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Solving an inverse parabolic problem by optimization from
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Abstract

We consider an inverse problem of reconstructing the coefficient q in the parabolic equation ut −�u+q(x)u= 0
from the final measurement u(x, T ), where q is in some subset of L1(�). The optimization method, combined with
the finite element method, is applied to get the numerical solution under some assumption on q. The existence
of minimizer, as well as the convergence of approximate solution in finite-dimensional space, is proven. The new
ingredient in this paper is that we do not need uniformly a priori bounds of H 1-norm on q. Numerical implementations
are also presented.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let � ⊂ Rm (m�1) be a given bounded domain. Consider the heat conduction problem governed by

ut − �u + q(x)u = 0, (x, t) ∈ QT := � × (0, T ),

u(x, t) = 0, (x, t) ∈ �� × (0, T ),

u(x, 0) = u0(x), x ∈ �,

(1.1)
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with some initial temperature u0 ∈ H 1
0 (�). Then it follows from the standard theory on the parabolic

equation [10] that, if q satisfies c0 �q(x)��0 < ∞ a.e in � for two constants c0, �0, there exists a
unique solution in L2((0, T ), W

1,2
0 (�)). We also denote by u(q)(x, t) to show the dependence of solution

on q(x).
Physically speaking, this model describes the heat conduction procedure in a given homogeneous

medium �. If the medium is inhomogeneous with some input source f (x, t), then the equation should
be written as

ut − ∇(p(x)∇u)u + q(x)u = f (x, t), (x, t) ∈ �.

The coefficient p(x) represents the heat conduction property such as heat capacity, while q(x)u(x, t) is
also the heat source which depends both on location x and on temperature, except for the heat source
f (x, t). That is, q(x) in fact describes the medium property of generating heat source or heat sink.

The tasks of inverse heat problems are detection of heat conduction properties of the medium from
some information of the solution, i.e., the determination of the unknown coefficient(s) in the heat equation
from some additional information about u(x, t). For example, if u(x, t) is given on �� for some time
interval [0, t0], which is the so-called lateral overdetermination problem, then the inverse problems of
determining the unknown coefficients have been studied thoroughly, see [5, Chapter 9] for single and
many measurements.

However, there is another possibility to give the additional temperature for inverse heat problems. That
is, the additional data is u(x, t) given at some final time t = T for all x ∈ �, rather than u(x, t) for
x ∈ �� and all time. Due to this practical requirement, the inverse heat conduction problems using final
temperature as inversion input data have been considered carefully, see [3,8] for determining p(x) in the
above equation with q(x) = 0 from the measurement given u(x, T ). In this model, the heat conduction
procedure is considered only of the input linear source f (x, t), ignoring the nonlinear source q(x)u(x, t)

within the medium. In [6,7], the authors considered the determination of principal coefficient a(x) in 1D
equation

ut − a(x)uxx + b(x)ux + c(x)u = f (x, t)

from final overdetermination data u(x, t0) under an optimization control framework. The existence of
a(x) and a well-posed algorithm are obtained. The uniqueness and stability of determining a(x) in the
parabolic equation

�tu + Au + a(x)u = 0

from the final measurement data is considered in [4], where zero initial condition and nonzero boundary
condition Bu = g in �� × (0, T ) are assumed. The determination of q(x) by Hölder space method from
additional information given at t = T can also be found in [2]. Finally, the theoretical issues such as
existence and uniqueness of coefficients inversion for parabolic equation are also studied in [5,11].

This paper considers the inversion scheme of determining q(x) in system (1.1) from the final
measurement

u(x, T ) = z(x). (1.2)

The particular difficulty of this inverse problem is that the information of q(x) contained in u(x, T ) is
very weak due to the exponentially decay of u(x, T ) with respect to T. On the other hand, since there
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is no uniqueness for this inverse problem with general input data u0 and single measurement (1.2), the
optimization technique should be applied to get some general solution.

The optimization technique is a classical tool to yield “general solution” for inverse problems without
unique solution [9]. The basic idea is to restrict the solution under consideration to some compact set, and
then take the minimizer of some cost functional as the general solution. However, the a priori compactness
of admissible set means some smooth assumption on the exact solution, which is not suitable for many
practical problems [3].

In this paper, by adjusting the penalty term for the cost functional, we prove the existence of minimizer
in a relaxed admissible set for this functional corresponding to our inverse problem. Then the finite element
method is applied to solve the optimization problem by the adjoint space technique. The convergence of
approximate minimizer in a finite-dimensional space to the exact minimizer is proven. The motivation of
this inversion scheme comes from the basic idea used in [8]. Finally, we present some numerical examples
to show the validity of the inversion method.

2. Existence of minimizer for cost functional

In this section, we state the optimization version for the inverse problem of recovering q(x) described
by (1.1) and (1.2).

Introduce the admissible set

K := {q(x) ∈ L1(�) : ‖q‖H 1 < ∞, 0�q(x)��0 a.e. in �}
for known constant �0 > 0 and the functionals

J1(q) := 1

2

∫ T

T −�
dt

∫
�

q(x)|u(q)(x, t) − z(x)|2 dx,

J (q) := J1(q) + �

∫
�

|∇q|2 dx (2.1)

for given small constant � > 0 and regularizing parameter � > 0, where u(q)(x, t) solves (1.1) for q ∈ K.
The constant � introduced here is used to restrict the property of u(·, t) nearing the final time T, which
will be useful in the numerical scheme.

We give an explanation to the cost functional constructed here. In contrast to the obvious least-square
formulation 1

2

∫ T

T −� dt
∫
� |u(q)(x, t) − z(x)|2 dx, here we use J1(q). The motivation to this kind of

functional comes from the consideration of nonlinearity of original inverse problem. It is obvious that the
determination of q from u(q)(x, T ) is nonlinear due to the term q(x)u(x, t) in the equation. So we hope
to fully take into consideration for this nonlinearity in the optimization functional. For this purpose, the
“weight function” q(x) is introduced to the functional to match the nonlinear term q(x)u(x, t) to some
extent.

To make J1(q) a “true” cost functional, we should assume q(x)�0 to keep J1(q) nonnegative. However,
this requirement on q(x) is not essential. For q(x) with lower bound c0 < 0, we can introduce the transform
v(x, t) = u(x, t)ec0t , which satisfies

vt − �v + (q(x) − c0)v = 0.



186 Q. Chen, J. Liu / Journal of Computational and Applied Mathematics 193 (2006) 183–203

So the same kind of inverse problem for function v(x, t) is constituted with q(x) − c0 �0. We can
use the optimization technique proposed in this paper to recover q(x) − c0. That is, our optimization
inversion scheme is essentially suitable for q(x) with (negative) lower bound. In other words, the non-
negative assumption on q in the admissible set K is not essential for our inversion scheme as well as the
convergence property.

The uniqueness for the inverse problem constituted by (1.1) and (1.2) is an important issue, which
means whether the information u(x, T ) is enough for determining q(x). With the uniqueness result, we
can expect the minimizing sequence from optimization indeed converges to the unique classical solution
at least in some general sense. To the authors’ knowledge, however, these kinds of results seem to be open
for general u0(x). However, we can prove the following uniqueness for non-negative initial temperature.

Theorem 2.1. Let the initial temperature u0(x)�0, u0(x) /≡ 0. Assume that q1, q2 ∈ K. Then we get
q1 = q2 if u1(x, T ) = u2(x, T ).

The proof is lengthy but completely using the same arguments as those in [11]. We omit the details
here.

Now we begin to consider the optimization problem.
Firstly, we assert that the functional J1(q) is of some continuous property in K in the following sense.

Lemma 2.2. If a sequence {qn} ⊂ K with the convergence qn → q∗ ∈ K in L1(�), then there exists a
subsequence {qnk

} ⊂ {qn} such that

lim
nk→∞ J1(qnk

) = J1(q
∗). (2.2)

Proof. The proof is standard and similar to that used in [8] for the reconstruction of p(x). We only give
the outlines here.

Step 1: By taking the weak form of equation in (1.1) for q = qn and choosing the test function as
u(qn)(·, t), we can prove that there exists a subsequence of {u(qn) : n = 1, . . .} ⊂ L2((0, T ); H 1

0 (�))

such that

u(qnk
)(x, t) ⇀ u∗(x, t) ∈ L2((0, T ); H 1

0 (�)) (2.3)

for some function u∗(x, t) as nk → ∞.
Step 2: Prove u∗(x, t) = u(q∗)(x, t).
Firstly, we take q=qnk

in the weak form of equation in (1.1) and multiply both sides by �(t) ∈ C1[0, T ]
with �(T ) = 0 for any �(x) ∈ H 1

0 (�). By integrating the resulted equation in [0, T ] for t, we are led to

∫ T

0

[∫
�
(u∗)t� dx +

∫
�
(∇u∗ · ∇�) dx +

∫
�

q∗u∗� dx

]
�(t) dt = 0 (2.4)

for all �(x) ∈ H 1
0 (�) and �(t) ∈ B := {h(t) ∈ C1[0, T ] : h(T ) = 0} due to qnk

→ q∗ in L1(�). Since
C∞

0 (0, T ) ⊂ B, we know that (2.4) holds for all �(t) ∈ C∞
0 (0, T ). So (2.4) is essentially a weak form of

(1.1) corresponding to q = q∗. That is, u∗(x, t) = u(q∗)(x, t) in L2((0, T ); H 1
0 (�)).
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Step 3: Prove J1(qnk
) → J1(q

∗) as nk → ∞.
It follows from (2.3) and Step 2 that

u(qnk
)(x, t) ⇀ u(q∗)(x, t) in L2((0, T ); H 1

0 (�)), nk → ∞. (2.5)

By rewriting the weak form of equation for q = q∗, qnk and taking test function �(x) = u(q∗)(x, t) −
z(x), u(qnk )(x, t) − z(x), respectively, we get

1

2

d

dt
‖u(qnk

) − u(q∗)‖2
L2 +

∫
�

qnk
(u(qnk

) − z)2 dx −
∫

�
q∗(u(q∗) − z)2 dx

=
∫

�
(qnk

− q∗)[z2 + u(qnk
)(u(q∗) − 2z)] dx −

∫
�

|∇(u(qnk
) − u(q∗))|2 dx

+ 2
∫

�
q∗[u(qnk

) − u(q∗)]((u(q∗) − z)) dx. (2.6)

This relation can be rewritten as

1

2

d

dt
‖u(qnk

) − u(q∗)‖2
L2 +

∫
�

qnk
(u(qnk

) − u(q∗))2 dx

=
∫

�
(qnk

− q∗)u(q∗)[u(q∗) − u(qnk
)] dx −

∫
�

|∇(u(qnk
) − u(q∗))|2 dx (2.7)

by simple computations, which generates

‖u(qnk
)(·, t) − u(q∗)(·, t)‖2

L2

�2T
√

2�0‖qnk
− q∗‖L1

(∫
QT

|u(q∗)|2|u(q∗) − u(qnk
)|2 dx dt

)1/2

(2.8)

uniformly in t ∈ [0, T ]. Therefore we get

max[0,T ] ‖u(qnk
)(·, t) − u(q∗)(·, t)‖2

L2 → 0 as nk → ∞, (2.9)

since qnk
→ q∗ in L1(�) and u(q∗), u(qnk

) is uniformly bounded for qnk
, q∗ ∈ K. On the other hand, it

follows from (2.7) that

1

2

d

dt
‖u(qnk

) − u(q∗)‖2
L2 +

∫
�

|∇(u(qnk
) − u(q∗))|2 dx

�
∫

�
(qnk

− q∗)u(q∗)[u(q∗) − u(qnk
)] dx.

By integrating this inequality for t ∈ [T − �, T ], we get∫ T

T −�

∫
�

|∇(u(qnk
) − u(q∗))|2 dx dt → 0 (2.10)
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as nk → ∞ from (2.8), (2.9). Now we integrate (2.6) for t ∈ [T − �, T ] again; the convergence (2.5),
(2.9) and (2.10) completes the proof. �

With this continuous property for J1(q), now we can prove the existence of minimizer.

Theorem 2.3. There exists at least one q∗(x) ∈ K for � > 0 such that

J (q∗) = inf
K

J (q). (2.11)

Proof. Firstly, there exists a sequence {qn} ⊂ K such that

lim
n→∞ J (qn) = inf

K
J (q), (2.12)

which means
∫
� |∇qn|2 dx is uniformly bounded with given � > 0 and therefore ‖qn‖2

H 1(�)
�C. So there

exists a subsequence of {qn} such that

qnk
(x) ⇀ q∗(x) ∈ H 1(�) as nk → ∞. (2.13)

Now the Sobolev embedding theorem yields qnk
(x) → q∗(x) in L1(�) as nk → ∞. Obviously

0�q∗(x)��0 since qnk
(x) ∈ K. So we get as nk → ∞ that

qnk
(x) → q∗(x) ∈ K (2.14)

in L1(�). On the other hand, (2.13) generates

∫
�

|∇q∗|2 = lim
nk→∞

∫
�

∇qnk
· ∇q∗� lim

nk→∞

√∫
�

|∇qnk
|2 dx

∫
�

|∇q∗|2 dx. (2.15)

Now we apply Lemma 2.2 to the sequence {qnk
}. That is, there exists a subsequence of {qnk

}, denoted by
{qmj

} such that limmj→∞J1(qmj
) = J1(q

∗). So we get from (2.14), Lemma 2.2, (2.15) and (2.12) that

J (q∗) = lim
mj→∞ J1(qmj

) +
∫

�
|∇q∗|2 dx� lim

mj→∞ J (qmj
) = inf

K
J (q).

The proof is complete. �

Remark 2.4. We have proven the existence of a minimizer, which depends indeed on the regularizing
parameter �, � as well as the error level � if the noisy data z�(x) is used in the functional. So the other
interesting topic to be considered is the convergence property of minimizer as � → 0 and � → 0.Although
both � and � play the roles of regularization, the introduction of parameter � in the functional leads us
to an approximate optimization problem to original inverse problem. Therefore, it is also necessary to
consider the relation between � and �. All these problems should be studied furthermore.

Since q∗ can be found only in a finite space, we should consider the approximation relation qh − q∗,
where qh is the approximation with the discrete parameter h for finite-dimensional space. This is the topic
in the next section.
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3. Find minimizer in finite-dimensional space

The determination of q∗ can be stated as: minimize the functional

J (q) := 1

2

∫ T

T −�
dt

∫
�

q(x)|u(q)(x, t) − z(x)|2 dx + �

∫
�

|∇q|2 dx (3.1)

subject to q ∈ K, where u(q)(·, t) ∈ H 1
0 (�) meets the constraint∫

�
ut (q)� dx +

∫
�

∇u(q) · ∇� dx +
∫

�
qu(q)� dx = 0, ∀�(x) ∈ H 1

0 (�),

u(q)(x, 0) = u0(x), x ∈ � (3.2)

for all t ∈ (0, T ].
The basic idea of solving (3.1)–(3.2) numerically is to find the minimizer by some iteration process

and solve the variational problem (3.2) by the finite element method (FEM) for any fixed time t ∈ (0, T ]
at each iteration step, where the t derivative is approximated by forward difference scheme.

First of all, bothu(q)(·, t) for any fixed t > 0 andq(·) are functions defined in �. Triangulate the bounded
domain � by the regular triangulation Th, where h > 0 describes the size of each pixel. Introduce

Vh := {f (x) : continuous and piecewise linear function in Th},
V̇h := {f (x) ∈ Vh, f (x) = 0 for x ∈ ��}.

Denote by {xi}Ni=1 the set of all nodal points of Th and approximate K by

Kh = {qh(x) ∈ Vh, 0�qh(xi)��0, i = 1, . . . , N}.
As for time discretization, we divide [0, T ] by nodal tj = �j for j = 0, 1, . . . , M with step � = T/M .
Denote by uj (·) = u(·, j�), while u

j
h(x) is the projection of uj (·) onto V̇h for uj (x) with zero value in

��. Moreover, we approximate ut by backward difference, that is,

��u
j (x) := �tu(x, t)|t=j� = uj (x) − uj−1(x)

�
.

For simplicity, we take the small parameter � > 0 such that � = (n0 + 1)� for some non-negative integer
n0. Under the above notation, the optimization problem (3.1)–(3.2) in finite space Vh has the following
form:

Minimize the functional

J
n0
h (qh) =: �

2

M∑
n=M−n0

∫
�

qh|un
h(qh)(x) − z(x)|2 dx + �

∫
�

|∇qh|2 dx (3.3)

subject to qh ∈ Kh ⊂ Vh, where un
h(qh)(x) = uh(qh)(x, n�) ∈ V̇h meets∫

�
��u

j
h(qh)�h dx +

∫
�

∇u
j
h(qh) · ∇�h dx +

∫
�

qhu
j
h(qh)�h dx = 0,

u0
h(qh)(x) = Qhu0(x) (3.4)
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for all j = 0, 1, . . . , M and the test function �h ∈ V̇h, where Qh is the L2 projection from L2(�) onto
V̇h defined by∫

�
Qhv� dx =

∫
�

v� dx, ∀v ∈ L2(�), � ∈ V̇h.

Denote by Ih : C(�) → Vh the interpolation operator. Then the following property holds for operators
Ih, Qh (see [1,12]).

Lemma 3.1. Assume p > dimension(�). Then it follows that

lim
h→0

‖u − Ihu‖W 1,p(�) = 0, ∀u ∈ W 1,p(�),

lim
h→0

‖u − Qhu‖H 1
0 (�) = 0, ∀u ∈ H 1

0 (�),

‖Qhu‖L2 �C‖u‖L2, ‖Qh∇u‖L2 �C‖∇u‖L2, ∀u ∈ H 1
0 (�).

Similar to the continuous version of optimization problem discussed in Section 2, we should discuss the
existence of minimizer in Kh contained in a finite-dimensional space. However, the proof is somewhat
similar and simple due to the equivalence of norms in finite-dimensional space.

The key to the existence proof of minimizer is the following continuous property of u
j
h(qh) with respect

to qh in Kh for any fixed j = 0, 1, . . . , M and h.

Lemma 3.2. Fix �, h > 0. Let a sequence {qk
h} ⊂ Kh which tends to qh as k → ∞ in L1(�). Then we

get for the solution uh(q
k
h)(x, t) that

u
j
h(q

k
h) → u

j
h(qh) (3.5)

as k → ∞ in H 1
0 (�) for any fixed j = 1, 2, . . . , M .

Proof. For qk
h, qh in (3.4), the corresponding form is∫

�
�tu

j
h(q

k
h)�h dx +

∫
�

∇u
j
h(q

k
h) · ∇�h dx +

∫
�

qk
hu

j
h(q

k
h)�h dx = 0, (3.6)

∫
�

�tu
j
h(qh)�h dx +

∫
�

∇u
j
h(qh) · ∇�h dx +

∫
�

qhu
j
h(qh)�h dx = 0. (3.7)

By taking �h = �u
j
h(q

k
h)(x) in (3.6), we get that

1

2
‖uj

h(q
k
h)‖2 − 1

2
‖uj−1

h (qk
h)‖2 + �‖∇u

j
h(q

k
h)‖2 �0. (3.8)

Taking summation for j = 1, 2, . . . , n�M yields

‖un
h(q

k
h)‖2 �C‖u0‖2, �

n∑
j=1

‖∇u
j
h(q

k
h)‖2 �C‖u0‖2 (3.9)
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uniformly for all n = 1, 2, . . . , M and k = 1, 2, . . . with constant C independent of h, �, k, noticing
Lemma 3.1.

Now we can estimate the error wn
h(k) := un

h(q
k
h) − un

h(qh). The subtraction (3.7) from (3.6) yields∫
�

�tw
j
h(k)�h dx +

∫
�

∇w
j
h(k) · ∇�h dx +

∫
�

qk
hw

j
h(k)�h dx =

∫
�
(qh − qk

h)u
j
h(qh)�h dx

with w0
h(k) = 0. Choosing �h = �w

j
h(k) in this relation and taking summation for j = 1, 2, . . . , n�M

again yields from (3.9) and w0
h(k) = 0 that

1

2
‖wn

h(k)‖2
L2 ��‖qh − qk

h‖∞
n∑

j=1

‖uj
h(q

k
h)‖‖wj

h(k)‖

�2Cn�‖qh − qk
h‖∞�2CT ‖qh − qk

h‖∞ (3.10)

for all n = 1, . . . , M . Inserting this estimate to the above inequality yields

‖∇w
j
h(k)‖2 �‖qh − qk

h‖∞‖uj
h(qh)‖‖wj

h(k)‖ + 1

�

1

2
‖wj−1

h (k)‖2

�2C‖qh − qk
h‖∞ + 2CT

�
‖qh − qk

h‖∞.

So we get ‖wj
h(k)‖2

H 1 �C‖qh − qk
h‖∞ → 0 as k → ∞ for all j = 1, . . . , M from (3.10), with constant

C independent of h but dependent on �. �

With this continuous property, we can prove the existence of minimizer for the optimization problem
(3.3)–(3.4) in set Kh ⊂ Vh.

Theorem 3.3. There exists at least one minimizer q∗
h ∈ Kh for the optimization problem (3.3)–(3.4).

The proof is standard and similar to the continuous case (Theorem 2.3), so we omit it.

Remark 3.4. The continuous property applied here only needs the L2 convergence of un
h(q

nk

h ) as nk → ∞
in Lemma 3.2.

4. Convergence of approximate solution

To take the minimizer q∗
h in Kh as the approximate solution to original optimization problem (2.1), we

should prove that the minimizer q∗
h of functional J

n0
h (qh) in finite-dimensional space indeed converges

to q∗, the minimizer of optimization problem (2.1) in infinite-dimensional space.
The first step to this aim is to prove the approximate solution to direct problem (1.1) from its variational

form (3.2) converges to the exact solution. That is, when the discrete size �, h → 0, the discrete functional
should tend to the continuous one. For given � > 0 in (2.1), we still take � → 0 in such a way that
� = (n0 + 1)� for some integer n0.

We need the following lemma in the proof of convergence property.
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Lemma 4.1. Let {uj
h(qh)} be the solution to (3.4) for qh ∈ Kh. Then

max
n=1,...,M

‖un
h(qh)‖2 + �

M∑
n=1

‖un
h(qh)‖2 + �

M∑
n=1

‖∇un
h(qh)‖2 �C‖u0‖2,

max
n=1,...,M

‖∇un
h(qh)‖2 + �

M∑
n=1

‖��u
n
h(qh)‖2 �C(‖∇u0‖2 + ‖u0‖2)

hold with constant C independent of qh, h, �.

Proof. The first result comes from the analogy of (3.9), while the second one is obtained by taking test
function �h = ���u

j
h in (3.4) and Lemma 3.1. �

For simplicity, we denote un
h(qh), u(q), u(q)(x, n�) by un

h, u, un, respectively. Moreover, introduce the
average value of u(q) for t ∈ [tn−1, tn] by

un := 1

�

∫ tn

tn−1

u(q)(x, t) dt, n = 1, . . . , M, u0 := u0(q).

The continuous property of the functional (3.3) can be stated as:

Lemma 4.2. If {qh(x)} ⊂ Kh converges to q(x) ∈ K in L1(�) as h → 0, then

lim
h,�→0

M∑
n=M−n0

�

∫
�

qh|un
h(qh) − zh|2 dx =

∫ T

T −�
dt

∫
�

q|u(q) − z|2 dx,

where u(q) = u(q)(x, t), un
h(qh) = uh(qh)(x, n�) are the solutions to infinite-dimensional variational

form (3.2) and its approximation (3.4), respectively.

Proof. Taking � = �−1�h(x) in (3.2) and integrating for t ∈ [tj−1, tj ] yield∫
�

��u
j�h dx + 1

�

∫ tj

tj−1

∫
�

∇u · ∇�h dx dt + 1

�

∫ tj

tj−1

∫
�

qu�h dx dt = 0

from the definition of ��u
n. Subtracting the above equality from (3.4) and taking �h = ��

j
h we get

�

∫
�

���
j
h �

j
h dx + �

∫
�

��(Qhu
j − uj )�

j
h dx +

∫ tj

tj−1

∫
�

|∇�
j
h|2 dx dt

+
∫ tj

tj−1

∫
�

∇(Qhu
j − u) · ∇�

j
h dx dt +

∫ tj

tj−1

∫
�

qh|�j
h|2 dx dt

+
∫ tj

tj−1

∫
�

qh(Qhu
j − u)�

j
h dx dt =

∫ tj

tj−1

∫
�
(q − qh)u�

j
h dx dt ,
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where we introduce �
j
h := u

j
h−Qhu

j . Noticing qh�0 and ����
j
h �

j
h=(�

j
h)

2−�
j
h�

j−1
h �[(�j

h)
2−(�

j−1
h )2]/2,

the above equality tells us

1

2
‖�

j
h‖2 − 1

2
‖�

j−1
h ‖2 + �‖∇�

j
h‖2

��

∫
�

��(u
j − Qhu

j )�
j
h dx +

∫ tj

tj−1

∫
�
(q − qh)u�

j
h dx dt

+
∫ tj

tj−1

∫
�

∇(u − Qhu
j ) · ∇�

j
h dx dt +

∫ tj

tj−1

∫
�

qh(u − Qhu
j )�

j
h dx dt

=: I1(j) + I2(j) + I3(j) + I4(j). (4.1)

Taking summation for j = 1, . . . , n�M and noticing �0
h = 0 generate

1

2
‖�n

h‖2 + �
n∑

j=1

‖∇�
j
h‖2 �

n∑
j=1

[I1(j) + I2(j) + I3(j) + I4(j)]. (4.2)

Noticing the identity
∑n

j=1(aj − aj−1)bj = anbn − a0b0 −∑n
j=1aj−1(bj − bj−1) and the definitions

of Qh, �n
� , we get

n∑
j=1

I1(j) =
n∑

j=1

∫
�
[(uj − uj ) − (uj−1 − uj−1)]�j

h dx

=
∫

�
(un − un)�n

h dx − �
n∑

j=1

∫
�
(uj−1 − uj−1)���

j
h dx. (4.3)

Noticing the fact that

|un(x) − un(x)| =
∣∣∣∣1�
∫ tn

tn−1

∫ tn

y

ut (x, t) dtdy

∣∣∣∣ �
√

�

√∫ tn

tn−1

|ut (x, t)|2 dt , (4.4)

the first term in the right-hand side of (4.3) can be estimated by∣∣∣∣
∫

�
(un − un)�n

h dx

∣∣∣∣ �‖un − un‖‖�n
h‖�

√
�

(∫ tn

tn−1

‖ut‖2 dt

)1/2

‖�n
h‖, (4.5)

while the second one can be estimated from

n∑
j=1

∫
�

|uj−1 − uj−1||���
j
h| dx�

√√√√ n∑
j=1

‖uj−1 − uj−1‖2
n∑

j=1

‖���
j
h‖2

�

√√√√ n∑
j=2

∫
�

�

∫ tj−1

tj−2

|ut |2 dt dx

n∑
j=1

‖���
j
h‖2 �‖ut‖L2(QT )

√√√√�
n∑

j=1

‖���
j
h‖2 (4.6)



194 Q. Chen, J. Liu / Journal of Computational and Applied Mathematics 193 (2006) 183–203

due to (4.4). Now inserting (4.5) and (4.6) into (4.3) we get

n∑
j=1

I1(j)�C
√

� (4.7)

with constant C independent of h, � from Lemma 4.1 and the boundedness of ‖ut‖L2(QT ). For I2(j), we
can see that

n∑
j=1

I2(j)�
n∑

j=1

(∫ tj

tj−1

∫
�

|q − qh|2u2 dx dt

)1/2(∫ tj

tj−1

∫
�

|�j
h|2 dx dt

)1/2

�

⎛
⎝ n∑

j=1

∫ tj

tj−1

∫
�

|q − qh|2u2 dx dt

⎞
⎠

1/2⎛
⎝ n∑

j=1

∫ tj

tj−1

∫
�

|�j
h|2 dx dt

⎞
⎠

1/2

�C

(∫ T

0

∫
�

|q − qh|u2 dx dt

)1/2

(4.8)

from ‖q − qh‖L∞ �C, noticing that �
∑n

j=1‖�
j
h‖2 �Cn��CT again from Lemma 4.1. We estimate I3(j)

by |ab|� 1
4 |a|2 + |b|2 to obtain that

I3(j) =
∫ tj

tj−1

∫
�

∇(u − Qhu) · ∇�
j
h dx dt +

∫ tj

tj−1

∫
�

∇(Qhu − Qhu
j ) · ∇�

j
h dx dt

�
�

2
‖∇�

j
h‖2 +

∫ tj

tj−1

∫
�
[|∇(u − Qhu)|2 + |∇(Qhu − Qhu

j )|2] dx dt ,

which yields

n∑
j=1

I3(j)�
�

2

n∑
j=1

‖∇�
j
h‖2 +

∫ T

0
‖∇(u − Qhu)‖2 dt

+ C

n∑
j=1

∫ tj

tj−1

‖∇(Qh(u − uj ))‖2 dt . (4.9)

Finally we consider I4(j). Noticing �
j
h is independent of t, we get that

I4(j �C‖�
j
h‖
∫ tj

tj−1

[‖u − Qhu‖L2(�) + ‖Qh(u − uj )‖L2(�)] dt

from the property of Qh, which yields

n∑
j=1

I4(j)�C

∫ T

0
‖u − Qhu‖L2(�) dt + C

n∑
j=1

∫ tj

tj−1

‖Qh(u − uj )‖L2(�) dt . (4.10)
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Inserting (4.7)–(4.10) into (4.2) generates

1

2
‖�

j
h‖2 + �

2

n∑
j=1

‖∇�
j
h‖2 �C

√
� + C

(∫ T

0

∫
�

|q − qh|u2 dx dt

)1/2

+C

∫ T

0
‖u − Qhu‖H 1(�) dt + C

n∑
j=1

∫ tj

tj−1

‖Qh(u − uj )‖H 1 dt (4.11)

from the property of Qh. On the other hand,

‖Qh(u − uj )‖H 1 �C‖u − uj‖H 1 �
C

�

∫ tj

tj−1

‖u(·, t) − u(·, 	)‖H 1 d	.

Since t, 	 ∈ [tj−1, tj ] means |t − 	|��, it follows for ∀
 > 0 that ‖u(·, t) − u(·, 	)‖H 1 �
 for � > 0 small
enough. So ‖Qh(u − uj )‖�C
, which means

n∑
j=1

∫ tj

tj−1

‖Qh(u − uj )‖H 1 dt �C
n��CT 
.

Now by letting �, h → 0 in (4.11), we get ‖�
j
h‖2, �

2

∑n
j=1‖∇�

j
h‖2 �C
 uniformly for all j =1, . . . , n�M

for h, � > 0 small enough. The arbitrariness of 
 means

lim
h,�→0

max
n=1,...,M

‖�n
h‖2 = lim

h,�→0

�

2

M∑
j=1

‖∇�
j
h‖2 = 0. (4.12)

That is,

�
M∑

j=1

‖�
j
h‖2 �M� max

j=1,...,M
‖�

j
h‖2 = T max

j=1,...,M
‖�

j
h‖2 → 0 (4.13)

as h, � → 0. By this estimate, we get from un
h − un = �n

h + (Qhu
n − un) that

�
M∑

n=1

‖un
h − un‖2

L2(�)
�2�

M∑
n=1

‖�n
h‖2 + 2�

M∑
n=1

‖Qhu
n − un‖2

�2�
M∑

n=1

‖�n
h‖2 + 2T max

n=1,...,M
‖Qhu

n − un‖2 → 0 (4.14)

as h, � → 0 from (4.13) and the property of Qh.
Now we can complete the proof of Theorem 4.2. By defining zh := Qhz, it is enough to prove that

I (h, �) − I (h) := �
M∑

n=M−n0

∫
�

qh|un
h − zh|2 dx −

∫ T

T −�

∫
�

q|u − zh|2 dx dt → 0
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as h, � → 0, noticing M depending on �. We rewrite I (h, �) − I (h) as

I (h, �) − I (h) =
M∑

n=M−n0

∫ tn

tn−1

∫
�

qh(|un
h − zh|2 − |u − zh|2) dx dt

+
∫ T

T −�

∫
�
(qh − q)|u − zh|2 dx dt =: S1(h, �) + S2(h). (4.15)

For the first term, it follows from Hölder inequality and Lemma 4.1 that

S1(h, �) =
M∑

n=M−n0

∫ tn

tn−1

∫
�

qh(u
n
h − u)[un

h + u − 2zh] dx dt

�C

⎛
⎝ M∑

n=M−n0

∫ tn

tn−1

‖un
h − u‖2

⎞
⎠

1/2⎛
⎝ M∑

n=M−n0

∫ tn

tn−1

‖un
h + u − 2zh‖2

⎞
⎠

1/2

�C

⎛
⎝ M∑

n=M−n0

∫ tn

tn−1

‖un
h − u‖2 dt

⎞
⎠

1/2

(4.16)

due to the boundedness of qh. On the other hand, the triangle inequality means

M∑
n=M−n0

∫ tn

tn−1

‖un
h − u‖2 dt �2�

M∑
n=1

‖un
h − un‖2 + 2

M∑
n=1

∫ tn

tn−1

‖un − u‖2 dt . (4.17)

The first term tends to 0 as h, � → 0 from (4.14), while the second term also tends to 0 from the property
of average function. So we get S1(h, �) → 0 as h, � → 0. That S2(h) → 0 as h → 0 is obvious since
qh → q in L1. Therefore we conclude that I (h, �) − I (h) → 0 as h, � → 0. The proof is complete. �

Now we can prove the convergence property of solution sequence {qh}h>0.

Theorem 4.3. Assume that {q∗
h}h>0 is the minimizer to discrete optimization problem (3.3)–(3.4). Then

there exists a subsequence of {q∗
h}h>0 such that this subsequence converges to the minimizer (3.1)–(3.2).

Proof. Noticing the constant �0 ∈ Kh, we get J
n0
h (q∗

h)�J
n0
h (�0)�C with some constant C independent

of h, � from (3.4) and (3.9), which generates ‖q∗
h‖H 1 �C for any fixed � > 0 due to q∗

h ∈ Kh and (3.3).
Noticing the uniformly boundedness of {q∗

h}h>0 in L2, there exists a subsequence of {q∗
h}h>0, which is

still denoted by {q∗
h}h>0 such that

q∗
h → q∗ ∈ K (4.18)

in L2(�) ⊂ L1(�) as h → 0. On the other hand, the denseness of C∞
0 (�) in W 1,2(�) means that any

q ∈ K can be approximated by a function in C∞
0 (�). That is, for arbitrary 
 > 0, there exists q
 ∈ C∞

0 (�)

such that

‖q
 − q‖L2 �
, ‖∇(q
 − q)‖L2 �
 (4.19)
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for any q ∈ H 1(�). Restrict q
 ∈ K by defining

q̂
(x) :=

⎧⎪⎨
⎪⎩

q
(x), 0�q
(x)��0,

0, q
(x)�0,

�0, q
(x)��0,

(4.20)

then q̂
 ∈ W 1,∞(�)
⋂

K and

‖q̂
 − q‖L1(�)�‖q
 − q‖L1(�)�
, ‖∇q
‖L2(�)�‖∇q‖L2(�) + 
 (4.21)

from this definition and q ∈ K as well as (4.19), which means∫
�

|∇q̂
|2 dx =
∫

x:q̂
=q

|∇q̂
|2 dx =
∫

x:q̂
=q

|∇q
|2 dx

�
∫

�
|∇q
|2 dx�

∫
�

|∇q|2 dx + 2‖∇q‖
 + 
2. (4.22)

Now for any q ∈ K, define q̂
 in the previous way and then define q

h = Ihq̂
 ∈ Kh. Since q∗

h is the
minimizer in Kh, it follows that

J
n0
h (q∗

h)�J
n0
h (q


h) = �

2

M∑
n=M−n0

∫
�

q

h|un

h(q


h) − z|2 dx + �

∫
�

|∇q

h|2 dx. (4.23)

Now Lemma 4.2 and inequality (2.15) generate

J (q∗)� lim
h,�→0

�

2

M∑
n=M−n0

∫
�

q∗
h |un

h(q
∗
h) − z|2 dx + � lim

h→0

∫
�

|∇q∗
h |2 dx

� lim
h,�→0

⎡
⎣ �

2

M∑
n=M−n0

∫
�

q

h|un

h(q


h) − z|2 dx + �

∫
�

|∇q

h|2 dx

⎤
⎦ (4.24)

from (4.23). For any fixed 
 > 0, it follows from q

h = Ihq̂
 → q̂
 in H 1(�) and ‖u − Ihu‖L2(�) → 0 as

h → 0 and (4.24) that

J (q∗)�
1

2

∫ T

T −�

∫
�

q
|u(q
) − z|2 dx + �

∫
�

|∇q
|2 dx

�
1

2

∫ T

T −�

∫
�

q
|u(q
) − z|2 dx + �

(∫
�

|∇q|2 dx + 2‖∇q‖
 + 
2
)

from (4.22). Finally, we take 
 → 0 in the estimate, we get J (q∗)�J (q) for any q ∈ K from Lemma
2.2 and (4.21). That is, q∗ is the minimizer. �

This theorem guarantees theoretically that the minimizer q∗
h for finite-dimensional problem can be used

to approximate the exact minimizer q for small h > 0. However, the optimization problem (3.3)–(3.4)
in the set Kh is constrained by the requirement 0�q(x)��0. This condition will cause some difficulty
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when we find q∗
h(x) numerically. As usual, we convert this problem into one without a priori quantity

assumption on qh(x). For this purpose, construct a new functional from J
n0
h (q) for qh ∈ Kh by

J̃
n0
h (
, qh) = J

n0
h (qh) + 1




∫
�

P(qh)(x) dx (4.25)

with the admissible set Vh and small 
 > 0, where the penalty term is

P(qh)(x) := 1
2 [(qh(x) − �0)

2+ + (qh(x))2+]. (4.26)

The notation a+ is defined as a+=0 for a�0 and a+=a for a�0. We consider the minimizer of functional
J̃

n0
h (
, qh) in the entire space Vh. By the same argument as that in proving Theorem 3.3, we know that

there exists a minimizer q

h(x) ∈ Vh to this problem. The following theorem states the relation between

q

h(x) and q∗

h , the minimizer of (3.3)–(3.4).

Theorem 4.4. Assume that {
i} is a positive sequence satisfying 
1 > 
2 > · · · 
n → 0 as n → ∞ and
denote by q


n
h the minimizer of functional (4.25) in Vh. Then there exists a subsequence of {q
n

h }, which
tends to q∗

h as n → ∞.

Proof. Since q

i
h is a minimizer of J̃

n0
h (
i , ·) in Vh and 
i+1 < 
i ,we get

J̃
n0
h (
i , q


i
h )� J̃

n0
h (
i , q


i+1
h )� J̃

n0
h (
i+1, q


i+1
h ),

that is, the sequence J̃
n0
h (
i , q


i
h ) increases with respect to i. On the other hand, it follows for qh ∈ Kh ⊂ Vh

that
1


i

∫
�

P(q

i
h )(x) dx� J̃

n0
h (
i , q


i
h )� J̃

n0
h (
i , qh) = J

n0
h (qh)

due to P(qh) = 0. This fact means

lim

i→0

∫
�

P(q

i
h )(x) dx → 0, 
i → 0. (4.27)

So expression (4.26) generates

0� lim

i→0

q

i
h (x)��0, (4.28)

since q

i
h (x) is a continuous positive function. Moreover, it follows from (4.26) and (4.27) that {‖q
i

h ‖L2(�)}
is uniformly bounded for all i. Noticing q


i
h lies in a finite-dimensional space for fixed h > 0, all the norms

are equivalent. Therefore there exists a subsequence, denoted still by q

i
h , which converges to some q∗

h in
any norm. So (4.28) means q∗

h ∈ Kh.
Finally, the definition of q


i
h and (4.26) means for any qh ∈ Kh ⊂ Vh that

J
n0
h (q


i
h )� J̃

n0
h (
i , q


i
h )� J̃

n0
h (
i , qh) = J

n0
h (qh).

Now the application of q

i
h → q∗

h in any norm and Lemma 4.2 to the above inequality means
J

n0
h (q∗

h)�J
n0
h (qh) for any qh ∈ Kh. That is, q∗

h is the minimizer in Kh. The proof is complete. �

Our next work is to minimize the function J̃
n0
h (
, qh) given by (4.25) in the whole space Vh for given

�, h, 
 > 0. As usual, the iterative scheme will be used to solve this optimization problem.
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5. Numerical implementations for optimization problem

Having obtained the theoretical results for our inverse problems, we consider the numerical inversion
schemes for the optimization problem in finite-dimensional space.We applyArmijo algorithm to minimize
the functional

J̃
n0
h (
, qh) = �

2

M∑
n=M−n0

∫
�

qh|un
h(qh) − z|2 dx + �

∫
�

|∇qh|2 dx + 1




∫
�

P(qh) dx

=: J̃1(qh) + �J̃2(qh) + 1



J̃3(qh) (5.1)

over the finite space Vh.
A key ingredient in Armijo algorithm is the Gateaux derivative of J̃

n0
h (
, qh). Since 
 > 0 is given in

this algorithm, we abbreviate J̃
n0
h (
, qh) as J̃

n0
h (qh) in this section, without any confusion.

By lengthy but trivial computation, we can obtain the Gateaux derivatives of functional J̃
n0
h (qh) at qh

along direction p(x) ∈ Vh . This result is stated as:

Theorem 5.1. The Gateaux difference of J̃
n0
h (qh) at point qh ∈ Vh along direction p(x) is determined

from the following expressions:

J̃ ′
2(qh)p = 2

∫
�

∇qh(x) · ∇p(x) dx, J̃ ′
3(qh)p =

∫
�

P ′(qh)p dx, (5.2)

with the function

P ′(qh)p =

⎧⎪⎨
⎪⎩

(qh(x) − �0)p(x), qh(x) > �0,

0, 0�qh(x)��0,

qh(x)p(x), qh(x)�0.

(5.3)

For derivative J̃ ′
1(qh)p, it can be computed by the adjoint operator method with the expression

J̃ ′
1(qh)p = �

2

M∑
n=M−n0

∫
�

p(x)|un
h(qh) − z|2 dx + �

M∑
n=1

∫
�

p(x)wn−1
h (x)un

h(qh) dx, (5.4)

where the adjoint function wn
h(x) for n = 1, 2, . . . , M satisfies that

−
∫

�
��w

n
h�h dx +

∫
�

∇wn−1
h · ∇�h dx +

∫
�

qhw
n−1
h �h dx

+ �n

∫
�

q
j
h(x)(un

h − z)�h dx = 0,

wM
h (x) = 0, ��w

n
h := wn

h(x) − wn−1
h (x)

�
(5.5)

for n = M, . . . , 1, �h(x) ∈ V̇h is the test function and �n = 1 for n = M, . . . , M − n0 and �n = 0 for
n = 1, 2, . . . , M − n0 − 1.
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Now we state the steps of Armijo algorithm as follows:
Step 1: Give iteration step adjusting parameter �0 and iteration stop tolerance parameter 
0. Set iteration

initial guess q0
h(x) ∈ Vh.

Step 2: For given q
j
h(x) ∈ Vh, solve the direct problem for u(x, t) in (x, t) ∈ � × (0, T ) by its

variational form∫
�

��u
n
h�h dx +

∫
�

∇un
h · ∇�h dx +

∫
�

q
j
hun

h�h dx = 0, ∀�h ∈ V̇h,

u0
h(x) = Ihu0(x), ��u

n
h := un

h(x) − un−1
h (x)

�
(5.6)

for n = 1, . . . , M along time direction, where �h is the base function of space V̇h. Then we solve the
adjoint problem for w(x, t) by the variational form (5.5).

Step 3: Compute the Gateaux derivative J̃
n0
h (q

j
h)�l := gl for l = 1, 2, . . . , N along direction �l , where

�l is the base function of Vh:

gl = �

2

M∑
n=M−n0

∫
�

�l(x)|un
h(q

j
h) − z|2 dx + �

M∑
n=1

∫
�

�l(x)wn−1
h (x)un

h(q
j
h) dx

+ 2�

∫
�

∇q
j
h(x) · ∇�l(x) dx + 1



J̃ ′

3(q
j
h)�l , (5.7)

where J ′
3(q

j
h)�l is given by (5.2) and (5.3). Then we get the iteration direction from j th step to (j + 1)th

step g
j
h(x) =∑N

l=1gl�l(x).

Step 4: Compute the norm of g
j
h(x) at j th step: ej = (h

∑N
l=1g

2
l )

1/2.
Step 5: Determine the iteration step length from j th step to (j + 1)th step or stop the iteration from the

following step:
(5a) Set  = 1.
(5b) Compute err := J̃

n0
h (q

j
h + g

j
h) − J̃

n0
h (q

j
h) + 1

2e2
j .

(5c) If err�0, then come to (5d); otherwise set  = �0 and come to (5b).
(5d) Set q

j+1
h = q

j
h + g

j
h. If ‖g

j
h‖�
0, exit and stop the iteration scheme. Otherwise set j = j + 1

and come to Step 2.
Next we apply this algorithm to some examples to show the validity of our inversion scheme. In our

numerics, the step sizes h, � and regularizing parameter � as well as penalty parameter 
 are given in
advance. Moreover, the condition err�0 in (5c) is replaced by err��0 for some small parameter �0 > 0.

Example 1: We take a =0.01, T =1 with q(x)= ex . The initial function for iteration is q0(x) ≡ 3 with
the regularizing parameter � = 10−5. The reconstruction results for different iteration times are shown in
Fig. 1.

We can see from this figure that the main shape can be recovered with satisfactory accuracy, except
the boundary points. However, we also find in our numerics that the boundary status can also be revealed
well with different regularizing parameter � = 10−8.

Example 2. This example aims to reconstruct a oscillatory function q(x) = 3 + 2x2 − 2 sin(2�x). In
numerics, we take a = 0.01, T = 1.
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Fig. 1. Recovery at different iteration step.
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Fig. 2. Recovery of q(x) = 3 + 2x2 − 2 sin (2�x).

The same situation arises as that in Example 1. If we apply the noisy data generated in the form

u�(x, T ) = u(x, T )[1 + � × random(x)]

with � = 0.05, that is, with 5% relative error, the reconstruction is also satisfactory, see Fig. 2.
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Fig. 3. Recovery of discontinuous q(x) from constant initial value.

Example 3: We take a = 0.01, T = 1 with discontinuous q(x) given by

q(x) =

⎧⎪⎨
⎪⎩

1, x ∈ [1, 0.3],
2, x ∈ (0.3, 0.7],
1, x ∈ (0.7, 1].

(5.8)

The initial function for iteration is q0(x) ≡ 4. For different iteration times n, the results are shown
in Fig. 3.

We can see that the discontinuous property of q(x) is recovered very well after 15 000 iterations. Also,
the rough shape of q(x) has been obtained after few iterations.
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