEFL-OH 23.9 0.163+0.011 37.4

Results from the SPR assay'%*.

PResults from the FP assay'’°.
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Wells and co-workers also obtained a series of synthetic peptide
inhibitors of Keap1-Nrf2 PPI based on the ETGE or DLG motif of
the Neh2 domain of Nrf2 using peptide phage display library and
investigated their ability to bind the Kelch domain of human Keapl
using an FP assay'*’. They determined that the minimal sequence
required for binding between the ETGE motif and the Kelch domain
is the seven-amino-acid sequence Ac-DEETGEF-OH and that the
optimal sequence was Ac-DPETGEL-OH. They also determined
that the minimal sequence required for binding between the DLG
motif and the Kelch domain is Ac-WRGDIDL-OH (Fig. 5)'*. In a
later study, they modified the peptides by replacing the acetyl
groups at the N-terminus with benzoyl or stearoyl groups to increase
the lipophilicity of the molecules and assess their effect on binding
with the Kelch domain using an FP assay. They found that the
sequence stearoyl (St)-DPETGEL-OH demonstrated potent activity
(ICsp=22 nmol/L), and promoted expression of Nrf2-dependent
gene expression in a cell-based assay''”.

In another study of Keap1-Nrf2 peptide inhibitors, Searcey and
co-workers synthesized a series of TAT-conjugated ETGE pep-
tides that target the interaction. They evaluated Nrf2 activation by
measuring the expression of the downstream target gene heme
oxygenase—1 (HO-1). They found that only the TAT-ETGE-14mer
(TAT-14:  YGRKKRRQRRRLDEETGEFLPIQ) was able to

induce HO-1 expression in a time and dose dependent manner''".

5.2.2.  Fluorescently labeled Nrf2 peptide probe optimization

The need for an assay adaptable to HTS of large chemical libraries to
aid in the identification and design of small molecule inhibitors of
Keap1-Nrf2 PPI lead us to develop the FP assay described above'".
Fluorescently-labeled Nrf2-peptides containing the ETGE motif were
designed and synthesized as probes to detect the direct inhibition of
the Keapl-Nrf2 PPL In our effort to optimize the fluorescent Nrf2
peptide probe in terms of Keapl Kelch domain-binding affinity and
the dynamic range of the assay, we prepared and evaluated a series of
FITC-labeled 8-16mer Nrf2. As shown in Table 2'%, the FITC-
labeled 9mer Nrf2 peptide demonstrated a binding affinity compar-
able to the longer FITC-labeled Nrf2 peptides (entry 3 vs. entries 5-9,
Table 2), which suggests that most of the bonding interactions
between the Kelch domain and Nrf2 reside within the 9mer peptide
sequence (LDEETGEFL). Thus, the binding affinity was not
significantly affected by peptide length as long as the peptide
contains the nine amino acids in the DXETGE motif. In addition,
the FITC-labeled 9mer Nrf2 peptide amide (entry 4, Table 2)
demonstrated the highest dynamic range among the peptides tested.

Therefore, the FITC-labeled 9mer Nrf2 peptide amide is the optimal
sequence and has been used as our probe in our FP assay’'%.

5.3. Small molecule direct inhibitors of KeapI-Nrf2 PPI

As stated earlier, the vast majority of inhibitors of Keap1-Nrf2 PPI
is electrophilic species that work by covalent modification of the
cysteine residues in Keap1. Recently, several small molecule direct
inhibitors of Keapl1-Nrf2 PPI through non-covalent binding to the
Keapl Kelch domain have been reported'®*'%!'12=114 We first
reported in 2013 the discovery of small molecule direct inhibitors
of the Keap1-Nrf2 PPI'**. The FP assay'® that we developed and
reported in 2012 was successfully used to screen the MLPCN
library of 337,116 compounds (PubChem Assay ID: 504523,
504540). The primary screen generated 489 hits at 10 pmol/L,
which was reduced to 460 hits after excluding fluorescent
compounds. These 460 hits were subjected to confirmation assays
using the eight-point dose-response FP assay and a thermal shift
secondary assay, generating 8 confirmed hits. From these eight
hits, hit 1 (LH601) was the most promising, with an ICsy of
3 pmol/L in the FP assay and a K4 of 1.6—1.9 pmol/L in our SPR
assay'%?. In addition, there are no chemically reactive functional
groups present in LH601, therefore it is not expected to modify the
sulfhydryl groups of cysteine residues in Keapl or other proteins.

LH601 has three chiral centers and four possible stereoisomers.
We separated the four isomers (LH601A-D) using a combination
of flash silica gel chromatography and chiral HPLC purification;
we then compared their Keapl Kelch domain—binding activity
using our SPR and FP assays. It was found that LH601A is the
most active stereoisomer, which is about 100 times more potent
than its corresponding enantiomer LH601B while their diaster-
eomers LHO601C&D are inactive. The stereospecific binding
activity of LH601 isomers made us more confident about the true
binding of LH601A to Keapl Kelch domain. X-ray crystal-
lography was then used to assign the absolute stereochemistry of
LH601 isomers; the active stereoisomer LH601A was determined
to be of (SR S)-configuration (1)'02. We also synthesized a
number of analogs to determine the structure-activity relationships
of LH601A. Preliminary SAR studies provided the following
conclusions as shown in Fig. 6: (i) Keapl-binding activity
resides primarily in one stereoisomer of (S,R,S)-configuration;
(i1) acid functionality on the cyclohexane ring is required for
optimal activity; (iii) a one-carbon linker between the tetrahydroi-
soquinoline (THIQ) and phthalimido group is optimal; (iv) one of

Table 2  FITC-labeled Nrf2 peptides of different length (8 mer to 16 mer): their binding affinities and dynamic range®.
Entry Peptide name Peptide sequence Ky (nmol/L) Dynamic range (AmA)
1 FITC-8mer Nrf2 FITC-DEETGEFL-OH ~750° -
2 FITC-8mer Nrf2-NH, FITC-DEETGEFL-NH, ~1000° =
3 FITC-9mer Nrf2 FITC-LDEETGEFL-OH 65.1+9.7 97.3
4 FITC-9mer Nif2-NH, FITC-LDEETGEFL-NH, 25.6+10.8 109.8
5 FITC-10mer Nrf2 FITC-QLDEETGEFL-OH 30.1+6.1 73.5
6 FITC-11mer Nrf2 FITC-LQLDEETGEFL-OH 47.7+74 96.3
7 FITC-12mer Nrf2 FITC-QLQLDEETGEFL-OH 44.5+12.9 70.6
8 FITC-14mer Nrf2 FITC-FAQLQLDEETGEFL-OH 61.9+16.5 64.2
9 FITC-16mer Nrf2 FITC-AFFAQLQLDEETGEFL-OH 28.7+5.7 80.1

Anisotropy measurements were performed using FP assay'’.

"The K4 of the FITC-labeled 8mer Nrf2 peptides were assessed using the anisotropy of the fully bound FITC-9mer Nrf2 peptide.
“Because of low binding affinity, the higher end of the dynamic range could not be determined.
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the carbonyls in the phthalimido group can be removed to give a
lactam that retains strong binding affinity to Keapl Kelch domain.

After confirming the Keapl-binding activity of LH601A in our
FP and SPR assays, we determined its cellular activity in two cell-
based functional assays'*”. In the CellSensor™ ARE-bla HepG2
cell line where ARE controls the expression of p-lactamase,
LH601A was found induce ARE-controlled genes with an ECs
of 18 pmol/L as compared to > 100 pmol/L for its enantiomer
LH601B and its diastereomers LH601C/D. In the PathHunter™
U20S Keapl-Nrf2 functional assay that uses pf-galactosidase-
based enzyme fragment complementation technology and lumi-
nescence for the detection of Nrf2 nuclear translocation, LH601A
promoted the nuclear translocation of Nrf2 with a similar ECso of
12 pmol/L. All these data indicate that LH601A 1is cell-permeable
and is capable of inhibiting the Keap1-Nrf2 interaction, leading to
the dissociation of Nrf2 from Keapl in the cytosol, its subsequent
translocation to the nucleus, and the upregulation of ARE-
controlled genes.

Jnoff and colleagues''> at UCB Pharma recently confirmed

most of our earlier findings and provided X-ray co-crystal structure
evidence that LH601A binds to the Nrf2 binding site on the Keap1
Kelch domain. The cocrystal structures of Keapl Kelch domain
with LH601A and its analogs provide further confirmation of the
stereochemistry of the active isomer LH601A and the nature of its
direct binding interaction to Keapl Kelch domain. Several analogs
of LH60IA were synthesized and evaluated by UCB scientists
leading to a more potent Keapl binder, compound 4 (Fig. 7),
where one of the phthalimide carbonyl was reduced to form the
lactam and an additional methyl group was introduced at the 5
position of THIQ. Compound 4 is 3-fold more potent than 1 as an
inhibitor of Keap1-Nrf2 PPI in the FP assay. It was suggested that
the methyl group in compound 4 likely acts as a "lipophilic plug"
providing a good shape fit toward the pore of the Kelch domain
resulting in the increase in potency as compared to 1''°.

Silvian and colleagues''* at Biogen used a high throughput
homogeneous confocal fluorescence anisotropy assay to screen the
lead discovery library of 267,551 compounds from Evotech plus
1911 compounds selected from a virtual screening and identified
two compounds as inhibitors of Keapl-Nrf2 PPL: the
benzenesulfonyl-pyrimidone 2 and the N-phenyl-benzenesulfona-
mide 3. Compound 2 was found to have an ICsy value of
118 pmol/L while 3 was found to have an ICsy of 2.7 pmol/L
in the confocal FP assay. Using an ARE-driven luciferase
reporter assay, 3 was shown to increase the levels of both Nrf2
and one of Nrf2 target genes NQO1 at 100 mol/L. Native mass
spectrometry (NMR) and X-ray crystallography were used to



294

Dhulfigar Ali Abed et al.

o
o H
N O~_OH N)J\/SYN o
o} N \
o CF; N Ag - N
N % \b o P30

1 (LH601A) 2

N
Os_OH
N N-NH 287 Sss
eoB# L
S N

Hooc—/ \—COoOoH
OH
4 5 (347 6
N-N o
4 o 7\
Hooc Lone I n cooh | S N 0._COOH
o N” N ¢ o NN
H H
7 8

Figure 7 Structures of direct inhibitors of Keap1-Nrf2 PPI that have recently been reported.

confirm that 3 binds specifically in the cavity of the Keapl Kelch
domain' ',

You and coworkers''? used virtual screening of the Specs
database and identified compound 7 as a small molecule inhibitor
of Keapl-Nrf2 PPI. Based on the crystal structure of the
interaction between the ETGE and DLG motifs of Nrf2 and the
Kelch domain of Keapl, they found that a negative ionizable
center should be included in Keapl-Nrf2 PPI inhibitors. Before
screening the library, 90% of the compounds in the Specs database
were excluded because they possessed a formal charge of more
than — 1. This reduced the number of compounds from 251,774 to
21,119. The virtual screening of the 21,119 compounds leads to 17
virtual hits that were experimentally evaluated in the FP assay to
identify the small molecule inhibitors of the Keapl-Nrf2 PPIL
Compound 7 with a symmetrical structure containing two benzoic
acids at the ends and a carbodihydrazide in the middle was
reported to have an ICsy of 9.80 pmol/L in the FP assay but
relatively low ARE-inducing activity in a cell-based assay due to
its poor cell permeability''?.

In a more recent study by You, Sun and coworkers ", a potent
direct inhibitor 6 of the Keapl-Nrf2 PPI was derived from the
Biogen inhibitor 3 as shown in Fig. 7. Compound 6 was reported
to have an ICso of 28.6 nmol/L and a K4 of 3.59 nmol/L in the FP
assay. Studies on the molecular binding determinants and mole-
cular dynamics (MD) simulations of Keapl-Nrf2 PPI suggested
that the incorporation of two acetic acid side chains to 3 would
provide favorable binding interactions with the Keapl Kelch
domain. The activity of 6 was also demonstrated thro-
ugh the cell-based ARE-luciferase reporter assay and the
gRT-PCR'®.

In another study reported by Sham, Xing and coworkers''®,
rapid structure-based virtual screening and hit-based substructure
search were utilized to identify small molecules that disrupt
Keapl1-Nrf2 PPI. The noncovalent inhibitor 5 was reported to
have comparable Keap1 binding affinity to 3 in an FP assay, but is
3-times more active than compound 3 in a cell-based assay''”.

Another interesting but simple compound (8) containing a
furanyloxadiazole linked to a phenoxyacetic acid, was reported
to be a direct inhibitor of Keapl-Nrf2 PPI in a Japanese patent
application''®. Two co-crystal structures of Keapl Kelch domain
with 8 were deposited to PDB databank (PDB ID: 3VNG, 3VNH)

2
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but neither the binding affinity of 8 to Keapl Kelch domain nor
any cellular ARE-inducing activity have been reported.

5.4.  X-ray co-crystal structures of Keapl Kelch domain with
small molecule direct inhibitors of Keapl-Nrf2 PPI

The 3-D structures of the human and mouse Keapl Kelch domain
with and without Nrf2-derived peptides were determined by X-ray
crystallography”''%*'"7 The crystal structure of the human Keapl
Kelch domain was determined at 1.35 A resolution®' while the
complex of human Keapl Kelch domain with the 16mer Nrf2
peptide bound was reported at 1.5 A resolution (PDB ID:
2FLU)!%%!"7 " Furthermore, the structures of the mouse Kelch
domain of Keapl with and without Nrf2 peptide were also
determined by X-ray crystallography (PDB ID: 1X2J and
1X2R). The human and mouse Keapl are very similar in sequence
with sequence identity of 94% overall and 97% in the Kelch
domain. Both cocrystal structures of the human and mouse Keapl
Kelch domain—-Nrf2 peptide complexes overlay very well with
each other and the apo structure of human Keapl Kelch domain.
After alignment of the three crystal structures, our analysis
indicates that the RMSDs for the Ca atoms range between 0.40
and 0.48 A and for all atoms between 0.87 and 0.95 A over the 285
Keapl Kelch domain residues. They all show that the Kelch
domain folds up into a highly symmetric 6-bladed p-propeller
structure with each blade consisting of 44-51 amino acids
(Fig. 8A). The 16mer Nrf2-derived peptide has two antiparallel
f-strands connected by a turn region that has two tight overlapping
type-1 f turns (residues 77-80 and 78—-81). The Nrf2 peptide binds
to the top face of the f-propeller with all six blades contributing to
the complex formation (Fig. 8A and B). Side chains from six
residues in Keapl (Ser363, Asn’®?, Arg38°, Arg‘“s, Arg483 and
Ser’®) participate in H-bond interactions to the carboxylate
oxygen atoms from E79 and E82 in the Nrf2 peptide (Fig. 8C)
and several Keap1 residues are involved in H-bond interactions to
the peptide backbone and in van der Waals interactions between
the Kelch domain and the Nrf2 peptide (Fig. 8B). Another
interesting feature of the Keapl Kelch domain with relevance to
peptide-binding site is the positively charged region which is
primarily due to the highly conserved Arg residues. Only the side
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Figure 8 Structures of the Kelch domain of human Keapl bound to an Nrf2 peptide. (A) A top-down view showing the six-bladed S-propeller
structure in red ribbon and the peptide as a yellow tube. Each blade of the -propeller is numbered I-VI. Both the N- and C-termini of the domain
are located in blade I and are labeled N and C, respectively. The four f-strands found in each blade are designated A—D as shown in white font on
blade VI. (B) A surface representation of the Kelch propeller (gray) and peptide (yellow tube). Selected residues are shown in blue (basic), orange
(polar) and green (apolar). (C) Charge—charge and H-bonding interactions between the side chain atoms of the Nrf2 peptide and residues in the
Kelch domain. Not shown are 5 H-bond interactions between the peptide backbone atoms and residues in the Kelch domain (reproduced with

. . 108,
permission from reference ).

chains of peptide glutamate residues E79 and E82 make specific
interactions with the binding site. The carboxylate group of
peptide E79 interacts with the side chains of Ser’*®, Arg*'®, and
Arg*®? while the carboxylate group atoms of peptide ES2 interacts
with the side chains of Ser’®*, Asn**?, and Arg®* (Fig. 8C). These
structure details revealed in the high resolution (1.5 A) co-crystal
structure of the human Keap1 Kelch domain-Nrf2 peptide complex
suggest that inhibitors that interfere with the Keapl1-Nrf2 PPI can
derive their inhibition by binding Keapl Kelch domain at the site
where Nrf2 peptide is binding.

Moreover, several structural and functional evidences substan-
tially support the concept that the DXETGE motif is the principal
Keapl binding site in Nrf2 peptide. The lysine-rich residues in
Nrf2 required for ubiquitination are located at a distance of 10-30
amino acids on the DXETGE N-terminal side 21, and these
residues would be positioned for ubiquitin transfer upon binding
of N1f2 to Keapl via the DXETGE motif. The second low-affinity
Keapl binding site in Nrf2 containing the LxxQDxDLG sequence
located at a distance of approximately 50 amino acids on the N-
terminal side of the DXETGE motif.

Based on the cocrystal structure of Keapl Kelch domain with
the 16mer Nrf2 peptide (PDB ID: 2FLU), we docked LH-601A to
the Nrf2 peptide binding site in Keapl Kelch domain. The strength
of binding between LH-601A and Keapl increases by interactions
between THIQ and Arg*'® (z-cation), phthalimido and Arg*®° (z-
cation), and the hydrogen-bonding interactions which were
observed between Keapl and Nrf2 peptide. Jnoff and colleagues
also docked LH601A to the Nrf2 peptide binding site in Keapl
Kelch domain based on the cocrystal structure of Keapl Kelch
domain with the 16mer Nrf2 peptide (PDB ID: 2FLU) and the
crystal structure of Kelch domain of human Keapl PDB ID:
(1ZGK)'". In their top pose, the LH-601A cyclohexyl group
posits in a similar pocket to our docked pose while the remainder
of LH-601A forming completely different interaction patterns. In
their co-crystal structure of a mutant Keapl Kelch domain with
LH601A (PDB ID: 4L7B)'"?, the aromatic ring of the THIQ group
oriented into the central pore, while the phthalimide
and cyclohexane carboxylic acid moieties extending outward.

Regarding the phthalimide group, the first carbonyl group is
hydrogen-bonded to Ser®?, the second carbonyl group is
hydrogen-bonded to Ser”> through water molecule, and finally
the phenyl ring interacts with Tyr’’* through a z-stacking. The
cyclohexane carboxylic acid group is hydrogen-bonded to both
Arg*"® and Asn*'%,

Silvian and colleagues''* from Biogen cocrystallized com-
pounds 2 and 3 mentioned above with Keapl Kelch domain.
Compound 2 (PDB ID: 4IN4) co-crystallized to 2.6 A resolution
with two molecules of 2 binding side-by-side in each central cavity
of Keapl Kelch domain (i.e. 2 binds to the Keapl Kelch domain
protein in a 2:1 stoichiometry (Fig. 9B)). Both electrostatic and
hydrophobic interactions are involved between compound 2 and
the Keapl Kelch domain protein. Three serine residues (Ser’*®,
Ser’™ and Ser®®?) and two arginines (Arg*' and Arg*®*) form H-
bonds with the two molecules of 2 while Tyr’* and Phe*’’
residues form z-z stacking interactions with two molecules and
there exists hydrophobic interaction between the CF5 group in one
molecule (A) of 2 and the meta-dimethylphenyl group in the other
molecule (B) of 2. There seems to be no cooperative interaction
between the two molecules of 2 in each binding site with Hill
coefficient close to 1.0. The more potent compound 3 (PDB ID:
4IQK) co-crystallized to 2.0 A resolution where 3 binds to the
Keapl Kelch domain protein in a 1:1 stoichiometry. Compound 3
interacted through four z-z stacking interactions with Keapl side
chains of residues Tyr*>*, Tyr>**, Tyr’’* and Arg*'®. The electron-
rich naphthalene ring stacks with Arg*'> and the second naphtha-
lene ring inserted deep into the polar hole of the central cavity.
Furthermore, Serine residues, Ser’®® and Ser602, form H-bond
interactions with compound 3''.

6. Conclusions

The Keapl-Nrf2-ARE pathway is a critical antioxidant defense
mechanism that protects cells from oxidative stress. Since oxida-
tive stress has been implicated in numerous human diseases and
conditions, the Keapl-Nrf2-ARE pathway has been become an
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Figure 9 The interactions observed in X-ray co-crystal structures of Keapl Kelch domain with small molecule direct inhibitors of Keap1-Nrf2
PPL: (A) 1 or (B) 2 or (C) 3. Ionic interactions are indicated with red dotted lines and hydrophobic interactions are indicated with blue dotted
double sided arrows. There are two ligands occupying the binding site in the co-crystal structure of Keapl Kelch domain with 2. (A was

: . 3
reproduced with permission from reference’'?).

important cellular target for the development of potential ther-
apeutic and preventive agents for a number of diseases and
conditions. Nrf2 is the master transcription factor of ARE-
dependent genes and Keapl is the major negative regulator of
Nrf2. Most ARE inducers known are indirect inhibitors of Keapl—
Nrf2 PPI that are electrophilic species acting by modifying the
sulfhydryl groups of Keapl's cysteine residues. However, the
electrophilicity of indirect inhibitors is problematic due to the
potential for "off-target" reactions with cysteine residues of other
important cellular proteins. To circumvent the potential toxic side
effects caused by these "off-target" reactions, several direct
inhibitors of Keap1-Nrf2 PPI have been developed. These direct
inhibitors function by inhibiting the Keap1-Nrf2 PPI via a non-
covalent mechanism and could potentially be developed into
effective therapeutic or preventive agents, representing a novel
therapeutic strategy for the treatment and/or prevention of a variety
of diseases and conditions.
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