
Electronic Notes in Theoretical Computer Science � ������
URL� http���www�elsevier�nl�locate�entcs�volume��html �� pages

The Smyth Completion�
A Common Foundation for Denotational
Semantics and Complexity Analysis�

M� Schellekens
�

Departement of Mathematics

Carnegie Mellon University

Pittsburgh� PA �����

e�mail� Michel�Schellekens�cs�cmu�edu

Abstract

The Smyth completion ������ ����� ���� and ����	 provides a topological foundation

for Denotational Semantics
 We show that this theory simultaneously provides a

topological foundation for the complexity analysis of programs via the new theory of

�complexity �distance	 spaces�
 The complexity spaces are shown to be weightable

�������������	 and thus belong to the class of S�completable quasi�uniform spaces

�����	
 We show that the S�completable spaces possess a sequential Smyth comple�

tion
 The applicability of the theory to �Divide � Conquer� algorithms is illustrated

by a new proof �based on the Banach theorem	 of the fact that mergesort has op�

timal asymptotic average running time

� History and Related Work

Smyth in ���� and ���� has provided a topological framework for Denotational

Semantics based on the theory of quasi�uniform spaces �Nonsymmetric Topol�
ogy ���� ���	
 This work has been continued in ���� and ���� by S�underhauf�

in the context of the topological quasi�uniform spaces �a category extend�

ing the quasi�uniform spaces	
 The theory of the Smyth completion �or S�
completion	 has as a typical application to Denotational Semantics the topo�
logical completion of a quasi�uniform space ��representing� a partial order	

to a topological quasi�uniform space �which �represents� a cpo	
 The class of
S�completable �topological	 quasi�uniform spaces consists of the quasi�uniform

spaces whose S�completion is again a quasi�uniform space
 The S�completable

quasi�uniform spaces have been introduced and characterized by S�underhauf
����� and ����	 and were shown to have an S�completion quasi�unimorphic

� I thank Stephen Brookes� Dana Scott and Rick Statman for helpful suggestions on the

presentation of the paper�

c����� Elsevier Science B� V�Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82328557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Michel Schellekens

�i
e
 �isomorphic� in the context of quasi�uniform spaces	 to the bicomple�
tion �����	
 The weightable quasi�pseudo�metric spaces have been introduced
by Matthews in the context of the semantic analysis of data �ow networks
����������	
 Kunzi and Vajner have continued the study of the weightable
spaces ��������	 and these spaces have been shown to be S�completable by
Kunzi ����	

We introduce a new quasi�pseudo�metric on function spaces suitable for the
complexity analysis of programs �the complexity distance�
 The complexity
spaces �i
e
 the spaces equiped with the complexity distance	 are shown to be
weightable and thus in particular to be S�completable

We obtain a sequential version of the Smyth completion for S�completable
quasi�uniform spaces and show that the Divide � Conquer algorithms in�
duce contraction maps on the sequential Smyth completion of the complexity
spaces
 As an application an alternative proof is presented �based on the
Banach theorem	 of the fact that mergesort has optimal asymptotic average
time

� Introductory Notions

We give the standard de�nitions
 For an introduction to the theory of quasi�
uniform spaces and Nonsymmetric Topology we refer the reader to ��� and
���

We use � to denote the composition of relations� if R is a relation� then R��

is its inverse� and � stands for the diagonal relation� i
e
 � � f�x� x	jx � Xg

N denotes the set of the natural numbers and R denotes the set of the reals

N� � N � f�g
 For any set X� P�X	 denotes the powerset of X

A �lter F on a set X is a subset of P�X	 such that

�	 ��F�G � F	 F � G � F �

�	 ��G � X	���F � F F � G	 � G � F ��

�	 � 	� F

A quasi�uniform space �X� U	 is a space such that

�	 U is a �lter on X
X

�	 ��U � U	��V � U	 V � V � U�

�	 ��U � U	 � � U

U is a quasi�uniformity on X� and U� V�W�

 denote elements of U � called
entourages

The space �X�U	 is uniform when moreover

�	 ��U � U	 U�� � U

U is referred to as the uniformity on X

A base B for a �quasi�	uniformity U is a subset of U � such that

��U � U	��B � B	 B � U�

A function f �X� U	 � �Y�V	 is quasi�uniformly continuous i� ��V �

�

Michel Schellekens

V	��U � U	 f��U	 � V � where f��x� y	 � �fx� fy	
 A quasi�unimorphism

is a bijection f between quasi�uniform spaces such that f and f�� are quasi�
uniformly continuous
 The topology T �U	 associated with a uniformity �X�U	
is the topology generated by the family of neighbourhood �lters fU �x�jU �

Ugx�X

A topology is T� i� for all pairs of di�erent points x� y either there exists
a neighborhood V of x such that y 	� V or there exists a neighborhood W of
y such that x 	� W
 A topology is T� i� for all pairs of di�erent points x� y
there exist neighborhoods V of x and W of y such that y 	� V and x 	� W

The following properties hold �cf
 ���	

� Given a quasi�uniform space U � then �U is always a preorder �i
e
 re�exive
and transitive	
 This preorder is called the preorder associated to U� and is
denoted by �

U

� The topology T �U	 is T� i� �U is a partial order and is T� i� �U � �

For any entourage U � we de�ne U� � U � U��
 Given a quasi�uniformity
U � U� is de�ned to be the uniformity generated by the base B � fU�jU � Ug�
i
e

U� � fU j U � X
X and ��B � B	 B � Ug�

A U��Cauchy sequence �xn	n is a sequence such that

��U�	��no	��m�n no	 xmU
�xn�

A quasi�uniform space �X�U	 is bicomplete i� the uniform space �X�U�	
is complete
 A bicompletion of a quasi�uniform space �X�U	 is a bicom�
plete quasi�uniform space �Y�V	 which has a T �U�	�dense subspace quasi�
unimorphic to �X�U	
 T� quasi�uniform spaces have a unique �up to quasi�
unimorphism	 T� bicompletion ����	� indicated by �the bicompletion�

A function d X
X � R
� is a quasi�pseudo�metric i�

�	 d satis�es the triangle inequality ��x� y� z	 d�x� y	 � d�y� z	 d�x� z	�
and

�	 ��x	 d�x� x	 � �

d is a quasi�metric when d also satis�es

�	 d�x� y	 � � � x � y

Given a quasi�pseudo�metric d� the induced metric d� is de�ned to be d��x� y	 �
maxfd�x� y	� d�y� x	g
 Note ����	 a quasi�pseudo�metric d generates a quasi�
uniform space Ud via the countable base Bd � �Bn	n� whereBn � f�x� y	jd�x� y	 �
���ng
 So�

Ud � fU j U � X� ��Bn � Bd	 Bn � Ug�

The associated preorder �d is de�ned by x �d y i� d�x� y	 � �
 This preorder
coincides with the preorder associated to Ud
 Given a quasi�pseudo�metric
space �X� d	� a d�contraction map f X � X is a map such that ��c �

�	��x� y � X	 d�fx� fy	 � cd�x� y	

�

Michel Schellekens

� The Sequential Completion

For uniform spaces� the construction of the topological completion can be

obtained via the standard minimal Cauchy �lter completion ����	
 It is well

known that in the case of a uniform space with a countable base the �lter

completion can be carried out by the usual Cauchy sequence completion �a

property denoted in ��� by �adequacy of sequences�	
 This includes the partic�

ular case of the Cauchy sequence completion of a metric space
 A completion

via sequences will be referred to as a �sequential completion�

For Nonsymmetric Topology� for example for the theory of quasi�uniform

spaces and in particular for the S�completion� the question of the existence

of sequential completions is not settled
 The S�completion of a quasi�uniform

space as presented in the literature �����	 is obtained via the �from a topologi�

cal point of view	 non�standard �round S�Cauchy� �lters
 In ���� S�underhauf

obtains a reduction of this �lter S�completion to the �Cauchy net comple�

tion�
 However there is no guarantee that this completion further reduces

to a sequential completion
 In ����� a sequential �non�topological	 completion

of quasi�uniform spaces is given �of which we will use the de�nition of the

base on the completion	
 However this sequential completion has not yet been

generalized in the literature to the topological context of the S�completion

We obtain a partial answer to the problem by assuming the extra condition

of �S�completability� ����� and ����	 on the quasi�uniform space
 �This ex�

tra assumption will be justi�ed below� as the spaces we will consider will be

S�completable
	 Recall that a quasi�uniform space �as part of the topolog�

ical quasi�uniform spaces	 is S�completable i� its completion in the class of

all topological quasi�uniform spaces is again a quasi�uniform space
 Under

the S�completability assumption the S�completion of a quasi�uniform space is

quasi�unimorphic to its bicompletion ����
 This reduces the problem to �nd�

ing a sequential version of the bicompletion of quasi�uniform spaces
 To the

author�s knowledge no such version is available in the literature �
 Theorem

�
� sets up the sequential bicompletion of quasi�uniform spaces with countable

base
 In Corollary �
� we obtain the sequential bicompletion for the case of

the quasi�pseudo�metric spaces
 We de�ne a quasi�pseudo�metric inducing the

quasi�uniformity on the completion from a given quasi�pseudo�metric inducing

the original quasi�uniformity
 It is this last result which will be used to ob�

tain the application discussed under section �
 The general result given under

Theorem �
� combined with the fact that �as we will show	 the space used in

the application of section � is S�completable� implies that this application is

based on a sequential S�completion� and thus on the topological foundation of

Denotational Semantics

�A sequential bicompletion for quasi�pseudo�metric spaces has been obtained by A� Di

Concilio in ���� as pointed out recently to the author by H�P� Kunzi� This result corresponds

to our Corollary ���� which follows from the more general result given under Theorem ����

�

Michel Schellekens

Theorem ��� Every T� quasi�uniform space �X� U	 with countable base has

a sequential bicompletion �X�U	� The base set X is de�ned by�

X � f�xn	nj �xn	n is a U��Cauchy sequence g���

where

�xn	n � �yn	n �� �B�
k
��n�	��m�n n�	 xmB

�

k
yn�

The quasi�uniformity U is de�ned to be generated by the base elements�

f�x� y	 j �� representatives �xn	n� �yn	n of x� y	

��no	��m�n no	 xmBkyng�

�The de�nition of the base corresponds to the one given in �����	

Proof �Sketch� The details are lengthy so we only give a sketch
 We show
that the obtained sequential completion is a T� bicompletion� so by the unique�
ness of T� bicompletions �up to quasi�unimorphism	 it is quasi�unimorphic to
the �lter bicompletion as given in ���
 �

Corollary ��� When U � Ud� there is a quasi�pseudo�metric d and a metric

d�� de�ned by�

d���xn	n�� ��yn	n�	� lim
n��

d�xn� yn	 and

d����xn	n�� ��yn	n�	� lim
n��

d��xn� yn	�

such that U � U
d
� and such that d

�

� d�� In particular� �U
d
	� � �U

d
	� �

U
d

� � U�d��� �

Two results for the sequential bicompletion are obtained next the exten�
sion theorem �a straightforward adaption of the extension theorem in ��� for
the �lter bicompletion� to the sequential completion	 and the Banach theorem
�for the classical version of the Banach theorem we refer the reader to ���	

Theorem ��� �Extension Theorem� Suppose �X�U	 is a To quasi�uniform

space with a countable base� and let f �X�U	 � �X�U	 be a quasi�uniformly

continuous function� Then f extends uniquely to a quasi�uniformly continuous

function f �X�U	� �X�U	� de�ned by f ��xn	n� � ��f�xn		n�� f is unique in

the sense that any quasi�uniformly continuous function g �X�U	 � �X�U	
which agrees with f on the constant sequences must coincide with f � �

Theorem ��� �Banach Theorem� Given a To space �X�Ud	� and a d�con�

traction map f � the function f obtained via the extension theorem is a d�

contraction map� and has a unique �xed point FIX�f	� given by� FIX�f	 �

�limk���f
k

��xn	n�		� where ��xn	n� is an arbitrary element of X� In particular�

for each constant sequence ��x	n� FIX�f	 � ��f
n

x	n�� �

� The Complexity Distance

Given a partial recursive function f � and a programming language L� let �f �
be the set of all programs of L computing a partial recursive function which
approximates f �in the usual pointwise ordering on partial functions	
 We will
use P�Q� � � � in what follows to denote programs

�

Michel Schellekens

Recall that a complexity measure ���������	 is a binary partial function

C�k� n	 on N� satisfying the Blum axioms ����	

�	 C�k� n	 is de�ned i� the program with coding k converges on input n

�	 the predicate C�k� n	 � y is recursive

So C�k� n	 represents the complexity of a program P �with code k	 on input

n

We only use this abstract setting to introduce the complexity distance in

its full generality
 We will not use the recursion theoretic machinery connected

with this axiomatization� so the reader who is not familiar with abstract com�

plexity measures� can keep one measure in mind �for example the running

time	 while reading the results

The output value unde�ned is indicated by �� and has in�nite complexity

Let CP denote the complexity �function	 of a program P � that is the function

�n�C�k� n	 �where k is the code of P 	
 We assume CP to be non�zero on all

inputs

The intuition behind the �complexity distance� �de�ned below	 between

programs P and Q is that d�P�Q	 measures relative progress made in lowering

the complexity by replacing P by Q

De�nition ��� Given P � �f �� we de�ne

dP� � R
� by d�P�� P�	 �

X
n��

d����n	
�

�n
�

where

d����n	 �

�
� when CP��n	 � CP��n	� and

�
CP� �n�

� �
CP� �n�

otherwise

Note that the distance is normalized by the factor �
�n

to guarantee convergence

of the series

Lemma ��� The complexity distance is a quasi�pseudo�metric� �

Note that d is not necessarily a quasi�metric� that is there may be pro�

grams P and Q such that d�P�Q	 � � and P 	� Q
 For example� consider a

language which supports assignments and a complexitymeasure counting each

assignment
 Consider any program P in the language� and obtain the program

Q from P by adding a dummy assignment to P �that is an assignment to a

variable not occuring in P 	
 We have d�P�Q	 � � and P 	� Q

A more precise motivation for the de�nition of the distance is given below

We follow the intuition given above� that is we aim at measuring relative

progress in complexity
 Assume P and Q are programs such that on a given

input n� CP �n	 � CQ�n	
 We obtain a relativemeasure of progress by replacing

the absolute di�erence CP �n	�CQ�n	 by �CP �n	�CQ�n		�CP �n	
 However�

progress from CP �n	 � � to CQ�n	 �a �nite value	 with this distance would

�by taking �the limit�	 yield constant value �� independently of CQ�n	
 The

limit we have in mind is limk���CPk�n	 � CQ�n		�CPk �n	� where Pk is the

program obtained from P by limiting P to run on each input for at most k

steps

�

Michel Schellekens

To be consistent with the wish to measure relative progress� we should

distinguish between improvements from in�nity to di�erent �nite values
 This

can be obtained by replacing the above quotient by �CP �n	�CQ�n		��CP �n	�

CQ�n		� which amounts to ���CQ�n		� ���CP �n		 when CP and CQ are �nite

This last expression is sensitive to di�erences in �nite values of CQ� when CP

is in�nite
 The distance d����n	 from a de�ned value P��n	 to an unde�ned

P��n	 �note the directedness	 is de�ned to be �� as this is consistent with the

idea that there is no progress in an increase in complexity� in particular in an

increase to in�nite complexity

It is clear that d su�ers from an indi�erence against increases in complexity

This is unavoidable as the nonsymmetry of d avoids the problem which occurs

for the induced metric d�� namely the loss of information of which program

choice �P or Q	 is progress
 The metric d� does not give any information�

in the sense that from the value d��P�Q	 it is impossible to determine which

program would be more e�cient
 For instance assume that the program Q

is more e�cient on all inputs than the program P
 In that case d�P�Q	

and d��P�Q	 have exactly the same value� but the last measure does not

indicate which program is more e�cient� while the �rst measure provides this

information by the fact that d�Q�P 	 � �
 A second motivation for the use of

a nonsymmetric distance is given below

Lemma ��� In general ��f �� d	 is not T�� but can be made T� by the iden�

ti�cation of programs with same outputs and complexity� The resulting quo�

tient space �f �� equipped with the induced distance d�� de�ned by d���P �� �Q�	 �

d�P�Q	 is T�� d� is well�de�ned and is a quasi�pseudo�metric� The space

��f ��� d�	 is in general not T� �equivalently� d
� is in general not a quasi�metric	��

Convention the equivalence class notation for elements of the resulting quo�

tient ��f ��� d�	 will be dropped in what follows� in particular elements of �f ��

will still be called �programs� belonging to �f ��
 We will also use �with abuse

of notation	 ��f �� d	 for the quotient ��f ��� d�	� that is we assume the spaces to

be quotiented

� S�Completability

Given P � �f �� de�ne CP to be the set of complexity functions corresponding

to the representatives of the elements of P
 As the space ��f �� d	 is obtained

by taking the quotient which identi�es programs which have same outputs

and complexity� there is a bijection between P and CP
 So it is clear that

the complexity distance can be directly de�ned on CP � that is the spaces

��f �� d	 and �CP � d	 trivially are quasi�unimorphic
 In what follows we will not

distinguish between the two approaches
 In fact we will make the following

generalization and work on the general function space �����N� containing the

set of all possible complexity functions CP �recall our restriction CP �n	 	� �
	

Note that we do not necessarily have that functions of this space actually are

complexity functions of a program

The following results are stated for the function space approach� that is

�

Michel Schellekens

we work with a space �X� d	� where X � �����
N
and where

d�f� g	 �
X

n��

f�
�

g�n	
�

�

f�n	
	
�

�n
jf�n	 � g�n	g�

Note that d is still a quasi�pseudo�metric� and that its associated order is the

pointwise order on the function space �����
N

 This pointwise order associated

to the complexity distance is essential in comparing programs with respect

to complexity� as will become clear in the complexity analysis of mergesort

presented below

We can now give a second motivation for the use of the nonsymmetric

distance
 As both the pointwise order and the induced metric d� are de�nable

from the nonsymmetric distance d� there is no need to introduce the metric

and the order separately� that is the introduction of the nonsymmetric distance

su�ces

De�nition ��� A quasi�pseudo�metric space �X� d	 is weightable i� there ex�

ists a function w X � R
�

such that �x� y � X d�x� y	 � w�x	 �

d�y� x	 � w�y	
 The function w is called a �weighting function� and w�x	

is called the �weight� of x� we say �d is weighted via w�

Weightable spaces were introduced by Matthews �����	 in the context of

the study of the semantics of data �ow networks
 Kunzi and Vajner have

continued their study ��������	
 We recall the following result by Kunzi

Proposition ��� �Kunzi� The weightable quasi�pseudo�metric spaces are S�

completable� �

Notation	 given P�Q � �f �� then
P�
n
is the sum ranging over all n such that

CP �n	 � Cq�n	� where � is one of the following orders ������

Proposition ��� The complexity distance d on X � �����
N
is weighted via

the weighting function w de�ned by�

��f � X	 w�f	 �
X

n

�

f�n	

�

�n
�

Proof� �P�Q � �f �

d�P�Q	 � w�P 	 �
�X

n

�
�

CQ�n	
�

�

CP �n	
	
�

�n
�
X

n

�

CP �n	

�

�n

�

�X

n

�

CQ�n	

�

�n
�

	X

n

�

CP �n	

�

�n

�w�Q	�

	X

n

�

CQ�n	

�

�n
�

	X

n

�

CP �n	

�

�n

�w�Q	 �

	X

n

�
�

CP �n	
�

�

CQ�n	
	
�

�n

�w�Q	 �
�X

n

�
�

CP �n	
�

�

CQ�n	
	
�

�n

�w�Q	 � d�Q�P 	 �

�

Michel Schellekens

The following S�completability result is an immediate corollary of propo�

sition �
� and justi�es the existence of the sequential S�completion �X� d	 of

the complexity spaces �X� d	

Corollary ��� For any X � �����N� the space �X�d	 is S�completable� �

� Divide � Conquer Algorithms

�Divide � Conquer� algorithms solve a problem by recursively splitting it into

subproblems each of which is solved separately by the same algorithm� after

which the results are combined into a solution for the original problem
 The

Divide � Conquer strategy is an important widely applicable technique for

designing e�cient algorithms ����	
 The complexity C of a Divide � Conquer

algorithm typically is the solution to a recurrence equation of the form C��	 �

c and ��n � �	C�n	 � aC�n
b
	 � h�n	� where a � � represents the number of

subproblems a problem is divided into� e represents the size of each subproblem

and h�n	 represents the time it takes to combine the subproblems of a problem

of size n into the solution
 Divide � Conquer algorithms usually are assumed

to be total� which is the assumption we make from here on
 In particular we

work on the space ����	N� rather than on �����N�
 Note that we exclude � as

an argument� since the recurrence equation has a base case determined by �

rather than by � �this will be convenient in the presentation of the application

of section �� but is not an essential requirement	

Comment Since we assume that the complexity on any input is never zero�

we should require that c 	� � in order to guarantee that ��n �	C�n	 	� �

Instead of requiring this condition �which will actually be violated in the appli�

cation discussed under section � 	 we impose the following natural condition

for each Divide � Conquer algorithm S we require that its complexity func�

tion satis�es CS��	 � c
 That is� we assume that each algorithm is such that

it has the same complexity on the base case
 Whatever recursive function the

program actually computes� we can assume that the program has a built in

test for the base case and behaves the same on this input
 We are only in�

terested in di�erences in complexity caused by the recursion
 �Because of our

assumption on the shape of the recurrence relation� we only consider recursion

with one base case
	

The assumption on the base case implies that the value c � � does not

cause any problems
 Indeed� by this assumption we have d�����	 � � �De�ni�

tion �
�� case �	 and thus division by � does not occur
 So we continue to work

with ����	N�
 Let ����	N�

c
� ff j f � ����	N� and f��	 � cg
 We denote this

set in what follows by Cc
 De�ne for b � N� b � ��

Ccjb � ff � j f � is the restriction of f � Cc to arguments n � bk� k �g�

The following theorem establishes the fact that Divide � Conquer algorithms

induce contraction maps on the complexity spaces
 This opens up the way

to applications of the Banach theorem
 We given an example of such an

application in Section � below

Theorem
�� �Contraction Map Theorem� Let �� be the functional in�

�

Michel Schellekens

duced on Ccjb by the recurrence equation E de�ned by C��	 � c and ��n �

�	 C�n	 � aC�n
b
	 � h�n	� that is�

�E Ccjb� Ccjb� where �E � �f�n� if n � � then c else af�
n

b
	 � h�n	�

Then �E is a d�contraction map i� a � �� in which case the contraction

constant is �

a
�

Proof�

d��E�f	��E�g		 �
�X

fn�bkjk��g

�
�

�E�g	�n	
�

�

�E�f	�n	

�
�

�n
�

Note that for k � �� �E�f	��	 � �E�g	��	 � c� so

d��E�f	��E�g		 �
�X

fn�bk jk��g

�
�

ag�n
b
	 � h�n	

�
�

af�n
b
	 � h�n	

�
�

�n

�
�X

fn�bk jk��g

�
af�n

b
	 � h�n	� �dg�n

b
	 � h�n		

�af�n
b
	 � h�n		�ag�n

b
	 � h�n		

�
�

�n

�
�X

fn�bk jk��g

�
a�f�n

b
	 � g�n

b
		

�af�n
b
		�ag�n

b
		

�
�

�n

�
�

a

�X
fn�bk jk��g

�
f�n	� g�n		

f�n	g�n	

�
�

�n

�
�

a
d�f� g	� �

Note that a functional �E induced by a Divide � Conquer recurrence
equation E is monotone on Ccjb� that is ��f� g � Ccjb	 f � g � �Ef � �Eg

We conclude the section with an application of the Banach Theorem to a
special kind of functionals the ��complexity	 improvers�
 The intuition is that
an improver is a functional which corresponds to a syntactic transformation on
programs and which satis�es the following property the iterative applications
of the transformation to a given program yield an improved program at each
step of the iteration

De�nition
�� A functional � on Ccjb is an improver with respect to a func�
tion f � Ccjb i� ��n	�n��f � �nf

Note that when � is monotone� to show that � is an improver with respect
to a function f � it su�ces to verify that �f � f

The following proposition plays a crucial role in obtaining the application
of section �

Proposition
�� A Divide � Conquer recurrence equation E has a unique

solution� If f is the solution to E� and �E is an improver with respect to some

function g� then f � g�

Proof� �Sketch	 Let E be a Divide � Conquer recurrence equation
Note that
E is always solvable �cf
 ���	
 If f is a solution of E� then we have that �Ef � f

��

Michel Schellekens

and thus �E ��f	n� � ���
n

Ef	n� � ��f	n�� that is ��f	n� is a �xed point of �E
 By

Theorem �
�� �E is a contraction map on Cc�and by the Extension theorem �E

extends uniquely to a contraction map �E on Cc
 So by the Banach theorem

�E has a unique �xed point and thus E has a unique solution

By the Banach theorem we have FIX��E 	 � ���
n

E g	n�� and thus� again

by uniqueness of �xed points� FIX��E 	 � ���
n

Eg	n� � ��f	n�

Since �E is an improver with respect to g� we have �n ���n

E g �d g
 So

in particular limn d��
n

E g� g	 � �� and thus d����
n

Eg	n�� ��g	n�	 � �
 So we have

that d���f	n�� ��g	n�	 � �� or equivalently f �d g
 �

� An Application	 Mergesort

We will demonstrate the applicability of the theory to the complexity analysis

of sorting algorithms for the speci�c complexity measure of average running

time
 All sorting algorithms S are assumed to be comparison based �����

���	
 Comparison based programs are programs such that �ultimately	 all

computation steps carried out by S on any input list have to be based on a

comparison between list elements
 For this class of algorithms a lower bound

on the average time is known T �n	 nlog�n ����� ���	
 We will present

a novel proof �based on the Banach theorem	 of the well known result that

the �comparison based	 sorting program mergesort has optimal asymptotic

average time
 We denote the sorting function �this is the function mapping

each list to its sorted version	 by s� and we will work on the set of all total

programs computing the function s
 This set is denoted by �s��

��� Introductory notions

De�nition ��� Given a countable total order �A� �	� a list from A is a �nite

sequence of pairwise distinct � 	 elements from A
 We use the restricted

version of lists �that is lists consisting of pairwise distinct elements	 in order

to simplify the presentation
 De�ne ListsA to be the set of all lists obtained

from A
 For any list L �ListsA jLj denotes the length of the list L and we

use ListsA
n

for the set of lists of length n

A list is sorted when its elements �from left to right	 are in increasing order

with respect to to the ordering � on A
 � denotes the equivalence relation on

ListsA
n

which identi�es lists up to order isomorphism
 ListsA� � and ListsA
n
� �

are denoted by LA
and LA

n
respectively

Note that the cardinality of LA

n
is n

In what follows we assume we have a �xed given total order �A� �	 in mind

and we will drop the superscript �A� in LA
and in LA

n

 This will simplify the

notation without introducing ambiguities
 Since we will always work with lists

identi�ed up to order isomorphism� we indicate the elements of Ln and L by

L�L�� � � �� that is �with abuse of notation	 we don�t indicate the equivalence

classes
 Given a list L � Ln� we write L � �L��	� � � � � L�n		

��

Michel Schellekens

De�nition ��� Given a list L in Ln� where n � L� � �L��	� � � � � L�bn
�
c		

and L� � �L�bn
�
c � �	� � � � � L�n		

De�nition ��� A sorting program is a program which takes lists as inputs

and returns the sorted version of these lists
 A comparison made by a sorting
program S between two di�erent elements of a list L� say L�i	 and L�j	� is a
determination �during the computation of S�L		 of their relative order� of the

form �L�i	 � L�j	� or �L�j	 � L�i	�
 The running time of a sorting program
S is de�ned to be

TS�L	 � �the total number of comparisons made by S on input L

during the computation of the sorted output S�L		�

The average running time �assuming uniform distribution on inputs	 is de�ned

by

TS�n	 �

P
jLj�n TS�L	

n
�

Note that this running time might be �
 For example for a program S which

checks whether a list has length jLj � �� and when this is the case� returns L
as output� we have TS��	 � �
 We excluded ��valued running times in order

for the complexity distance not to result in a division by �
 However� as noted

above� division only occurs through the second clause in the de�nition of the
complexity distance �that is �TP��n	 � TP��n	�� cf
 section �� de�nition �
�	�
so inputs with zero time can be allowed as long as they don�t fall under this

clause
 This will be the case under the �harmless	 assumption that all sorting

algorithms start with a length�check on the input L� and in case jLj � ��
return L
 �Note that this assumption implies that all inputs L such that

jLj � � have zero time� and that� as we work with comparison based sorting
algorithms� these are the only inputs with zero time
	 So we continue to work
with the function space C� in what follows
 We give the usual de�nition of

�asymptotic time�

De�nition ��� ��f� g � C�	

�	 f �O g i� ��no	��c � �	��n no	 f�n	 � c � g�n	
 We also use the �more

standard	 notation �f � O�g	� instead of �f �O g�

�	 f �O g i� f �O g and g �O f
 That is �O is the equivalence relation

induced by the preorder �O

De�nition ��� A program S has optimal average asymptotic time i� �TS� is
the minimum of the partial order �C�� �O��O	

De�nition ��
 A merging program is a program taking two sorted lists as

inputs and returning the sorted list consisting of the union of their elements
as output
 Given a merging program Merge� a mergesort program �denoted

by M	 is de�ned by the following pseudo�code

M�L	 � if jLj � �� then return L else return Merge�ML��ML�	�

De�nition ��� A merge pair is a pair of sorted lists

��

Michel Schellekens

MPairs�m�n	 � f�L�� L�	 j �L�� L�	 is a merge pair and the lists L�� L�

are sublists of the unique sorted list of Lm�n�

of length m and n respectivelyg�

Remark The cardinality of MPairs�m�n	 is
�
m�n

n

�

De�nition ��� TMerge�m�n	 �

P
�L��L��

TMerge�L��L��

�n�mn 	
� where the sum ranges

over MPairs�m�n	

��� Recursion

Recall that �s�� is the set of all comparison based sorting programs
 Assume
Merge is a merge program

De�nition �� M� �s�� � �s�� is de�ned by for any program S � �s���

M�S�L	 � � if jLj � � then return L else return Merge�SL�� SL�	��

Note that with abuse of notation we do not indicate the dependence of M� on
Merge

Since the mergesort program will split each given list in two sublists� the
identi�cation up to order isomorphism will in general be broken as two lists
which are distinct up to order isomorphism might have sublists with equivalent
orders
 We introduce the following notation to deal with this situation

De�nition ���� �i � f�� �g Listi � fLijL � Lng and Li � Listi� �

Lemma ���� For all n �� for all L � Ln� consider �L�� � L� and �L�� � L��

The cardinality of �L�� is
n�

b
n
� c�

and the cardinality of �L�� is
n�

�n�b
n
� c��

�

Proof� The equalities follow by an easy standard combinatorial argument

We give the proof for the cardinality of �L��
 Given L � Ln� say L �
�L��	� � � � � L�bn

�
c	� L�bn

�
c � �	� � � � � L�n		
 Note that since L � Ln� there are

exactly n choices for L�n	
 Once a choice is made for L�n	� there are n � �
choices for L�n � �	
 Continuing this for each of the elements of L�� one ob�
tains that the possible choices for elements of L� are exactly n�

b
n
� c�

� that is each

�xed ordering of L� can occur as a sublist of L in exactly n�
b
n
� c�

many ways�

where L� ranges over the possible orderings of the second part of the list L
�

Corollary ���� Let n � and let L
�

i
be the sorted list of Li� where i � f�� �g�

X

jLj�n

TMERGE�L
�

�� L
�

�	 �
X

�L
�

��L
�

��

TMERGE�L
�

�� L
�

�	b
n

�
c �n� b

n

�
c	 �

where �L
�

�� L
�

�	 range over MPairs�bn
�
c� n� bn

�
c	�

Proof� This follows by an easy combinatorial argument
 �

Proposition ���� ��S � �s��	��n �	

TM�S�n	 � T S�b
n

�
c	 � TS�n� b

n

�
c	 � TMERGE�b

n

�
c� n � b

n

�
c	�

��

Michel Schellekens

P
!
roof
 ��S � �s��	��n �	

TM�S�n	 �

P
jLj�n TM�S�L	

n
�

P
jLj�n�TS�L�	 � TS�L�	 � TMERGE�L

�

�
� L

�

�
		

n
�

By lemma �
�� and corollary �
�� we obtain

TM�S�n	 �

P
jL�j�b

n

�
c TS�L�	

n�

b
n

�
c�

n
�

P
jL�j��n�b

n

�
c� TS�L�	

n�

�n�b
n

�
c��

n

�

P
�L

�

�
�L

�

�
�
TMERGE�L

�

�
� L

�

�
	bn

�
c �n� bn

�
c	

n

�

P
jL�j�b

n

�
c TS�L�	

bn
�
c

�

P
jL�j��n�b

n

�
c� TS�L�	

�n� bn
�
c	

�

P
�L

�

�
�L

�

�
�
TMERGE�L

�

�
� L

�

�
	

n�
bn
�
c��n�bn

�
c��

�T S�b
n

�
c	 � T S�n� b

n

�
c	 � TMERGE�b

n

�
c� n � b

n

�
c	� �

Recall the following well known result

Lemma ���� If f is a monotone increasing function� then

��n � f�k j k �g	f�n	 � nlog��n	 � ��c � �	��n �	 f�n	 � cnlog��n		�

As we work with comparison based sorting algorithms we can without

loss of generality make the assumption that the complexity functions of these

programs are monotone increasing
 So in what follows we will assume the list

lengths to be a power of �
 In particular Proposition �
�� reduces to

��n �	��S � �s��	 TM�S�n	 � �T S�
n

�
	 � TMERGE�

n

�
�
n

�
	�

In order to obtain the application� we need to make a careful analysis

of the average time required to merge� that is we will determine the term

TMERGE�n
�
� n
�
	 of the above recurrence equation

��	 Optimal Merging

The study of the minimum average number of comparisons necessary to merge

�m things with n� is an open problem stated in ��� �cf
 the research problem

listed as exercise ��� section �
�
�	
 In ��� the worst�case analysis of merging

is made via the function M�m�n	 representing the minimum number of com�

parisons su�cient to merge m things with n
 A lower bound and an upper

bound for M�m�n	 is obtained� and in the special case where m � n� a pre�

cise value for M�m�m	 is obtained M�m�m	 � �m � �
 The proof shows

that no �comparison based	 algorithm can have better worst�case time� and

secondly notes that the standard merge algorithm �cf
 �������	 has worst�case

time T �m�m	 � �m � �
 Knuth notes that the right hand side expression

of this equality corresponds to the upper bound obtained for M�m�n	 when

m � n �cf
 ���	� and argues that the lower bound is therefore �at fault�
 We

��

Michel Schellekens

show that the lower bound actually represents the minimum average number

of comparisons necessary to merge m things with n

We solve the problem on the minimum average number of comparisons

required to merge� by determining a lower bound and by solving the case for

m � n

Proposition ���� �Lower bound on average mergetime� For any com�

parison based merge algorithm M� TM �m�n	 dlog�
�
n�m

m

�
e�

Proof� Follows by a standard comparison tree analysis
 �

Corollary ���
 For any comparison based merge algorithm M � TM�n� n	

n�

Proof� By proposition �
��� TM�n� n	 dlog�
�
�n

n

�
e
 Note that

dlog�

�
�n

n

�
e� dlog�

��n	

�n 	�
e � dlog�

�n��n � �	 � � � �n � �	

n
e

 dlog�
��n	��n � �	 � � � ��n � �n � �		

n�n� �	 � � � �
e�

Since ��y �	 �x� y ��x� y	� we obtain

TM �n� n	 dlog�
��n	���n � �		 � � � ���n � �n� �			

n�n� �	 � � � �
e � dlog��

ne � n�
�

In the worst�case analysis performed in ��� the upper bound is shown to be

�exact� in the sense that M�m�m	 � �m� �
 We obtain a similar result for

the lower bound for average merging time via the introduction of an oracle O

De�nition ���� A consecutive sublist of a list L � �L��	� � � � � L�n		� is a

sublist �L�i�	� � � � � L�ik		 of L such that for each j � � � � k � � L�ij � �	 is

the successor of L�ij	 with respect to the total order on list elements

There is no guarantee that a merge algorithm exists with optimal average

time T �n� n	 � n
 However� an �ideal� merge program I can be de�ned�

using an oracle O which for every merge pair �L�� L�	 yields the positions of

the heads of the consecutive sublists in both lists without cost in comparison

time

Recall that the standard merge algorithm is de�ned by the following pseudo�

code �where L� and L� represent sorted lists� head�L	 represents the head of

the list L� and tail�L	 is the list obtained by removing the head from L	

Merge�L��L�	 �

�Let L
�

� �

While L� 	� � and L� 	� � repeat

If head�L�	�head�L�	

then append�L
�

�head�L�		 and let L� � tail�L�	

else append�L
�

�head�L�		 and let L� � tail�L�	

If L� � �

��

Michel Schellekens

then append�L
�

�L�	

else append�L
�

�L�	�

Given the oracle O� we de�ne the following operations
 For every sorted list

L� let H�L	 denote the list consisting of the heads of the consecutive sublists

of L in left to right order� obtained via the oracle O
 Note that this list is

still sorted
 For any element a of H�L	� a denotes the consecutive list in L

starting with a
 Note that this operation is well de�ned by our assumption

that list elements are di�erent from one another
 We extend the operation

to lists L � �L��	� � � � � L�n		 by de�ning L to be the concatenation of the

lists L��	� � � � � L�n	 �where we assume that the list elements of L are heads of

consecutive sublists of a given number of disjoint sorted lists	

We de�ne the ideal merge program I via the following pseudo�code �where

Merge is the standard merge algorithm	

I�L�� L�	 �

�Let L
�

� Merge�H �L�	�H�L�		� Return L
�

�

The ideal mergesort algorithm de�ned via the ideal merge algorithm I� is

denoted byM

The following theorem gives the exact value of the average time the ideal

merge program spends on merging lists of identical length

Theorem ���� ��n �	 TI�n� n	 � n�

Before presenting the proof� we state the following corollary
 Given the

oracle O� de�ne

MO�m�n	 � the minimum average time su
cient to merge m things with n�

The following corollary gives the exact value of MO�n� n	

Corollary ��� MO�n� n	 � n�

Proof� Immediate from Corollary �
�� and Theorem �
��
 �

In order to prove Theorem �
��� we introduce an encoding of merge pairs�

and a lemma dealing with the number of �alternations� of merge pair encod�

ings

Recall that we assume that lists have a length n which is a power of �

Note that when n � �k� T I�k� k	 �

P
�L��L��

TI�L��L��

�nk	
� where the sum ranges

over MPairs�k� k	

The number of non�order�isomorphic merge pairs obtainable from elements

of the sorted list of length n� say L
�

� is
�
n

k

�

 This number corresponds to the

possible number of ways a sorted list L�

� can be obtained from the sorted list

L� � ��� � � � � n	

In order to simplify the analysis� we encode the merge pairs via a �binary

encoding�� which associates a binary list with each given merge pair
 Each

choice of L�

� from L� can be encoded via a binary list l of length n� where an

��

Michel Schellekens

occurrence of � indicates a choice of an element of L�

�� and an occurrence of �

indicates a choice of an element of L�

�

For example consider the sorted list of length � L�
� ��� �� �� �� �� �	 The

pair consisting of L�

� � ������	 and L�

� � ������	 is encoded via the binary list

l � ������������	

Notation l��� denotes the binary encoding of the pair �L�

�� L
�

�	
 An al�

ternation in a binary list l is a change from � to � or from � to �
 Given a

binary list l� let A�l	 denote the number of alternations in l
 For example the

binary encoding l��� of the pair �L
�

�� L
�

�	 given above has � alternations
 Note

T
I
�L�

�� L
�

�	 � A�l���	

In order to prove the theorem� we need the following lemmas

Lemma ���� Let k � jL�

�j � jL�

�j �
n

�
� Then

X
�L�

�
�L

�

�
�

T
I
�L�

�� L
�

�	 � ��

k��X
i��

�
k � �

i

��

��i� �	 �

k��X
i��

�
k � �

i

��
k � �

i� �

�
��i	��

Proof� From the note made above� it su�ces to show

X
�L�

�
�L

�

�
�

A�l���	 � ��

k��X
i��

�
k � �

i

��

��i� �	 �

k��X
i��

�
k � �

i

��
k � �

i� �

�
��i	��

To count the number of alternations it su�ces to consider only the binary lists

starting with �� and to multiply the result by � �remark that any binary list

l has the same number of alternations as its �negative� version� that is the

version obtained by replacing each element i of l by �� i	

Given i � f�� �g a binary list l of which all the elements are equal to i is

referred to as an �i�list�
 Consider l�� the ��list of length k
 Let n � �k

The possible alternations in a binary list l of length n� which has k occur�

rences of the element � and k occurrences of the element �� are determined by

the possible insertions of ��lists among the elements of l�
 There are k�� poss�

sibilities for these insertions� and one extra possibility corresponding to the

appending of a ��list to the list l�
 Since insertions of ��lists each contribute

� alternations and an appended ��list only contributes one alternation� we

consider two cases

�	 A�l���	 is odd �that is l ends in a ��list	 We have

�
k��

i

�
ways to obtain

i insertions� where i �� � � � � k � �
 The insertion of i ��lists �in the i places

chosen between the elements of the ��list l�	 and the appending of the ��list

to l� can happen in di�erent ways� depending on how the ��list is split into

the i � � sublists used in this proces
 There are i divisions to be chosen in

order to split a ��list into i � � sublists� that is there are

�
k��

i

�
ways to split

the ��list l� in i� � sublists

So when A�l���	 is odd

A�l���	 �
k��X
i��

�
k � �

i

��
k � �

i

�
��i� �	 �

k��X
i��

�
k � �

i

��

��i� �	�

��

Michel Schellekens

�	 A�l���	 is even �that is l ends in a ��list	

A�l���	 �
k��X
i��

�
k � �

i

��
k � �

i� �

�
��i	�

The result is obtained by a similar argument
 Note that the sum starts from

one on� since as we have no ��list appended to l� in this case� we must at least

have one insertion of a ��list in l�
 Note that there is a spot to insert this

��list� as the length of l� must be at least �

Recall that we need to multiply the result by � in order to account for the

negative versions of the binary lists� that is the lists starting with �
 �

Lemma ���� For n � �k� k ��

T
I
�n� n	 �

�k

�P
k��
i��

�
k��

i

��
�
P

k��
i��

�
k��

i

��
k��

i��

��
�
n

k

� �

Proof� Note that

�
k��X
i��

�
k � �

i

��
k � �

i� �

�
��i	 �

��
k � �

�

��
k � �

�

�
� � � � ��

�
k � �

k � �

��
k � �

k � �

�
��k � �	

�

�

��
k � �

k � �

��
k � �

k � �

�
��k � �	 � � � ��

�
k � �

�

��
k � �

�

�
�

�
�

Adding up the two sums term by term �in left to right order	 we obtain

�k
P

k��
i��

�
k��

i

��
k��

i��

�

Similarly�

�
k��X
i��

�
k � �

i

��

��i� �	�

�	

�
k � �

�

��

� � � � ��

�
k � �

k � �

��
��k � �	

��

�

�	

�
k � �

k � �

��

��k � �	�� � � ��

�
k � �

�

��

�

��

��k
k��X
i��

�
k � �

i

��

�

So we have
P

�L�

�
�L

�

�
� TI�L

�

�� L
�

�	 � �k

�P
k��
i��

�
k��

i

��
�
P

k��
i��

�
k��

i

��
k��

i��

��
�That

is for n � �k T
I
�n� n	 �

�k

nP
k��

i��
�k��

i
	
�

�
P

k��

i��
�k��

i
	�k��

i��
	
o

�n
k
	

�

Lemma ���� For k� l such that k � �l��
�l

k

�
�

lX
i�maxf��k�lg

�
l

i

��
l

l � �i� �maxf�� k � lg		

�
�

Proof� We distinguish two cases k � l and k � l
 The result follows for the

�rst case by the remark that the number of ways to choose k objects among

��

Michel Schellekens

�l given objects� is the sum of the number of ways to choose i objects among

the �rst l� multiplied by the number of ways to choose the remaining k � i

objects among the l remaining given objects

The case where l � k � �l follows by a similar argument� noting that one

is forced to pick at least k � l objects among the �rst l
 �

Lemma ���� ��k �	

�

��
�k � �

k � �

�
�

�
�k � �

k

��
�

�
�k

k

�
�

Proof� Since k � we have �k �� so there are at least � elements to choose

from
 Note that k elements can be chosen among �k given elements by

�	 selecting two elements among the last two of the �k given ones� and by

picking the k � � remaining elements among the �rst �k � � given elements�
�k��

k��

�
�
�
�k��

k

�
possibilities�

�	 selecting one element in one of the last two positions among the �k given

ones� and the k � � remaining ones among the �rst �k � � given elements

�
�
�k��

k��

�
possibilities�

�	 selecting all k elements among the �rst �k � � given elements
�
�k��

k

�
possibilities
 �

Finally we are ready to show the theorem� that is ��k �	 T
M
�k� k	 � k�

where k � n

�
�

Proof of Theorem ����� By Lemma �
�� we obtain

��	
Pk��

i��

�
k��

i

��
�
Pk��

i��

�
k��

i

��
k��

�k����i

�
�
�
�k��

k��

�
and

��	
Pk��

i��

�
k��

i

��
k��

i��

�
�
Pk��

i��

�
k��

i

��
k��

�k�����i���

�
�
�
�k��

k

�
�

so by Lemma �
�� T I�k� k	 �

P
�L��L��

TI�L��L��

�nk	
�

�kf��k��
k�� 	��

�k��
k 	g

�nk	
� and hence

T I�k� k	 � k �
�kf��k��

k�� 	��
�k��
k 	g

��kk 	
� k � �

n�
�k��

k��

�
�
�
�k��

k

�o
�
�
�k

k

�

 The last

equality holds by Lemma �
��� and thus T I�k� k	 � k
 �

��� Optimal asymptotic average time of mergesort

Our goal is to show an optimization result for mergesort programs
 For these

programs the �average	 time is monotone in the �average	 time of the merge

algorithm on which they are based �Proposition �
��	
 Since linear time merge

programs exist �for example the standard merge program	� we need only con�

sider linear time merge programs in the optimization analysis
 The following

lemma provides a justi�cation for the fact that in this analysis the ideal merge

program is representative for the class of the linear time merge programs

Lemma ���� O�T
M
� O�TM	� for any mergesort program� based on a

merge program �Merge� such that TMerge � O�n	�

Proof� By Corollary �
�� we know that for any merge program �Merge�

��

Michel Schellekens

TMerge�n� n	 n
 So since T I�n� n	 � n� we have T I � TMerge and thus
TM � TM

Conversely� since TMerge � O�n	� ��c � �	��n �	 TMerge�n	 � cn
 So
��n �	TM�n	 � �TM�n

�
	 � TMerge�

n

�
� n
�
	 � �TM �n

�
	 � cn

�
� We also have

��n �	 TM�n	 � �TM�n
�
	 � n

�
� and thus ��n	 TM �n	 � cTM�n	 �easy proof

by induction	
 �

Note that by Theorem �
��� we obtain that the equation given under
Proposition �
�� reduces to

��n �	��S � �s��	 TM�S�n	 � �TS�
n

�
	 �

n

�
�

The functional �� corresponding to the recurrence equation which determines
TM therefor is de�ned by

�� C�jb� C�jb� where �� � �f�n� if n � � then � else �f�
n

�
	 �

n

�
�

Lemma ���� �� is an improver with respect to the function g�n	 � c�nlog��n	
� c� �

�

Proof� Since �� is monotone on C�� it su�ces to show that ��g � g � c� �

�

Note that when n � �� we have ���g	�n	 � � � g�n	 and when n � �
���g	�n	 � ��c� n

�
log�

n
�
	 � n

�
� so

���g	�n	 � g�n	� ��c�
n

�
log�

n

�
	 �

n

�
� c�nlog��n	

� �c�
n

�
�log��n	� �	 �

n

�
� c�nlog�n

� c�n�
n

�
 �

� c�
�

�
�

�

So by Proposition �
� and Lemma �
�� we have TM�d
�

�
nlog�n or M�

O�nlog�n	 and thus by Lemma �
�� we obtain that every mergesort program
based on a linear average time merge algorithm has optimal asymptotic aver�
age time

 Conclusion

A complexitydistance on programs has been de�ned� providing a new means to
perform complexity analyis
 Its properties guarantee that the spaces equipped
with this distance� that is the complexity �distance	 spaces� have a sequential
S�completion
 This implies that these spaces can be studied within the topo�
logical framework of Denotational Semantics �suggesting the possibility that
this framework might allow for a future combination of Denotational Seman�
tics and Complexity Analysis into an intensional semantics	
 A version of the
Banach theorem has been shown for this particular sequential S�completion

The Divide � Conquer algorithms have been shown to induce contraction

��

Michel Schellekens

maps on this completion
 The applicability of the theory has been illustrated

by the complexity analysis of a particular Divide � Conquer algorithm
 The

distance thus has interesting properties both from a theoretical and a practical

point of view

References

��� V
 Aho� J
 Hopcroft� J
 Ullman� Datastructures and algorithms ����� Addison�
Wesley

��� B
 Bjerner� Time complexity of programs in type theory� ����� University of
Goteborg

�� M
 Davis� E
 Weyuker� Computability� complexity and languages� ���� N
Y

Academic Press

��� A
 Di Concilio� Spazi quasimetrici e topologie ad essi associate� Accademia
di Scienze Fisiche e Matematiche� Lettere ed Arti in Napoli� Serie � � Vol

XXXVIII� ����

��� J
 Dugundji� Topology� ����� Allyn and Bacon� Inc
� Boston

��� P
 Fletcher� W
 Lindgren� Quasi�uniform spaces� ����� Marcel Dekker� Inc
�
NY

��� D
 Knuth� The art of computer programming vol
� ���� Addison�Wesley

��� H
 P
 Kunzi� Nonsymmetric Topology� Proceedings Szekszard Conference�
���

��� H
 P
 Kunzi� Complete quasi�pseudo�metric spaces� Acta Math
 Hung
 �� �����

���� H
P
 Kunzi� V
 Vajner� Weighted quasi�metrics� Proc
 Summer Conf
 Queens
College� Gen
 Top
 Appl
� ���� Proc
 NY Acad
 Sci

���� Ming Li� P
 Vitanyi� An introduction to Kolmogorov Complexity and its
applications� ���� Springer Verlag

���� L
 Nachbin� Topology and order� New York Mathematical Studies �vol
 �	�
����� Princeton� N
J

��� S
G
 Matthews� Partial metric spaces� research report RR���� ����� University
of Warwick

���� S
G
 Matthews� The topology of partial metric spaces� research report RR����
����� University of Warwick

���� M
 Smyth� Completeness of quasi�uniform and syntopological spaces�
manuscript� Imperial College

���� M
 Smyth� Quasi�uniformities� Reconciling domains with metric spaces� LNCS
���� ����� Springer Verlag

��

Michel Schellekens

���� M
 Smyth� Totally bounded spaces and compact ordered spaces as domains of
computation� Topology and Category Theory in Computer Science� p
 ��������
Oxford� ����� Oxford University Press

���� P
 S�underhauf� The Smyth completion of a quasi�uniform space� preprint �����
����� Technische Hochschule Darmstadt

���� P
 S�underhauf� Quasi�uniform completeness in terms of Cauchy nets� preprint

����� ����� Technische Hochschule Darmstadt

��

