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Wheat seed development is an important physiological process of seed maturation and
directly affects wheat yield and quality. In this study, we performed dynamic transcriptome
microarray analysis of an elite Chinese breadwheat cultivar (Jimai 20) during grain development
using theGeneChipWheat GenomeArray. Grainmorphology and scanning electronmicroscope
observations showed that the period of 11–15 days post-anthesis (DPA) was a key stage for
the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and
significance analysis of microarrays revealed that the period from 11 to 15 DPA was more
important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves.
Series test of cluster analysis of differential genes revealed five statistically significant gene
expression profiles. Gene ontology annotation and enrichment analysis gave further informa-
tion about differentially expressed genes, and MapMan analysis revealed expression changes
within functional groups during seed development. Metabolic pathway network analysis
showed that major andminor metabolic pathways regulate one another to ensure regular seed
development and nutritive reserve accumulation. We performed gene co-expression network
analysis to identify genes that play vital roles in seed development and identified several key
genes involved in important metabolic pathways. The transcriptional expression of eight key
genes involved in starch and protein synthesis and stress defense was further validated by
qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed
development and the determinants of yield and quality.
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS. Production and

hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD), an
allohexaploid species, is the principal food crop used for
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humans and livestock globally. Wheat is counted among the
“big three” cereal crops and is unrivaled in its range of
cultivation owing to its extensive agronomic adaptability,
high yield potential, and nutritional profile (including
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essential amino acids, minerals, vitamins, beneficial phyto-
chemicals, and dietary fiber) [1,2].

Cereal seeds consist of two main tissue fractions: starchy
endosperm/aleurone and embryo/scutellum. The starchy en-
dosperm of mature wheat seeds is a major source of nutrition,
aswell as the primary site for the storage of starch and proteins
important for grain yield and flour quality [3,4]. The aleurone is
a single cell thick and has two biological roles: (1) digesting the
starchy endosperm to release nutrients and amino acids to the
germinating embryo and (2) protecting the endosperm from
stress and pathogens [5]. In addition, the wheat seed aleurone
layer is themost concentrated source of vitamins andminerals
and is also rich in proteins and lipids [6].

Starch and protein are the principal storage reserves in the
wheat seed. Wheat seed development includes five main
phases: fertilization (0 days post-anthesis [DPA]), “coenocytic”
endosperm (1–5 DPA), cellularization, and early grain-filling
(6–13 DPA), maximum grain filling (14–24 DPA), and desic-
cation (25–38 DPA). In general, the grain-filling period is
considered to comprise cellularization and the early and
maximum grain-filling phases [7].

Seed development is a very important stage in the cereal
crop seed life cycle. The nutritive reserves of mature wheat
seeds provide not only human food and livestock feed but also
the energy for seed germination. Initial primary studies on
seed development focused mainly on seed physiology and
biochemistry [8], providing us with a basic understanding of
the seed development process. In recent years, proteomics
has been used to study the biochemical mechanisms of
plant seed development, including barley [9], Cunninghamia
lanceolata [10], Medicago truncatula [11,12], Lotus japonicus [13]
and wheat [14]. However, the number of proteins identified
by the proteomics approach is limited and does not permit
a complete genome-wide comparison. Dry mature seeds of
crops contain a vast number of mRNA species, which were
first identified in cotton [15]. Since the 1990s, stored RNA
in the mature dry seeds of plant species has been shown
to be universal [16–18], and gene expression patterns can
be detected in stored seed mRNA. Affymetrix arrays can
provide a comprehensive, real-time picture of changes at
the whole-transcriptome level during seed development,
and this tool has been used to investigate the biological
processes of wheat grain development [6,19,20]. Although
transcriptome analysis during wheat grain development by
RNA-Seq has been performed [21], studies of the compre-
hensive dynamic transcriptional characterization of grain
filling stages are still limited.

Modern allohexaploid wheat has a huge and complex
genome (up to 17,000 Mb) composed of the ancestral A, B, and
D genomes. Recently, there has been much progress in wheat
genome sequencing [22]. The Au genome in Triticum urartu and
Dt genome in Aegilops tauschii are the progenitors of the A and
B genomes, respectively, of hexaploid wheat. Studies of the Au

and Dt genomes have recently been completed [23,24] and will
facilitate further proteomics and transcriptomics research on
wheat seed development. In the present study, we used an elite
Chinese bread wheat cultivar (Jimai 20) with high yield, wide
adaptability, and superior quality [25] to perform a dynamic
transcriptome microarray analysis during grain-filling stages
using the GeneChip Wheat Genome Array (Affymetrix, Santa
Clara, CA, USA). We identified key differentially expressed
genes involved in grain development. Our results shed new
light on the molecular mechanisms of the accumulation of
nutritive reserves inwheat, as well as the determinants of yield
and quality.
2. Materials and methods

2.1. Plant material and field experiment

The wheat cultivar Jimai 20 was planted at the experimental
station of Chinese Agricultural University, Beijing, in the 2013
to 2014 growing season. Experiments were performed in three
biological replicates (each plot with 50 m2). Cultivation and
management followed local field production conditions. Grain
samples were harvested at 11, 15, and 20 days post-anthesis
(DPA). The collected samples were immediately placed in
liquid nitrogen and stored at −80 °C until use.

2.2. Grain ultrastructure observation by scanning electron
microscope (SEM)

Grain samples harvested at 11, 15, and 20 DPA were placed in
fixative (5 mL 38% formalin, 5 mL glacial acetic, 90 mL 70% ethyl
alcohol) for more than 12 h. Sequentially, the samples were
dehydrated in 70% ethanol solution (20 min), 80% ethanol
solution (20 min), 90% ethanol solution (overnight), and 100%
ethanol solution (20 min). The samples were then treated
stepwise for 20 min each in mixtures of ethanol and isoamyl
acetate with ratios 3:1, 1:1, and 1:3 before soaking in isoamyl
acetate. Finally, critical-point drying was performed for SEM
observation. Observation of grain endosperm ultrastructureswas
performed with a SEM S-4800 FESEM instrument (Hitachi, Japan).

2.3. RNA isolation, microarray hybridization, and
data treatments

Total RNAs isolation and microarray hybridization were
performed as described previously [2]. All microarray data
from the three biological replicates obtained in this study
were deposited in the NCBI GEO database and are accessible
under GEO Series accession number GSE75561 (http://www.
ncbi.nlm.nih.gov/geo/query/acc. cgi?acc=GSE75561).

2.4. Filter of multi-class differential genes

As the random variance model (RVM) F-test can raise degrees
of freedom effectively in the cases of small samples, it was
applied to filter the differentially expressed genes for the
control and experiment group. The differentially expressed
genes were selected based on P-value threshold after signif-
icance analysis and false discovery rate (FDR) analysis [26–28].

2.5. Series test of cluster (STC) and gene ontology (GO)
annotation analysis of differential genes

According to the random variance model (RVM) corrective
ANOVA, the series test of cluster (STC) was performed by
selecting differential expression genes. In accordance with the
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different signal density change tendency of genes under
different situations, we identified a set of unique model
expression tendencies. The raw expression values were con-
verted into log2 ratios. Some unique profiles were further
defined using a strategy for clustering short time-series gene
expression data. The expression model profiles are involved in
the actual or the expected number of genes assigned to each
model profile. Fisher's exact test andmultiple-comparison tests
were used to determine whether the significant profiles had
higher probability than expected [29,30]. Gene ontology (GO)
analysis of genes showing certain specific tendencies was
performed following Dong et al. [31] to identify the main
functions of genes with the same expression trend [32,33].

2.6. MapMan analysis

In the MapMan analysis [2], input files were created by
calculating the natural log ratio of the three control samples
to the mean detection in the treatment samples. Genes were
considered as not expressed under the respective experimental
condition if theywere absent in twoof the three replicates. Final
analyses were performed with MapMan version 1.6.1 [34],
including the automatic application of the Wilcoxon rank sum
test. Entire data sets fromNascArrays and fromNakabayashi et
al. [35] were downloaded to allow comparison with public
Affymetrix ATH1 data sets.

2.7. Metabolic pathway analysis

To identify significant pathways of differentially expressed
genes, pathway network analysis was conducted using KEGG,
Biocarta, and Reatome [2]. First, significant pathways were
selected using Fisher's exact test and χ2 test, in which P-value
(<0.05) and FDR (<0.05) were used to define the threshold of
significance. The enrichment Re was calculated according to
previous reports [36–38]. The Path–Net, the interaction net of
the significant pathways of the differentially expressed genes,
was constructed through the interaction among pathways of
theKEGGdatabase,whichwas used to directly and systemically
identify interactions between significant pathways. The Path–
Net summarizes the pathway interaction of genes differentially
expressed during disease and explains why certain pathways
were activated [37].

2.8. Dynamic gene net analysis

Gene dynamic co-expression networks were built based on
functional gene associations to identify gene interactions in
biological processes, in which a net was constructed from
significantly correlated gene pairs according to the calculation
of the Pearson correlation for each pair [39]. In the net, cycle
nodes and edges between the two nodes represent genes and
interactions between genes, respectively. The network anal-
ysis was performed to locate the core regulatory factors
(genes) showing the highest k-core values or degree values
and showing connection with most adjacent genes. A k-core
of the network represents a subnetwork in which all nodes are
connected to at least k other genes. As a consequence, the
rank of the k-core value shows the complexity of the gene
association relationships, with the maximum core order in
the graph considered the primary or highest k-core [40].
Cycles with identical colors are parts of the same subgraph
[41,42]. We further analyzed the various properties of net-
works, in which the degree centrality, an important measure
of gene centrality within a network, was constructed to
estimate the relative importance.

2.9. Total mRNA extraction and qRT-PCR analysis

Total mRNA was extracted using TRIzol Reagent (Invitrogen)
based on the manufacturer's instructions. A PrimeScriptRT
reagent Kit with gDNA Eraser (TaKaRa) was used to remove
genomic DNAand to synthesize the cDNA. Gene-specific primers
were designed with the online tool Primer3Plus (http://www.
bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). The
primers were further checked by blasting primer sequences
against the NCBI database (http://www.ncbi.nlm.nih.gov/tools/
primer-blast/index.cgi?LINK_LOC=BlastHome). ADP-ribosylation
factor (ADP) was selected as the reference gene. Transcription
levels of genes were quantified with a CFX96 Real-Time PCR
Detection System (Bio-Rad) based on the 2(−Delta Delta C(T))
method [43]. The intercalating dye SYBR Green was used, and
the experiment was performed in a 20 μL volume reaction
system containing 10 μL 2× SYBR Premix ExTaq (TaKaRa), 2 μL
10-fold diluted cDNA, 0.15 μL of each gene-specific primer, and
7.7 μL ddH2O. The PCR running protocolwas as follows: 95 °C for
3 min, 40 cycles at 95 °C for 20 s, 60 °C for 15 s, and 72 °C for
20 s. Three biological replicates and triplicates for each PCR
reaction were performed for each gene. The qRT-PCR efficiency
was detected by five serial 10-fold dilutions of cDNA. In
addition, the PCR amplification efficiency (E) of 95–105% and
correlation coefficient (R2) of 0.994–1.000 were controlled.
3. Results

3.1. Grain morphology and ultrastructure changes during seed
development

The accumulation of nutritive reserves (such as starch,
sucrose, storage proteins, and lipids) begins in early grain
development and continues until the seed matures. We
harvested grain samples based on thermal times (the cumu-
lative average daily temperature after anthesis, °C) corre-
sponding to DPA: 252 °C (11 DPA), 353 °C (15 DPA), and 461 °C
(20 DPA) in order to analyze gene expression patterns during
grain development. In general, grain size and weight gradu-
ally increased from flowering to maturity. Morphology and
SEM analysis showed that seed size gradually increased
during grain development (Fig. 1-A), as did weight and
accumulation of starch granules (Fig. 1-B and C). Wheat
endosperm contains three kinds of starch granule: A-type
(diameter > 10 μm), B-type (diameter 5–10 μm), and C-type
(diameter < 5 μm), which accumulate during grain develop-
ment and supply energy for seed germination. Previous
observations have indicated that A-type starch granules
appear at 6 DPA, while the B-type appears at 11 DPA [44,45].
Our results showed that A-type granule size and grain weight
increased more rapidly from 11 to 15 DPA than during the
subsequent phases, showing that the period 11–15 DPA is a

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
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Fig. 1 – Grain morphological and ultrastructural changes during seed development. A. Changes in grain morphology. B.
Changes in grain weight during the development process. C. Ultrastructural changes in wheat endosperm based on SEM
observation. A- and B-granules are indicated.
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key stage for the synthesis and accumulation of seed starch
(Fig. 1-C).

3.2. Transcriptome expression profiles and differential
expression gene analysis during seed development

Using transcriptome expression analysis using GeneChip
Wheat Genome Arrays, we identified a total of 61,703 probe
sets (the sum of 61,115 actual probe sets and the other 588
repeated probe sets), which could be classified into 35 bins
representing 51,411 transcripts (Table S1, Table S2). Of these,
19,782 probe sets with different functions were classified with
automatic annotations of metabolic pathways and large
enzyme families. The other 41,921 probe sets were classified
as “unknown” or “not assigned.”

Genome-wide transcriptional profiling showed that exten-
sive gene expression occurred during grain development. In
total, 1904 differentially expressed probe sets corresponding
to 1736 transcripts were discovered during three seed
development phases (Table S3). To compare the numbers
of up- or downregulated differential genes between two
successive time points, we used significance analysis of
microarrays (SAM) with a stringent 5% FDR (Table S4, Table
S5). SAM plotsheet analysis (Fig. 2) showed that 8656
significantly differentially expressed genes were detected
in the comparison of 11 to 15 DPA, of which 3105 genes were
upregulated and the remainder downregulated. However,
between 15 and 20 DPA, there were only 2101 significant
differentially expressed genes, of which 1316 were upregu-
lated and 785 downregulated. Apparently, there were 4-fold
more differentially expressed genes between 11 and 15 DPA
than between 15 and 20 DPA, suggesting that the former
period is more important during reserve synthesis and
accumulation.
3.3. STC and GO annotation analysis of differentially
expressed genes
STC analysis of differentially expressed genes revealed 16
gene expression profiles that can be classified into four groups
(Fig. 3). Among these 16 expression profiles, we identified 5
significant profiles, all belonging to groups I and II, based on
their P values (Fig. S1, Fig. 3). As shown in Table S6, the
upregulated genes in group I and downregulated genes in
group II accounted for 67.6% of the total differentially
expressed genes. The genes assigned to group III showed
increased expression in the period 11–15 DPA, but were
sharply downregulated in the next period. The genes assigned
to group IV were downregulated between 11 and 15 DPA and
upregulated after 15 DPA (Fig. 3). Among the five significant
expression profiles, twomajor significant patterns (profile 2 in
group I and profile 7 in group II) had the largest numbers of
differentially expressed genes (294 and 169, respectively) (Fig.
S1, Table S6).

To obtain an overview of differentially expressed genes
involved in the five statistically significant differential ex-
pression patterns during seed development, we performed GO
annotation and enrichment analysis. The GO annotation
results are listed in Table S7. The distribution bar charts of
the five profiles (profiles 2, 1, and 11 belonging to upregulated
group I and profiles 7 and 4 belonging to downregulated
group II) are shown in Fig. 4 according to the P-values of their
annotations (P < 0.05). In profile 2, “response to water” (GO:
0009415, P = 3.23E-10) was the most significantly enriched
term. “Chitin catabolic process” (GO: 0006032, P = 3.72E-05)
and “cell wall macromolecule catabolic process” (GO: 0016998,
P = 0.000124)were also significantly enriched (Fig. 4-A). In profile
1, “dicarboxylic acid transport” (GO: 0006835, P = 0.000426),
“proteolysis” (GO: 0006508, P = 0.000699), and “response to
oxidative stress” (GO: 0006979, P = 0.008485) were the top three



Fig. 2 – The number of differentially expressed genes. A. SAMPlot analysis displays significant difference genes in the periods 11–
15 DPA and 15–20 DPA. B. Venn diagram analysis of the differentially expressed genes.
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significantly overrepresented terms (Fig. 4-B). In profile 11, the
top two significantly enriched terms were “chitin catabolic
process” (GO: 0,006,032, P = 0.000217) and “cell wall macromol-
ecule catabolic process” (GO: 0016998, P = 0.000534). “Positive
regulation of cell division” (GO: 0051781, P = 0.009934) and “cell
wall modification” (GO: 0042545, P = 0.011779) were also signif-
icant (Fig. 4-C). In profile 7, “metabolic process” (GO: 0008152,
P = 5.90E-05) and “polysaccharide catabolic process” (GO:



Fig. 3 – Gene expression patterns analyzed by model profile and two significant patterns (profiles 2 and 7). A. Each box
represents a model expression profile. The upper number in the profile box is the model profile number and the lower number
is the P value used to summarize the different gene expression patterns. In total, five expression patterns of genes showed
significant P-values (P < 0.05) and are labeled with asterisk. The same color represents the same group. The model profiles
marked with red (group I) represent upregulated expression patterns, whereas the green profile boxes (group II) represent
downregulated expression patterns. Profiles 5, 12, and 16 (group III) belong to the pattern of genes that were upregulated first
and then downregulated, whereas the remaining profile boxes (group IV) belong to the opposite pattern to that of group III. B.
Profile 2 increased in expression and profile 7 decreased in expression during seed germination. The horizontal axis
represents development phase and the vertical axis the time series of gene expression levels after log2-normalized
transformation.
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0000272, P = 0.006663) were the top two terms (Fig. 4-D).
In profile 4, “response to oxidative stress” (GO: 0006979,
P = 0.004654), “oxidation reduction” (GO: 0055114, P = 0.005996),
“lignin biosynthetic process” (GO: 0009809, P = 0.011846), and
“peptidoglycan biosynthetic process” (GO: 0009252, P = 0.017743)
were the top four significantly enriched terms (Fig. 4-E).

“Response towater” (GO: 0009415, P = 3.23E-10) and “metabolic
process” (GO: 0008152, P = 5.90E-05) in profiles 2 and 7, respec-
tively, were the two most significantly enriched terms. This
suggests that genes related to water stress are upregulated
and genes involved in metabolic process are downregulated
during the period of grain-filling before desiccation (Fig. 4-A
and D). Functional annotations associated with stress
response and cell wall metabolism were detected frequent-
ly among the five profiles, suggesting that both functional
groups are important during seed development.

We also performed GO analysis for all the differentially
expressed genes, as listed in Table S7 and shown in Fig. 4-F
(P < 0.05).We found that “proteolysis” (GO: 0006508, P = 3.20E-08),
“response to water” (GO: 0009415, P = 1.88E-05), “chitin catabolic
process” (GO: 0006032, P = 2.45E-06), “chromatin assembly or
disassembly” (GO: 0006333, P = 1.55E-05), and “cell wall macro-
molecule catabolic process” (GO: 0016998, P = 2.01E-05) were
most significantly overrepresented.

3.4. Reserve accumulation and abiotic stress responses during
seed development as revealed by MapMan analysis
We used MapMan analysis to map transcriptome data, define
functional categories, and identify significantly overrepresent-
ed functional groups, as well as to display important functional
groups of genes activated in different stages of grain develop-
ment (Fig. 5, Table S1, Table S2). Reserve accumulation in the
endosperm, which can provide energy for seed germination,
post-germination and growth, is initiated in early grain
development and ends when the seed matures. The seed
development stages (11–20 DPA) in this study involved mainly
grain filling (reserve accumulation), which corresponds to the
early grain-filling and maximum grain-filling stages [7].

Energy provision via the activation of glycolysis, the
tricarboxylic acid (TCA) cycle, and mitochondrial electron



Fig. 4 – GO annotation analysis of five significant expression profiles and all the differentially expressed genes. A, B, C, D, and E
show the GO analyses of five significant expression profiles, whereas the last, F, is the GO analysis of all the differentially
expressed genes. Horizontal axis is –lg P (P is the abbreviate of P-value), vertical axis represents the different functional groups.

Fig. 5 – MapMan metabolism overview maps showing differences in transcript levels (11 vs. 15 and 15 vs. 20 DPA) during seed
development. A. 11 vs. 15 HAI. B. 15 vs. 20 DPA. log2 ratios for average transcript abundance were based on three replicates of
Affymetrix GeneChip Wheat Genome Array. The resulting file was loaded into the MapMan Image Annotator module to
generate the metabolism overview map. On the logarithmic color scale, blue represents downregulated transcripts and red
represents upregulated transcripts.
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transportation are essential for grain development [14,46]. In
our gene expression data, most genes involved in sucrose
hydrolysis and glycolysis were upregulated, especially from 15
to 20 DPA (Fig. 5). Key enzymes involved in sucrose hydrolysis
and glycolysis include sucrose invertase, hexokinase, phospho-
fructokinase (PPFK), and pyruvate kinase (PK). From 11 to 20
DPA, the expression values of genes CD454795 (encoding
sucrose invertase) and BQ162543 (encoding hexokinase) in-
creased 8-fold and 3-fold, respectively. The genes CA661266
(related to PPFK) and CA640211 (involved in PK) were strongly
activated, while CA661266 and CA640211 showed distinct
upregulation at 11–15 DPA and 15–20 DPA, respectively.

A large number of genes involved in starch synthesis were
detected in our results. Starch synthesis genes are gradually
activated and upregulated from 11 to 20 DPA, and sucrose
synthesis-related genes followed a similar expression pattern
(Fig. 5). As one of the key enzymes in the process of starch
synthesis, sucrose synthase (SUSY) breaks down sucrose into
fructose and glucose that are then converted into uridine
diphosphate (UDPG) with catalysis by UDPG pyrophosphorylase
(UGPase). UDPG is the glucose donor in the synthesis process for
glycosides, oligosaccharides, polysaccharides, and related mol-
ecules. We found that the genes encoding SUSY (BJ277098 and
CD453631) and UGPase (CA617830) had significantly upregulat-
ed expression during grain development. Previous studies have
suggested that UGPase also couples with ADPG pyrophos-
phorylase (AGPase), another key rate-limiting enzyme in starch
synthesis, to produce ADPG for starch synthesis [47,48]. In our
data, we found an important gene (CA619571) related to AGPase
that was upregulated from 11 to 20 DPA. The upregulation of
these related genes contributes to the gradual accumulation of
starch.

Protein synthesis depends on amino acid synthesis and
accumulation. We found that genes related to the synthesis of
common amino acids were activated from 11 to 15 DPA, and
their expression levels increased significantly from 15 to 20
DPA (Fig. 5). In particular, the genes for methionine (Met) and
aspartic acid (Asp) synthesis, two important amino acids for
protein synthesis, were strongly upregulated, indicating an
acceleration in protein synthesis during the 15–20 DPA period.

The MapMan cellular response overview visualization tool
revealed cell stress responses during seed development
(Fig. 6). The majority of heat transcripts associated with
abiotic stress were upregulated from 11 to 15 DPA, and their
expression continued to increase until 20 DPA. The upregula-
tion of cold, drought/salt, and touch/wounding transcripts
was more pronounced at 15–20 DPA than at 11–15 DPA. Heme
serves as akey enzyme for clearingH2O2 inantioxidant pathways
andwas activemainly from11 to 15DPA. After 15 DPA, the genes
associated with heme were downregulated (Fig. 6).

3.5. Metabolic pathway network analysis
We established a network for metabolic pathways
(Fig. 7). According to the degree value (Table S8), glycolysis/
gluconeogenesis, pyruvatemetabolism, and the TCA cyclewere
the top three metabolic pathways. Starch synthesis during
grain-filling was the top contributor to nutritive reserve
accumulation, followed by protein synthesis. One important
pathway is starch and sucrose metabolism (colored orange in
Fig. 7). The source and target pathways for starch and sucrose
metabolism both suggest that glycolysis/gluconeogenesis
and pentose and glucuronate interconversion play direct
roles in starch and sucrose metabolism. Other pathways
(such as the pentose phosphate pathway, pyruvate metabo-
lism, and the TCA cycle) may play indirect roles in starch and
sucrose metabolism. The pathways directly associated with
protein synthesis include glycine, serine, and threonine
metabolism (Gly, Ser, and Thr), which involve the main
enzymes of protein metabolism (cysteine protease, serine
protease, and threonine protease). The other essential amino
acids are likely to participate indirectly in protein synthesis
and degradation by affecting the metabolism of glycine,
serine, and threonine. According to our results, lysine (Lys)
and valine (Val) biosynthesis, as well as leucine and isoleu-
cine (Leu and Ile) biosynthesis, are the source, as well the
targets, of glycine, serine, and threonine metabolism (Gly,
Ser, and Thr); thus, these amino acids play key roles in
protein metabolism. Tyrosine (Tyr), phenylalanine (Phe), and
arginine and proline (Arg and Pro) metabolism affect the
pathways of Gly, Ser, and Thr metabolism through their roles
in the TCA cycle, pyruvate metabolism, and glyoxylate
and dicarboxylate metabolism. All of the major and minor
metabolic pathways regulate one another to ensure regular
seed development and nutritive reserve accumulation.

3.6. Gene co-expression network with k-core algorithm
To identify functional genes that play vital roles in wheat seed
development, we created a gene coexpression network with a
k-core algorithm using the genes involved in important
metabolic pathways (Fig. 8). The most central genes have the
highest degree values within the network. The interactions
and their degrees, as well as k-core values, are listed in Table
S9. Most genes were involved in stress response, major CHO
metabolism, protein metabolism, hormone metabolism, cell
wall metabolism, lipid metabolism, DNA/RNA processing,
signaling, or development. Four of the most important core
genes were located at key positions in the network BQ172037,
encoding the thaumatin family and involved in abiotic stress
(k-cores of 8 and 29 degrees); BJ294280, encoding TBC (Tre2/
Bub2/Cdc16) and involved in the secretory pathway (k-cores of
9 and 28 degrees); CD490538, encoding an ara54-like RING
finger protein and involved in abscisic acid metabolism
(k-cores of 9 and 28 degrees); and CA717577, associated with
biotic stress (k-cores of 8 and 28 degrees). These four genes
directly regulated 112 neighboring genes (Table S9). BQ172037
was downregulated, whereas the other three genes were
upregulated (Table S1, Table S2). BQ172037 and BJ294280
expressions were negatively correlated, suggesting that down/
upregulation of abiotic stress genes leads to up/downregulation
of secretory pathway genes and vice versa.

Protein metabolism, stress response, and major CHO
metabolism during wheat seed development are important
metabolic pathways. Our results show that BJ294280 (related
to the secretory pathway and located at the center of
the network) is a pivotal gene. According to the k-cores of
BJ294280, 28 neighboring genes involved in stress response,
cell wall, major CHO metabolism, development, RNA tran-
scription regulation and hormone metabolism were regulated
by BJ294280. Some of these regulated genes were downregu-
lated, such as genes associated with abiotic stress, cell walls,



Fig. 6 – MapMan metabolic overview maps showing differences in transcript levels (11 versus 15 and 15 versus 20 DPA) of
cellular response during seed development. For further details, see legend to Fig. 5.
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and major CHO metabolism, whereas other genes were
upregulated by BJ294280. The k-cores of all 28 co-expressed
genes were greater than 6 (Table S9), indicating that these
genes play key roles in seed development.

3.7. Validation of key differentially expressed genes by qRT-PCR
To validate the microarray data, the transcriptional expres-
sions of eight key differentially expressed genes involved in
starch and protein synthesis and stress defense were further
analyzed by qRT-PCR (Fig. 9). The gene-specific primers used
in this study are listed in Table S10 and the double standard
curves and melting temperature curves as optimal perfor-
mance parameters are shown in Fig. S4. The expression
trends of the eight genes by qRT-PCR were highly consistent
with those from cDNA microarray analysis (Table S1).
4. Discussion

The economic and nutritional importance of wheat grain
depends on the accumulation of nutritive reserves during
wheat seed development. Reserves include principally starch



Fig. 7 – Metabolic pathway net established with significant pathways. Cycle nodes represent different pathways. Arrows
represent the interaction between one pathway and another pathway by degree value. The source and points of arrows show
the sources and targets of pathways in the network. More arrows at a node mean more pathways interacting with it,
corresponding to greater importance of the pathway in the pathway net.
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(55–75% of total dry grain weight), storage protein (10–15%),
and lesser lipids. Thus, wheat grain development relies upon
the synthesis and accumulation of starch and storage proteins.
The activation and expression of stress-associated genes can
protect plants from various biotic and abiotic stresses during
grain development. Recently [21], transcriptome analysis dur-
ing wheat grain development by RNA-Seq has been performed.
It focused on cell type- and stage-dependent expression profiles
and expression differences between different genomes. In this
study,weused theGeneChipWheat GenomeArray for dynamic
transcriptome profiling during grain development, focusing
particularly on important differentially expressed genes in-
volved in starch and protein synthesis and stress defense. The
mainmetabolic pathways involved inwheat grain development
are discussed in the following section.

4.1. Activation of starch synthesis genes

Carbohydrates are stored mainly in the form of starch in the
wheat seed endosperm. Given that starch is the primary
source of nutrition, seed germination requires adequate starch
reserves. A previous study [20] using cDNAmicroarrays showed
that the onset ofwheat grain-filling occurred at 7–14DPA, when
genes encoding enzymes related to starch synthesis and
storage protein synthesis were expressed at the highest levels.
In the present study, we found that genes involved in sucrose
and starch synthesis were activated at around 11 DPA, and that
a large number of related genes were upregulated during starch
accumulation (Fig. 5). Genes encoding enzymes involved in
starch and storage proteins synthesis were expressed at their
highest levels at 15–20 DPA.

The 14-3-3 proteins, a family of ubiquitous regulatory
molecules that affect the activity of a broad range of targets by
direct protein–protein interaction, are present in every eu-
karyotic organism and tissue [49,50]. This family regulates
nitrogen and carbon assimilation, as well as variousmetabolic
processes during plant development, including signal trans-
duction, ATP production, peroxide detoxification, checkpoint
control, apoptosis, and nutrient-sensing pathways [49,51].
In the present study, 14-3-3 proteins were revealed to be
involved mainly in signaling-associated metabolic pathways,
including signal reception, MAPK cascade reaction, and
calcium regulation, with the cooperation of G proteins (Fig.
S2). Previous research has shown that 14-3-3b transcript
accumulation is inversely related to starch accumulation
and may inhibit starch biosynthesis [20,51,52]. We found
that the expression of the 14-3-3 gene was downregulated
during grain-filling (Fig. 9, Fig. S2), indicating that 14-3-3
transcript accumulation and starch accumulation are nega-
tively correlated, in agreement with the inhibition of starch
biosynthesis by 14-3-3b transcript accumulation [20,51,52]. In
contrast, G-protein genes were gradually upregulated during
starch accumulation, especially at 15–20 DPA. This observation
suggests that G-protein transcript accumulation and starch



Fig. 8 – Gene co-expression network during seed development with k-core algorithm. Cycle nodes represent genes in the net.
The sizes of nodes represent the strength of the interrelation among the nodes, and the edges between two nodes represent
interactions between genes. The more edges on a gene, the more genes connect to it, and the more central the role it plays in
the network. In the network, dashed lines represent negative and solid lines positive regulation.
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accumulation are positively correlated, and that the upregula-
tion of G protein genes could promote starch accumulation.
Additionally, receptor kinase genes were largely upregulated
from 11 to 20 DPA (Fig. 9, Fig. S2), suggesting that various
signaling pathways are involved in starch gene activation and
starch biosynthesis during grain development.

4.2. Activation of protein synthesis genes

Synthesis and accumulation are the major metabolic activi-
ties during the grain-filling period of seed development, and
storage proteins are an important nutritive reserve during this
stage. Prolamins, glutenins and gliadins are the main storage
proteins and the major components of the gluten polymer
[53]. The accumulation of these storage proteins affects
wheat quality formation. All of the protein enzymes in wheat
seed development are produced by the activation of protein
synthesis genes.

Previous research has revealed that several enzymes
involved in carbohydrate and protein metabolism (such as
orthophosphate dikinase, aspartate aminotransferase, aspartic
protease, and alanine aminotransferase) are most highly
expressed at the transcript level at 14 DPA [54]. In the present
study, we also identified several important enzyme families,
such as cytochrome P450, peroxidases, UDP glycosyltransfer-
ases, O-methyltransferases, glutathione-S-transferases, and



Fig. 9 – The dynamic expression patterns of eight important differentially expressed genes by qRT-PCR. The gene expression
levels at 11 DPA were defined as 1.0. *P < 0.05, **P < 0.01.
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beta-1,3-glucan hydrolases (Fig. S3). However, the expression of
these enzymes tends be at its highest at around 20 DPA, several
days later than the previously reported enzymes. Cytochrome
P450 is amixed-function oxidasewithmany important activities,
including biosynthesis, detoxification, and stress resistance.
Peroxidases play many roles in plant seeds, such as removing
noxious H2O2, facilitating seed maturation by inhibiting IAA
activity, and promoting ethylene synthesis. UDP glycosyltrans-
ferases are enzymes that can regulate the activity of donor
molecules by transferring glycosyl from the activated donor
molecule to the receptor. O-methyltransferases are responsible
for amino transfer, which plays an important role in amino acid
synthesis and protein synthesis. Glutathione-S-transferases
are vital enzymes in seed development and have important
detoxification functions. Beta-1,3-glucan hydrolases affect
carbohydrate synthesis and degradation by hydrolyzing
various glycosidic bonds. The appropriate activation and
upregulation of all of these enzymes are critical for successful
seed development.

4.3. Activation of stress defense genes

Seed development and maturation activate a series of mecha-
nisms in response to various biotic and abiotic stresses,
accompanied by an increased tolerance to desiccation [55]. In
our results, genes involved in biotic and abiotic stresses were all
upregulated during the accumulation of nutritive reserves (Fig.
6), particularly heat and drought/salt stress-associated genes.
Drought, low temperatures, and salinity have dehydrating
effects upon developmental stages, such as pollen and seeds
[56,57], and late embryogenesis abundant (LEA) proteins
are produced in response to such stimuli [58]. Interestingly,
we found three important genes (CD913555, CD905348, and
AY148491.1) encoding LEAproteins that belong to the functional
group related to development (Table S1, Table S2). At the early
grain-filling stage, upregulated genes comprised half of all the
expressed genes in the group involved in development. After
the grain-filling stages, most genes involved in development
were upregulated gradually (Fig. 6). Thus, upregulation of
development-related genes not only occurs in response to
dehydrating stimuli, but also promotes the accumulation of
storage reserves.

γ-Aminobutyric acid (GABA) is widely present in plants
and plays important roles in plant growth and development.
Studies onplants, suchasArabidopsis [59], rice [60] and sunflower
[61], have shown that GABA has two highly important functions:
the GABA shunt influences the TCA cycle and amino acid
metabolism and GABA also provides protection from oxidative
stress [60]. One previous study suggested that the accumulation
of GABA in response to high temperatures corresponded to
changes in glutamate decarboxylase and GABA transaminase
activity [60]. Glutamate decarboxylase is synchronously upreg-
ulated with GABA and catalyzes GABA synthesis, while GABA
transaminase induces GABA degradation. In the present study,
we identified several genes encoding glutamate decarboxylase
and GABA transaminase (Fig. 5, Table S1, Table S2). The genes
encoding glutamate decarboxylase weremarginally upregulated
(Fig. 9), while GABA transaminase was downregulated. This
finding suggests that GABA may be synthesized largely during
the grain-filling stage and in response to oxidative stress. Low
levels of O2 have been found to induce GABA production by
activating glutamate decarboxylase [62,63]. A similar result was
reported in Arabidopsis mutants: GABA inhibited the accumula-
tion of reactive oxygen species (ROS) [59]. This inhibition occurs
likely because the GABA shunt can weaken the respiration of
mitochondria in order to provide reaction substrates for the TCA
cycle, such as NADH and succinate. In our results, photorespi-
ration was repressed by the accumulation of GABA (Fig. 5): most
genes involved in photorespirationwere downregulated at 11–20
DPA.
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