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The various equations at the surfaces and triple contact lines of a deformable body are obtained from a var-
iational condition, by applying Green’s formula in the whole space and on the Riemannian surfaces. The sur-
face equations are similar to the Cauchy’s equations for the volume, but involve a special definition of the
‘divergence’ (tensorial product of the covariant derivatives on the surface and the whole space). The normal
component of the divergence equation generalizes the Laplace’s equation for a fluid–fluid interface. Assum-
ing that Green’s formula remains valid at the contact line (despite the singularity), two equations are
obtained at this line. The first one expresses that the fluid–fluid surface tension is equilibrated by the
two surface stresses (and not by the volume stresses of the body) and suggests a finite displacement at this
line (contrary to the infinite-displacement solution of classical elasticity, in which the surface properties are
not taken into account). The second equation represents a strong modification of Young’s capillary equa-
tion. The validity of Green’s formula and the existence of a finite-displacement solution are justified with
an explicit example of finite-displacement solution in the simple case of a half-space elastic solid bounded
by a plane. The solution satisfies the contact line equations and its elastic energy is finite (whereas it is infi-
nite for the classical elastic solution). The strain tensor components generally have different limits when
approaching the contact line under different directions. Although Green’s formula cannot be directly
applied, because the stress tensor components do not belong to the Sobolev space H1ðVÞ, it is shown that
this formula remains valid. As a consequence, there is no contribution of the volume stresses at the contact
line. The validity of Green’s formula plays a central role in the theory.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Surface properties of deformable bodies have been continually
studied since the early work of Gibbs (1878) until recent mechan-
ical or thermodynamic studies, e.g. Gurtin et al. (1998), Simha and
Bhattacharya (2000), Rusanov (2005), Steinmann (2008) and Olives
(2010a). They have many applications, e.g. in adhesion, coating and
nanosciences (since small and thin objects are deformable and
have a high surface/volume ratio). A previous paper (Olives,
2010a) was devoted to the physical basis of the theory: application
of the equilibrium criterion of Gibbs; introduction of the new con-
cept of ‘ideal transformation’, i.e., the homogeneous extrapolation
of the deformation, in the interface film, up to the dividing surface;
determination of the thermodynamic variables of state of a sur-
face; definition of the surface stress tensor; surface and line equa-
tions. Moreover, for an elastic solid, it is known that classical
elasticity predicts a singularity with an infinite displacement
(and an infinite elastic energy) at a solid–fluid–fluid triple contact
line, owing to the fluid–fluid surface tension which is a force con-
centrated on this line (Shanahan and de Gennes, 1986; Shanahan,
1986). Although some authors tried to overcome this problem, by
introducing some fluid–fluid interface thickness (Lester, 1961;
Rusanov, 1975), some cut-off radius near the contact line (Shana-
han and de Gennes, 1986; Shanahan, 1986) or some new elastic
force at this line (Madasu and Cairncross, 2004), this situation
makes very difficult to write any equilibrium equation at the con-
tact line.

The present paper concerns the mathematical foundation of the
theory. A sketch of the proof of the surface and contact line equa-
tions is presented (no proof was given in the previous physical pa-
per Olives, 2010a), which shows (i) the importance of the validity
of Green’s formula at the contact line (despite the singularity) and
(ii) owing to the surface properties, the probable existence of a fi-
nite-displacement solution (consequence of the line equations,
based themselves on the assumption of the validity of Green’s for-
mula). These two points are justified with an explicit example of
finite-displacement solution, in the simple case of a half-space
solid, bounded by a plane, and subjected to a normal force
concentrated on a straight line of its surface. This solution also
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shows that the elastic energy is finite and that Green’s formula re-
mains valid at the contact line.
1 M is the endomorphism defined by ðM � xÞ � y ¼ ½ �M; x; y�, for any vectors x and
y 2 E; it satisfies M� ¼ �M.
2. Surface and contact line equations

For a general deformable body b in contact with various immis-
cible fluids f, f

0
, . . .(with no mass exchange between the body and

the fluids), the mechanical equilibrium condition relative to the
body, including its body–fluid surfaces (bf, bf

0
, . . .) and its body–

fluid–fluid triple contact lines (bff
0
, . . .), may be written asZ

b
p : dedv0 �

Z
b
q�g � dxdv �

X
bf

Z
bf

pn � dxda�
X

bf

Z
bf

qs �g � dxda

þ
X

bf

Z
bf

ps : des da0 �
X
bff 0

Z
bff 0

cff 0 mff 0 � dX dl

þ
X
bff 0

Z
bff 0
ðc0;bf � c0;bf 0 ÞdX0 dl0 ¼ 0 ð1Þ

(: means double contraction; see Olives, 2010a for the physical basis
of the theory), in which d is an arbitrary variation such that, on the
closed surface R which bounds the system, the points of the body
and the points of the body–fluid–fluid lines remain fixed. In this
expression, p is the Piola–Kirchhoff stress tensor (i.e., the Lagrang-
ian form, relative to a reference state of the body) at equilibrium, e
the Green–Lagrange strain tensor (also relative to this reference
state), dv and dv0 are respectively the volume measures in the pres-
ent state and in the reference state, q is the mass per unit volume, �g
the (constant) gravity vector field, dx the displacement of a point of
the body, p the fluid pressure, n the unit vector normal to the bf sur-
face, oriented from f to b, da and da0 are respectively the area mea-
sures in the present state and in the reference state, qs is the mass
per unit area (excess on the dividing surface Sbf defined by the con-
dition: no excess of mass of the constituent of the body), ps the
(Lagrangian) surface stress tensor at equilibrium, defined in Olives
(2010a), es the (Lagrangian) surface strain tensor, defined in Appen-
dix A, cff 0 the fluid–fluid surface tension, mff 0 the unit vector normal
to the bff

0
line, tangent to the ff

0
surface, and oriented from the line

to the interior of ff
0
, dX the (vector) displacement of the bff

0
line, per-

pendicular to the line (in the present state), dl and dl0 are respec-
tively the length measures in the present state and in the
reference state, c0 is the surface grand potential (excess on the
dividing surface), per unit area in the reference state, and dX0 the
(scalar) displacement of the bff

0
line, measured in the reference

state, perpendicular to that line in the reference state, and posi-
tively considered from bf to bf

0
(see also Fig. 2, below).

This variational equilibrium condition leads to various equations
at the surfaces and the triple contact lines of the body. Since the pre-
ceding paper (Olives, 2010a) was devoted to the physical aspects of
the theory, these equations were only written without proof. In this
section, a sketch of this proof is presented, which shows the impor-
tance of the validity of Green’s formula to obtain the contact line
equations (despite the line singularity). These equations then sug-
gest the existence of a finite-displacement solution.

In order to only have quantities or variables (such as points,
forces, etc.) which refer to the present equilibrium state in these
equations, we first need to transform all the Lagrangian terms in
(1) (i.e., those related to the ‘undeformed’ reference state) into
Eulerian forms (i.e., related to the deformed present state). It is
well known that the Eulerian forms of the above (volume) stress
and strain tensors, p and de, are the Cauchy stress tensor r and
the infinitesimal strain tensor de defined below in the next para-
graph (see e.g. Mandel, 1966, tome I, annexe II). Note that e mea-
sures the strain between the ‘undeformed’ reference state and
the deformed present state, so that its components eij may have
arbitrary values, since large strains may occur in highly deformable
bodies (even when subjected to capillary forces or surface stres-
ses). Note also that de, which measures the infinitesimal strain be-
tween the present state and its varied state (i.e., after the variation
d), is not the variation of some strain tensor, but it is related to the
variation de of the Lagrangian tensor e by

de ¼ U�0 � de �U0;

where U0 is the deformation gradient between the reference state
and the present state and U�0 its adjoint. Classically, the work of
deformation of a volume element (first term of (1)) may be written
in the Eulerian form

p : dedv0 ¼ r : dedv ð2Þ

(see Mandel, 1966, ibid.), i.e., with arbitrary Cartesian coordinates
in the three-dimensional space E

pij deij dv0 ¼ rij deij dv;

where Latin indices i; j; k; . . . belong to f1;2;3g and summation is
performed over repeated indices. In a similar way, these concepts
are extended to the surfaces in Appendix A, where the Lagrangian
surface strain tensor es, the Eulerian infinitesimal surface strain ten-
sor des and the Eulerian surface stress tensor rs are defined. The
work of deformation of a surface element (fifth term of (1)) may
then be written in the Eulerian form (A.12).

Let us first consider the simple case of a bounding surface R
which only encloses one fluid f and the body b. The equilibrium
condition (1) may then be written asZ

V
r : dedv �

Z
V
q�g �wdv �

Z
S

pn �wda�
Z

S
qs �g �wda

þ
Z

S
rs : des da ¼ 0;

where w ¼ dx; V is the bounded open set of E occupied by the part
of the body enclosed in R, and S the bounded part of Sbf enclosed in
R. Since de ¼ 1

2 ððDwÞ� þ DwÞ andZ
V

trðr � deÞdv ¼
Z

V
tr

r� þ r
2
� Dw

� �
dv

¼
Z

V
trðr� � DwÞdv þ

Z
V

tr
r� r�

2
� Dw

� �
dv ;

by application of Green’s formula (with w ¼ 0 on R)Z
V

trðr� � DwÞdv ¼ �
Z

V
divðr�Þ �wdv �

Z
S
ðr� �wÞ � nda

¼ �
Z

V
divðr�Þ �wdv �

Z
S
ðr � nÞ �wda ð3Þ

(if the components of r and w belong to C1ð�VÞ; e.g. Allaire, 2007,
Section 3.2.1), this leads to the classical Cauchy’s equations for
the body

div �rþ q�g ¼ 0 ð4Þ
r� ¼ r; ð5Þ

where div �r is the vector associated to the linear form divðr�Þ, and
the remaining condition for the surface

�
Z

S
ðr � nÞ �wda�

Z
S

pn �wda�
Z

S
qs �g �wdaþ

Z
S
rs : des da ¼ 0

ð6Þ
for any variation such that w ¼ 0 on the closed curve C ¼ Sbf \ R
which bounds S. Note that, if volume moments �M dv were present,
the new term �

R
V

1
2 trðM� � DwÞdv1 would appear in the equilibrium

condition, and (5) would become r� r� þM ¼ 0.



Fig. 1. The bounding surface R encloses the parts V, S, S
0

and L of, respectively, the
body b, the surface bf, the surface bf

0
and the triple contact line bff

0
(the part of R in

contact with the fluids and the surface ff
0

are not represented).

316 J. Olives / International Journal of Solids and Structures 51 (2014) 314–324
By applying Green’s formula on the Riemannian manifold S
(Courrège, 1966) to the last term of the equilibrium condition,
we then obtain

�
Z

S
ðr � nÞ �wda�

Z
S

pn �wda�
Z

S
qs �g �wda�

Z
S

divðfrs
�Þ �wda

þ
Z

S
tr

rs � r�s
2

� i� � w
� �

da ¼ 0 ð7Þ

(see notations in Appendix A), where frs ¼ i � rs and the special
divergence of frs

� is based on the tensorial product of the covariant
derivative on TðSbfÞ and the usual derivative on Sbf � E� (see Appen-
dix B). This leads to the following equations for the surface

div �rs þ qs �g þ r � nþ pn ¼ 0; ð8Þ
r�s ¼ rs; ð9Þ

where div �rs is the vector associated to the linear form divðfrs
�Þ, i.e.,

according to (B.4),

@bðrab
s @axiÞ þ Cb

bc r
ac
s @axi þ qs �gi þ rij nj þ pni ¼ 0;

rba
s ¼ rab

s ð10Þ

(in the two last equations, rs and r as contravariant tensors, by
raising the covariant index to the second place). Note the similarity
of these equations with the classical Cauchy’s ones (4) and (5) for
the volume. Note also that (9) might be different if surface moments
were present (as for the volume stress: see the comment after (6)).
The above Eq. (8) has a tangential component

divrs þ qs �gt þ ðr � nÞt ¼ 0 ð11Þ

(divrs being the usual surface divergence; the subscript t indicates
the vector component tangent to Sbf) and a normal component

ln : rs þ qs �gn þ rnn þ p ¼ 0; ð12Þ

where ln ¼ l � n (ln;ab ¼ li
ab ni; l is the second vectorial fundamental

form on Sbf), �gn ¼ �g � n and rnn ¼ ðr � nÞ � n (see Appendix B). At
any point x 2 Sbf , the eigenvalues of ln (as endomorphism) are the
principal curvatures, 1

R1
and 1

R2
, of Sbf (Dieudonné, 1971, (20.14.2);

a curvature being positive when its center is on the side of n). Note
that, if rs is isotropic, i.e., rs ¼ r̂s I (eigenvalue r̂s and I the identity),
then divrs ¼ grad r̂s and ln : rs ¼ r̂s trðlnÞ ¼ r̂sð 1

R1
þ 1

R2
Þ. In particular,

if the deformable body b is a fluid, the application of the general
thermodynamic equations (26), (27) and (29) of Olives (2010a)
and (19) of Olives (2010b), and their comparison with the classical
fluid–fluid equations (see (1), (12) in Olives (2010a)), leads to
rs ¼ c I, thus r̂s ¼ c. This is also a consequence of (12) of Olives
(2010b), since c (for a fluid–fluid surface) does not depend on the
surface strain es. In this particular case, the above Eq.(12) leads to
the classical Laplace’s equation for a fluid–fluid interface and (11)
to the classical hydrostatic equilibrium for the surface tension,
dc ¼ qs g dz (Gibbs, 1878) (g is the norm of �g and z the height).
The above Eqs. (11) and (12) are then a generalization of these clas-
sical equations.

Similar surface equations were obtained for elastic solids from a
balance of momentum or equilibrium of forces (Moeckel, 1975;
Gurtin and Murdoch, 1975; Simha and Bhattacharya, 2000; Javili
and Steinmann, 2010), a virtual power method (Daher and Maugin,
1986), a thermodynamic approach (Alexander and Johnson, 1985;
Leo and Sekerka, 1989), or an energy minimization (Gurtin et al.,
1998; Steinmann, 2008). In these works, the existence of a surface
stress tensor was often assumed, deduced from a given surface
traction field (Gurtin and Murdoch, 1975), or defined for elastic
solids from a given set of thermodynamic or mechanical variables
of state of the surface (Alexander and Johnson, 1985; Leo and Se-
kerka, 1989; Gurtin et al., 1998; Steinmann, 2008). Note that our
thermodynamic method (Olives, 2010a), valid for any deformable
body (such as a viscoelastic solid, a viscous fluid or any other
one) and based on the general equilibrium criterion of Gibbs, leads
to the determination of the ‘local’ thermodynamic variables of
state of the surface, the definition of the surface stress tensor and
the above equations. Note also that the divergence term in (8) is
here defined as a true divergence with respect to a special covari-
ant derivative, i.e. the tensorial product of the covariant derivatives
on the surface and the whole space (in previous works, this term
was only defined by means of its scalar product with a constant
vector).

Let us now apply the equilibrium condition (1) with a bounding
surface R which encloses two fluids, f and f

0
, and the body b, in con-

tact. V denotes the bounded open set of E occupied by the part of
the body enclosed in R, S the bounded part of Sbf enclosed in
R; S0 the bounded part of Sbf 0 enclosed in R, and L the part of the
bff

0
triple contact line enclosed in R (Fig. 1). We follow the same

method as above, but Green’s formula (3) cannot be directly ap-
plied on V (S being here replaced with S [ S0), owing to the singu-
larity at the contact line. If b is a deformable solid subjected to a
force concentrated on a line of its surface (here, the fluid–fluid sur-
face tension cff 0 applied on the contact line), then classical elasticity
predicts a singularity with an infinite displacement at this line, to-
gether with an infinite value of the elastic energy (Shanahan and
de Gennes, 1986; Shanahan, 1986). Nevertheless, we shall see, in
this paper, that the introduction of the surface properties leads
to a solution with a finite displacement at the contact line and a fi-
nite value of the elastic energy. In the example of finite-displace-
ment solution presented in the next section, the singularity at
the contact line involves components of r which do not belong
to H1ðVÞ. Although Green’s formula cannot be directly applied in
this case (we would need that components of both r and w belong
to H1ðVÞ; e.g. Allaire, 2007, Section 4.3.3), we show in Section 3.6
that this formula remains valid. We may thus assume that Green’s
formula is valid and, following the above method, the remaining
condition for the surfaces and the line becomes (with the help of
(4) and (5))

�
Z

S[S0
ðr � nÞ �wda�

Z
S[S0

pn �wda�
Z

S[S0
qs �g �wda

þ
Z

S[S0
rs : des da�

Z
L
cff 0 mff 0 � dX dlþ

Z
L0

ðc0;bf � c0;bf 0 ÞdX0 dl0 ¼ 0

(L0 is the position of L in the reference state), for any variation such
that w ¼ 0 on the curves C ¼ Sbf \ R and C0 ¼ Sbf 0 \ R which bound
S [ S0, and the two points of L which belong to R remain fixed.Note
that there is no singularity at L0 in the reference state of the body
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(which is, e.g., a state of the body before its contact with the fluids f
and f

0
).The application of (B.1) and Green’s formula (B.6) to the two

terms
R

S rs : des daþ
R

S0 rs : des da leads to the two new terms
�
R

Lðrs;bf � mbfÞ �wbf dl�
R

Lðrs;bf 0 � mbf 0 Þ �wbf 0 dl (subscripts bf and bf 0

respectively denote the sides of S ¼ bf and S0 ¼ bf 0; thus, mbf is the
unit vector tangent to Sbf , normal to L and directed to the inside
of Sbf ; similarly, for mbf 0 with respect to Sbf 0 ; see Fig.1; w ¼ 0 on C
and C0, but not on the bf and bf 0 sides of L) and then, with the help
of (8) and (9) on S and S0, to the remaining line condition

�
Z

L
ðrs;bf � mbfÞ �wbf dl�

Z
L
ðrs;bf 0 � mbf 0 Þ �wbf 0 dl�

Z
L
cff 0 mff 0 � dX dl

þ
Z

L0

ðc0;bf � c0;bf 0 ÞdX0 dl0 ¼ 0

for any variation such that the two points of L which belong to R
remain fixed (both in the space and with respect to the body b).
Since the displacement dX of the contact line in the space is due
to both the displacement of the corresponding material points of
the body (wbf and wbf 0 on the bf and bf

0
sides, respectively) and

the displacement of the line with respect to the body
(dXbf ¼ /0;bf � dX0 and dXbf 0 ¼ /0;bf 0 � dX0 on the bf and bf 0 sides,
respectively; here, dX and dX0 are considered as vectors, not neces-
sarily normal to L and L0, respectively; /0 defined in Appendix A),
i.e., dX ¼ wbf þ dXbf ¼ wbf 0 þ dXbf 0 (see Fig. 2), this condition
becomes

�
Z

L
ðrs;bf � mbf þ rs;bf 0 � mbf 0 þ cff 0 mff 0 Þ � dX dlþ

Z
L
ððrs;bf � mbfÞ � dXbf

þ ðrs;bf 0 � mbf 0 Þ � dXbf 0 Þdl�
Z

L
ðcbf mbf � dXbf þ cbf 0 mbf 0 � dXbf 0 Þdl ¼ 0

ð13Þ

(the last term of the condition being written in Eulerian form, using
cda ¼ c0 da0 for bf and bf 0), which leads to two equilibrium equa-
tions at the contact line (as in the case of the thin plate: Olives,
1993; Olives, 1996). The first one

rs;bf � mbf þ rs;bf 0 � mbf 0 þ cff 0 mff 0 ¼ 0 ð14Þ

corresponds to a contact line fixed on the body (dX0 ¼ 0, hence
dXbf ¼ dXbf 0 ¼ 0) and expresses the equilibrium of the two surface
stresses and the fluid–fluid surface tension. This shows that the sur-
face stresses are forces acting on a line fixed to the material points
of the body. Note that this equation suggests that a finite displace-
ment occurs at the contact line (in the next section, an explicit
example of finite-displacement solution will be presented). Some
authors (Madasu and Cairncross, 2004) proposed the presence at
the contact line of a force originating from the volume stresses r
in the body. The preceding equation shows that there is no such vol-
ume stress contribution. This is a consequence of the validity of
Green’s formula, as mentioned above, and will be illustrated in
Fig. 2. Displacement dX0 of the contact line bff 0 with respect to the body, in the reference
varied state, due to both the displacement of the line with respect to the body and the
the next section (Section 3.6). With the help of (14), the above line
condition gives the second equation (according to dXbf ¼ /0;bf � dX0

and dXbf 0 ¼ /0;bf 0 � dX0)

/�0;bf � ðrs;bf � cbf IÞ � mbf þ /�0;bf 0 � ðrs;bf 0 � cbf 0 I
0Þ � mbf 0 ¼ 0 ð15Þ

(I and I0 are the identity mappings on TxðSbfÞ and TxðSbf 0 Þ, respec-
tively), which corresponds to a line moving on the body (dX0 – 0),
i.e., with /r ¼ /0;bf 0 � /�1

0;bf (which is the ‘relative deformation gradi-
ent’ of the bf 0 side with respect to the bf side; this concept was de-
fined in Olives and Bronner (1984); note that /r does not depend on
the reference state: Olives, 2010a),

ðrs;bf � cbf IÞ � mbf þ /�r � ðrs;bf 0 � cbf 0 I
0Þ � mbf 0 ¼ 0: ð16Þ

This equation expresses the equilibrium of the forces acting on the
‘free’ contact line (not fixed to the material points of the body). In
the reference state, these forces (normal to the line and positively
measured from bf to bf 0) are represented by the opposite of the first
member of Eq. (15). Applying s� to the last equation (where s is a
unit vector tangent to the contact line at x; thus, /r � s ¼ s) gives
the same equation as the tangential component (along s) of (14).
Applying m�bf to (16) leads to

rbf ;mm � cbf � ðrbf 0 ;mm � cbf 0 Þar;mm þ rbf 0 ;sm ar;sm ¼ 0; ð17Þ

where ðrbf ;mm;rbf;smÞ are the components of rs;bf � mbf in the basis
ðmbf ; sÞ, similarly for rs;bf 0 with the basis ðmbf 0 ; sÞ, and ðar;mm; ar;smÞ
the components of /r � mbf in the basis ð�mbf 0 ; sÞ (thus, ar;mm > 0).
With the help of (14), this equation may be written in the more geo-
metrical form (Olives, 2010a)

�cbf þ cbf 0 ar;mm þ cff 0
sinuf 0 � ar;mm sin uf

sin ub
þ rbf 0 ;sm ar;sm ¼ 0 ð18Þ

or

�cbf þ cbf 0 ar;mm � cff 0 cos uf � cff 0 sin uf
cos ub þ ar;mm

sin ub

þ rbf 0 ;sm ar;sm ¼ 0; ð19Þ

where uf ; uf 0 and ub are the three angles of contact, respectively
measured in f; f 0 and b (uf þuf 0 þub ¼ 2p). This shows that the
classical capillary Young’s equation is strongly modified and re-
placed with the preceding one (as it occurred for the thin plate: Ol-
ives, 1993; Olives, 1996). In the limit case of an undeformable solid,

owing to ar;mm ¼ 1; ar;sm ¼ 0 and ub ¼ p lim
ub!p

cos ubþ1
sinub

¼ 0
� �

, this

equation leads to the classical Young’s equation
�cbf þ cbf 0 � cff 0 cos uf ¼ 0. Note that, for an undeformable solid,
(14) cannot be obtained from the variational condition (13) be-
cause, if the line is fixed on the body (dX0 ¼ 0), then dX ¼ 0 (since
wbf ¼ wbf 0 ¼ 0). In this case (in which dX ¼ dXbf ¼ dXbf 0 ), (13) leads
to only one line equation, which is the classical Young’s equation
state, and displacement dX of this line in the space, between the present state and its
displacement of the material points of the body (see text).
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(equilibrium of forces acting on the ‘free’ contact line). Note also
that, if the deformable body b is a fluid, then rs ¼ c I for the bf
and bf 0 fluid–fluid surfaces (as shown above, after (12)), so that
the second line Eq. (15) is obviously satisfied, while the first one
(14) leads to the classical equilibrium of the three fluid–fluid sur-
face tensions. Then, in this particular case too, there is only one line
equation.

3. Example of finite-displacement solution

We have shown in the preceding section that the coherence of the
theory is mainly based on the validity of Green’s formula (3) despite
the contact line singularity. This point is justified in the present sec-
tion, with an explicit example of solution concerning the simple case
of a half-space elastic solid, bounded by a plane, and subjected to a
constant normal surface tension concentrated on a straight line of
its surface. This solution satisfies the above line Eqs. (14)–(19), its
singularity at the contact line is described, its displacement field re-
mains finite, the elastic energy is also finite, and it is shown that
Green’s formula remains valid at the contact line.

3.1. A plane strain problem

Let the body b be an isotropic elastic solid occupying (in the ref-
erence state) the half space x P 0, in the orthonormal frame
ðOx;Oy;Oz0Þ, with a constant and isotropic surface stress of eigen-
value rs on its surface x ¼ 0, and subjected to a constant force (per
unit length) rl parallel to Ox, concentrated on the line x ¼ y ¼ 0
(Fig. 3; sign convention: rl > 0 if the force is directed to the outside
of b; there is no gravity: �g ¼ 0). Clearly, it is equivalent to consider
that the body is in contact with a fluid f occupying the region x < 0
and y > 0 (in the reference state), and a fluid f 0 the other region
x < 0 and y < 0, with cff 0 ¼ rl and isotropic surface stresses with
the same eigenvalue rs;bf ¼ rs;bf 0 ¼ rs. In the present equilibrium
state (after deformation), owing to the symmetry of the problem
with respect to the plane y ¼ 0, and if the surface energies cbf and
cbf 0 are the same function of the surface strain tensor es (temperature
and chemical potentials being constant), then the preceding Eq. (18)
is satisfied (ar;mm ¼ 1; ar;sm ¼ 0; cbf ¼ cbf 0 and uf ¼ uf 0 , by symmetry).
The other Eq. (14) at the contact line gives here

rl ¼ 2rs cos u; ð20Þ

where u ¼ ub=2 ¼ p�uf ¼ p�uf 0 , which determines the angle u,
i.e., the orientation of the vector mbf tangent to the bf side of the sur-
face (see Fig. 3). At the surface of the body, instead of applying the
complex stress condition (8), we shall impose a simple displace-
ment condition:
Fig. 3. Half-space elastic solid subjected to a normal force concentrated on a
straight line of its surface. We present a solution with a finite displacement and the
formation of an edge at this contact line.
ux ¼
�a
jyj þ b

; uy ¼ uz0 ¼ 0 ð21Þ

(a – 0; b > 0), at any point ð0; y; z0Þ of the surface. The value of a=b2

is fixed by (20):
a

b2 ¼ @yuxðy ¼ 0þÞ ¼ 1
tan u

¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ; with q ¼ rl

2rs
: ð22Þ

In the following (Sections 3.2 and 3.3), we solve the problem with
b ¼ 1, in the frame of classical plane strain elasticity, i.e., with

ux;uy functions of ðx; yÞ;
uz0 ¼ 0: ð23Þ

By a change of variables (Section 3.4), this will lead to solutions for
any a and b satisfying (22).

3.2. The analytic functions F and G

In the following, z will denote the complex variable xþ iy and u
the complex displacement ux þ iuy (function of the complex vari-
able z). We use the general Kolosov’s solution of plane strain
elasticity

uðzÞ ¼ � 1
2l
ðkFðzÞ þ zF 0ðzÞ þ GðzÞÞ

where k ¼ � kþ 3l
kþ l

ð24Þ

(k;l > 0 Lamé’s coefficients, �3 < k < �1), based on the two ana-
lytic functions F and G. We then follow Muskhelishvili’s method
(e.g. Mandel, 1966, tome II, annexe XVI)—adapted to the present
singularity problem—to determine F and G. The mapping
f! z ¼ xðfÞ ¼ 1�f

1þf from C� f�1g onto itself is bijective, analytic
and x�1 ¼ x. It transforms B ¼ ff 2 Cj jfj < 1g into
A ¼ fz 2 Cj Rz > 0g, and U� f�1g into D ¼ fz 2 Cj Rz ¼ 0g (where
U ¼ ff 2 Cj jfj ¼ 1g). The above displacement condition, with b ¼ 1,
on the surface of the body thus means

kFðz0Þ þ z0 F 0ðz0Þ þ Gðz0Þ ¼ f ðz0Þ for z0 2 D;

where f ðz0Þ ¼
1

jy0j þ 1
; y0 ¼ Iz0; ð25Þ

i.e., with the variable f

kUðf0Þ þ
xðf0Þ
x0ðf0Þ

U0ðf0Þ þWðf0Þ ¼ /ðf0Þ for f0 2 U ð26Þ

(extended to f0 ¼ �1), where UðfÞ ¼ FðxðfÞÞ;WðfÞ ¼ GðxðfÞÞ and

/ðf0Þ ¼ f ðz0Þ ¼
1

jy0j þ 1
¼ 1

ie 1�f0
1þf0
þ 1
¼ 1þ f0

1þ f0 þ ieð1� f0Þ
; ð27Þ

where e ¼ signðIf0Þ, for any f0 2 U (since jy0j ¼ �iz0 signy0 ¼ iez0).
The function hðfÞ ¼ xðfÞ

x0 ðfÞ ¼
1��f
1þ�f
� ð1þfÞ2
�2 is not analytic, but its restriction

to U

hðf0Þ ¼
1� 1

f0

1þ 1
f0

� ð1þ f0Þ2

�2
¼ 1� f2

0

2

is that of the analytic function vðfÞ ¼ 1�f2

2 . Since (26) may be written as

kUðf0Þ þ Nðf0Þ ¼ /ðf0Þ for f0 2 U; ð28Þ

in which N ¼ vU0 þW is analytic, we propose to define U by

kUðfÞ ¼ 1
2pi

Z
c

/ðf0Þ
f0 � f

df0 þ C for f 2 B ð29Þ

(see Mandel, 1966, ibid.), where C is a constant and c the circuit
t 2 ½0;2p� ! eit . Since / is continuous in U; U is analytic in B. Using
the decomposition
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/ðf0Þ
f0 � f

¼ 1þ f0

ð1þ f0 þ ieð1� f0ÞÞðf0 � fÞ ¼
1þ f0

ð1� ieÞðf0 þ ieÞðf0 � fÞ

¼ �1
ieþ f

� 1
f0 þ ie

þ ð1þ ieÞð1þ fÞ
2ðieþ fÞ � 1

f0 � f

and according toZ
cþ

df0

f0 þ i
¼
Z

c�

df0

f0 � i
¼ p

2
iZ

cþ

df0

f0 � f
þ
Z

c�

df0

f0 � f
¼ 2pi

(f 2 B; cþ : t 2 ½0;p� ! eit and c� : t 2 ½p;2p� ! eit) andZ
cþ

df0

f0 � f
�
Z

c�

df0

f0 � f
¼ �

Z
bþ

df0

f0 � f
�
Z

a

df0

f0 � f
�
Z

b�

df0

f0 � f

�
Z

a

df0

f0 � f
¼ pi�

Z
a

df0

f0 � f
� pi�

Z
a

df0

f0 � f

¼ �2
Z

a

df0

f0 � f
¼ �2

Z
a1

dz
z
¼ �2 log

1� f
1þ f

;

where bþ is the path t 2 ½0;p� ! eiðp�tÞ followed by the path
t 2 ½0;1� ! 1þ 2tf;b� the path t 2 ½p;2p� ! eit followed by the
path t 2 ½0;1� ! 1þ 2tf;a the path t 2 ½0;1� ! 1þ 2ð1� tÞf; a1

the path t 2 ½0;1� ! 1þ f� 2tf, and log defined in C� R�, we finally
obtain

kUðfÞ ¼ 1
2ð1þ f2Þ

1þ fþ f2 þ 1� f2

p
log

1� f
1þ f

 !
þ C for f 2 B;

ð30Þ

i.e., with the variable z ¼ xðfÞ

kFðzÞ ¼ 1
4ð1þ z2Þ 3þ z2 þ 4

p
z log z

� �
þ C ¼

p
2 þ z log z
pð1þ z2Þ ; ð31Þ

with C ¼ � 1
4. Since p

2 þ z log z ¼ ðz� iÞF1ðzÞ (ðzþ iÞF1ðzÞ, respec-
tively) and 1

1þz2 ¼ 1
z�i F2ðzÞ ð 1

zþi F2ðzÞ; respectivelyÞ, where F1 and F2

are analytic in a neighborhood of i (of �i, respectively), the function
F is analytic in C� R�, and then in A. According to limz!0k FðzÞ ¼ 1

2, it
may be extended as a continuous function in C� R��, and then in
�A ¼ A [ D. We may write

kpFðzÞ ¼ z log zþ gðzÞ; i:e:

ð1þ z2ÞgðzÞ ¼ p
2
� z3 log z; ð32Þ

where g may be continuously extended at 0, and after derivation

kpF 0ðzÞ ¼ log zþ 1þ g0ðzÞ;
2zgðzÞ þ ð1þ z2Þg0ðzÞ ¼ �3z2 log z� z2; ð33Þ

this last equality showing that g0 may be continuously extended at
0. We know that F 0 is analytic in C� R� (and then continuous in
�A� f0g) and (33) shows that zF 0ðzÞ and �zF 0ðzÞ may be extended as
continuous functions in C� R�� (and then in �A).

Since Fðz0Þ ¼ Fð�z0Þ ¼ Fð�z0Þ for z0 2 D,

kFðz0Þ þ kFðz0Þ ¼
pþ z0 log z0 � z0 logð�z0Þ

pð1þ z2
0Þ

¼ pþ z0ð�iepÞ
pð1þ z2

0Þ

¼ 1� jy0j
1� y2

0

¼ 1
1þ jy0j

¼ f ðz0Þ ð34Þ

(with the notations of (25) and (27)), so that (25) gives

Gðz0Þ ¼ f ðz0Þ � kFðz0Þ � �z0 F 0ðz0Þ ¼ k Fðz0Þ þ z0 F 0ðz0Þ for z0 2 D:
ð35Þ

Owing to this expression, we then define G in C� R�� as

GðzÞ ¼ kFðzÞ þ zF 0ðzÞ; ð36Þ
which is analytic in C� R� (and then in A) and continuous in C� R��
(and then in �A).

3.3. The solution and its singularity

According to (24) and (36), our solution u is then

uðzÞ ¼ � 1
2l
ðkðFðzÞ þ FðzÞÞ þ ðzþ �zÞF 0ðzÞÞ; ð37Þ

with F given by (31), and is a continuous function in �A. Its value, for
z0 2 D,

uðz0Þ ¼ �
1

2l
kðFðz0Þ þ Fðz0ÞÞ ¼ �

1
2l
� 1
1þ jy0j

ð38Þ

(from (34)) has the form (21) with b ¼ 1. The displacement u is then
finite at z ¼ 0 (i.e., at the contact line).

When the variable f ¼ x�1ðzÞ tends to �1; jzj tends to þ1.
Using this variable and the expression (30) (with C ¼ � 1

4), we have

�2luðzÞ ¼ kðFðzÞ þ FðzÞÞ þ ðzþ �zÞF 0ðzÞ

¼ 2RðkUðfÞÞ þ 1� f
1þ f

þ 1� �f

1þ �f

� �
ð1þ fÞ2U0ðfÞ

�2

¼ 2RðkUðfÞÞ � ð1þ fÞ2

j1þ fj2

� 1� jfj2

kpð1þ f2Þ2
p
2
ð1� f2Þ � ð1þ f2Þ � 2f log

1� f
1þ f

� �
;

which tends to 0 when f tends to �1 (UðfÞ tends to 0 owing to
ð1� f2Þ log 1�f

1þf ¼ ð1� f2Þ logð1� fÞ � ð1� fÞð1þ fÞ logð1þ fÞ; simi-

larly, ð1� jfj2Þ log 1�f
1þf ¼ ð1� jfj

2Þ logð1� fÞ � ð1� jfj2Þ logð1þ fÞ ¼
ð1� jfj2Þ logð1 � fÞ � 1

2 ð1 � �fÞð1 þ fÞ logð1 þ fÞ � 1
2 ð1 � fÞð1 þ �fÞ

logð1þ fÞ also tends to 0). This shows that the displacement uðzÞ
tends to 0 when jzj tends to þ1.

Kolosov’s expressions of the strain and stress tensors compo-
nents are then obtained from (24) and, according to (36),

exx ¼
1

2l
Rð�ð1þ kÞF 0ðzÞ � �zF 00ðzÞ � G0ðzÞÞ

¼ 1
2l

Rð�2ð1þ kÞF 0ðzÞ � ðzþ �zÞF 00ðzÞÞ;

eyy ¼
1

2l
Rð�ð1þ kÞF 0ðzÞ þ �zF 00ðzÞ þ G0ðzÞÞ ¼ 1

2l
Rððzþ �zÞF 00ðzÞÞ;

exy ¼
1

2l
Ið�zF 00ðzÞ þ G0ðzÞÞ

¼ 1
2l

Iðð1þ kÞF 0ðzÞ þ ðzþ �zÞF 00ðzÞÞ; ð39Þ

rxx ¼ Rð2F 0ðzÞ � �zF 00ðzÞ � G0ðzÞÞ ¼ Rðð1� kÞF 0ðzÞ � ðzþ �zÞF 00ðzÞÞ;

ryy ¼ Rð2F 0ðzÞ þ �zF 00ðzÞ þ G0ðzÞÞ ¼ Rðð3þ kÞF 0ðzÞ þ ðzþ �zÞF 00ðzÞÞ;

rxy ¼ Ið�zF 00ðzÞ þ G0ðzÞÞ ¼ Iðð1þ kÞF 0ðzÞ þ ðzþ �zÞF 00ðzÞÞ;

rz0z0 ¼
2k

kþ l
RðF 0ðzÞÞ ¼ ð3þ kÞRðF 0ðzÞÞ: ð40Þ

By derivation of (33),

kpF 00ðzÞ ¼ 1
z
þ g00ðzÞ;

2gðzÞ þ 4zg0ðzÞ þ ð1þ z2Þg00ðzÞ ¼ �6z log z� 5z; ð41Þ

the last equality showing that g00 may be continuously extended at
0. The function F 00 is analytic in C� R� (and then continuous in
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�A� f0g) and (41) shows that zF 00ðzÞ may be extended as a continu-
ous function in C� R�� (and then in �A) and that

lim
z!0; h constant

ðzþ �zÞF 00ðzÞ ¼ 1þ e�2ih

kp
; ð42Þ

where h ¼ arg z. Let r0 be > 0 and V0 ¼ fz 2 Cj Rz > 0 and jzj < r0g.
The function zF 00ðzÞ is continuous and then bounded in the compact
set V0, so that ðzþ �zÞF 00ðzÞ is also bounded in V0 � f0g. In addition,
the first equality (33), where g0 is continuous in �A and then bounded
in V0, and g0ð0Þ ¼ 0 (consequence of the second equality (33)) lead
to

lim
z!0

RðF 0ðzÞÞ ¼ þ1

lim
z!0; h constant

IðF 0ðzÞÞ ¼ h
kp

jRðF 0ðzÞÞj 6 c1j log rj þ d1 in V0 � f0g
IðF 0ðzÞÞ is bounded in V0 � f0g ð43Þ

(r ¼ jzj; h ¼ arg z; c1; d1 constants > 0).
The expressions (39) and (40) and the preceding results show

that all the components of the strain and stress tensors are contin-
uous in �A� f0g, bounded in V0 � f0g excepted

jexxj; jrxxj; jryyj and jrz0z0 j 6 cj log rj þ d in V0 � f0g ð44Þ

(different constants c; d > 0 for each strain or stress tensor compo-
nent), and

lim
z!0

exx ¼ þ1

lim
z!0; h constant

eyy ¼
1

2l
� 1þ cos 2h

kp

lim
z!0; h constant

exy ¼
1

2l
� ð1þ kÞh� sin 2h

kp
lim
z!0

rxx; ryy and rz0z0 ¼ þ1

lim
z!0; h constant

rxy ¼
ð1þ kÞh� sin 2h

kp
: ð45Þ

Explicit expressions of F 0 and F 00 to be used in (39) and (40) are
obtained from (31):

kpF 0ðzÞ ¼ 1� pzþ z2 þ ð1� z2Þ log z

ð1þ z2Þ2

kpF 00ðzÞ ¼ 1� pz� 2z2 þ 3pz3 � 3z4 þ ð�6z2 þ 2z4Þ log z

zð1þ z2Þ3
: ð46Þ
3.4. Change of variables

As noted after (22), we have solved the problem with the value
b ¼ 1, which means (physical) dimensionless quantities y ¼ Rz and
z, and, according to (25), dimensionless quantities FðzÞ and GðzÞ.
Physical quantities are obtained by considering the new variable
z=b and the new functions eFðzÞ ¼ a0Fðz=bÞ and eGðzÞ ¼ a0Gðz=bÞ ¼
keFðzÞ þ zeF 0ðzÞ, where b > 0 is a length and a0 2 R� a force per unit
length. With these new functions, the displacement u given by (24)
or (37) becomes

~uðzÞ ¼ a0 u
z
b

� �
ð47Þ

and the components of the strain and stress tensors, eij and rij given
by (39) and (40), become

~eijðzÞ ¼
a0

b
eij

z
b

� �
~rijðzÞ ¼

a0

b
rij

z
b

� �
: ð48Þ
For z0 2 D, the displacement becomes

~uðz0Þ ¼ a0 u
z0

b

� �
¼ � a0b

2l
� 1
jy0j þ b

ð49Þ

(from (38)), which has the general form (21) with a ¼ a0b
2l.

3.5. Finite elastic energy

The elastic energy per unit volume is

k
2
ðexx þ eyyÞ2 þ lðe2

xx þ e2
yy þ 2e2

xyÞ ð50Þ

(using eij or ~eij). Since eyy and exy are continuous and bounded in
V0 � f0g; e2

yy and e2
xy are integrable in V0 (considered as � R2). Ow-

ing to the inequality (44), exx and e2
xx are also integrable in V0, which

finally implies that (50) is integrable in V0. The elastic energy in V0

Eel ¼
Z

V0

k
2
ðexx þ eyyÞ2 þ lðe2

xx þ e2
yy þ 2e2

xyÞ
� �

dxdy ð51Þ

(per unit length along the normal Oz0 to the xy plane) is then well
defined and finite.

3.6. Validity of Green’s formula

The assumption made in Section 2 that Green’s formula (3) re-
mains valid, in order to obtain the equilibrium equations at the tri-
ple contact line, will be now justified using our present finite-
displacement solution. Since u is continuous in �A� R (considered
as � R3; we return here to the three-dimensional space, according
to (23)), we consider its variation w ¼ du as also continuous in
�A� R and then bounded in �V, where V ¼ V0��0; l0½ (l0 > 0), so that
the components wi 2 L1ðVÞ (� L2ðVÞ, since V is bounded). The par-
tial derivatives @jui are @xux ¼ exx; @yuy ¼ eyy (written in (39)) and

@yux ¼
1

2l
Ið�ð1� kÞF 0ðzÞ þ �zF 00ðzÞ þ G0ðzÞÞ

¼ 1
2l

Ið2k F 0ðzÞ þ ðzþ �zÞF 00ðzÞÞ;

@xuy ¼
1

2l
Iðð1� kÞF 0ðzÞ þ �zF 00ðzÞ þ G0ðzÞÞ

¼ 1
2l

Ið2F 0ðzÞ þ ðzþ �zÞF 00ðzÞÞ ð52Þ

(obtained from (24) and (36); @jui ¼ 0 if either i or j refers to the
third coordinate z0) and are all continuous in ð�A� f0gÞ � R, and
bounded in ðV0 � f0gÞ � R excepted @xux ¼ exx which satisfies the
inequality (44) in ðV0 � f0gÞ � R. We may then consider their vari-
ation dð@juiÞ ¼ @jwi as also continuous in ð�A� f0gÞ � R, and
bounded in ðV0 � f0gÞ � R excepted @xwx which will satisfy an
inequality similar to (44) in ðV0 � f0gÞ � R, so that all the deriva-
tives @jwi 2 L2ðVÞ, then the components wi 2 H1ðVÞ.

Similarly, the components of the stress tensor rij 2 L2ðVÞ, since
they are continuous in ð�A� f0gÞ � R, and either bounded in
ðV0 � f0gÞ � R or satisfying the inequality (44) in ðV0 � f0gÞ � R.
Since they are the real or imaginary part of a linear combination
of F 0ðzÞ and ðzþ �zÞF 00ðzÞ (see (40)), their partial derivatives @ lrij

(@l ¼ @x or @y) will have the form

@lrij ¼ R or I ðk1 F 00ðzÞ þ k2ðzþ �zÞF 000ðzÞÞ ð53Þ

(different constants k1; k2 for each l; i; j).
The expression (41), where g00 is continuous in �A and then

bounded in V0, leads to

jF 00ðzÞj 6 c2

r
þ d2 in V0 � f0g ð54Þ

(c2; d2 constants > 0). The derivation of (41) gives
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kpF 000ðzÞ ¼ � 1
z2 þ g000ðzÞ;

6g0ðzÞ þ 6zg00ðzÞ þ ð1þ z2Þg000ðzÞ ¼ �6 log z� 11; ð55Þ

the last equality showing that zg000ðzÞ and �zg000ðzÞ may be continu-
ously extended at 0, and then considered as continuous in �A, and
then bounded in V0. The expression (55) then leads to

jðzþ �zÞF 000ðzÞj 6 c3

r
þ d3 in V0 � f0g ð56Þ

(c3; d3 constants > 0). The expression (53) and the inequalities (54)
and (56) show that the partial derivatives @lrij 2 L1ðVÞ.

Nevertheless, these derivatives @ lrij R L2ðVÞ (for l ¼ x or y, and ij
= xx; yy; xy or z0z0), so that rij R H1ðVÞ. Let us take the example of
@xrxx ¼ �Rðð1þ kÞF 00ðzÞ þ ðzþ �zÞF 000ðzÞÞ:

�kp@xrxx ¼ R
1þ k

z
� zþ �z

z2 þ hðzÞ
� �

(using (41) and (55)), where hðzÞ ¼ ð1þ kÞg00ðzÞ þ ðzþ �zÞg000ðzÞ is
continuous and bounded in V0. Thus, @xrxx R L2ðVÞ because

R
1þ k

z
� zþ �z

z2

� �� �2

¼ ðk cos h� cos 3hÞ2

r2

is not integrable in V0.
Since rij R H1ðVÞ, Green’s formula (3) cannot be directly applied

on V, as noted in Section 2. Nevertheless, in the following, we will
show that Green’s formula remains valid in this case. The open set
V is bounded by the surfaces S ¼ fz 2 Cj z ¼ iy; 0 < y < r0g��0;
l0½; S0 ¼ fz 2 Cj z ¼ iy; �r0 < y < 0g��0; l0½ and R ¼ ðfz 2 Cj Rz > 0
and jzj ¼ r0g��0; l0½Þ [ ðV0 � f0gÞ [ ðV0 � fl0gÞ. Since the compo-
nents of r and w belong to C1ðVeÞ, where 0 < e < r0 and
Ve ¼ fz 2 Cj Rz > 0 and e < jzj < r0g��0; l0½, Green’s formula may
be applied on Ve (with w ¼ 0 on R)Z

Ve

trðr� � DwÞdv ¼ �
Z

Ve

divðr�Þ �wdv �
Z

Se[S0e[Ce

ðr� �wÞ � nda;

ð57Þ

in which Se ¼ fz 2 Cj z ¼ iy; e < y < r0g��0; l0½; S0e ¼ fz 2 Cj z ¼ iy;
�r0 < y < �eg��0; l0½; Ce ¼ fz 2 Cj Rz > 0 and jzj ¼ eg��0; l0½ and
the unit normal vectors n are directed to the inside of Ve. Since
the components of r and Dw belong to L2ðVÞ; trðr� � DwÞ 2 L1ðVÞ
which implies that

R
Ve

trðr� � DwÞdv tends to
R

V trðr� � DwÞdv when
e! 0. Since the components of divðr�Þ belong to L1ðVÞ (the partial
derivatives @lrij 2 L1ðVÞ) and those of w to L1ðVÞ;divðr�Þ �w 2 L1ðVÞ
which again implies that

R
Ve

divðr�Þ �wdv tends to
R

V divðr�Þ �wdv
when e! 0. Moreover, according to (44) and the functions log r and
ðlog rÞ2 being integrable in ½0;1� (their respective primitives,
r log r � r and rðlog rÞ2 � 2r log r þ 2r, tend to 0 when r ! 0), the
components of r belong to L2ðSÞ and L2ðS0Þ. Since the components
of w also belong to L2ðS [ S0Þ (they are continuous and bounded in
�V), ðr� �wÞ � n 2 L1ðS [ S0Þ which shows that

R
Se[S0e
ðr� �wÞ � nda tends

to
R

S[S0 ðr� �wÞ � nda when e! 0. Finally, for i and j fixed, the
inequalityZ

Ce

rij wi nj da
���� ���� 6 ðcj log ej þ dÞepe l0

(from (44); e constant, jwij 6 e in �V) shows that

lim
e!0

Z
Ce

ðr� �wÞ � nda ¼ 0: ð58Þ

The limit of (57) when e! 0 is thenZ
V

trðr� � DwÞdv ¼ �
Z

V
divðr�Þ �wdv �

Z
S[S0
ðr� �wÞ � nda; ð59Þ

i.e. Green’s formula on V. Note that some authors (Madasu and
Cairncross, 2004) proposed that the volume stresses produced a
resultant force at the contact line. The result (58) expresses that
there is no such contribution of the volume stresses at the contact
line (see also the comment after (14)).

4. Conclusions

In this paper, which concerns the mechanical surface properties
of a deformable body, the general surface and contact line equa-
tions are first deduced from a variational formulation (see Olives,
2010a for the physical aspects of the theory), by applying Green’s
formula both in the whole space and on the Riemannian surfaces.
Despite the singularity at the triple contact line (due to the action
of the fluid–fluid surface tension on the body), it is assumed that
Green’s formula remains valid in order to obtain the equations at
this line. The explicit example of solution given in Section 3 justi-
fies this assumption. The Eqs. (8) and (9) at the surfaces are similar
to the Cauchy’s equations for the volume, but involve a new defini-
tion of the divergence term as a true divergence with respect to the
tensorial product of the covariant derivatives on the surface and
the whole space (till now, this term was only defined by its scalar
product with a constant vector). The normal (12) and tangent (11)
components of the divergence Eq. (8) are respectively a generaliza-
tion of the classical Laplace’s equation and the surface tension
hydrostatic equilibrium for a fluid–fluid interface. Similar equa-
tions were written for elastic solids, e.g. in Gurtin and Murdoch
(1975), Leo and Sekerka (1989), Gurtin et al. (1998) and Steinmann
(2008). Note that our thermodynamic approach is valid for any
deformable body (such as a viscoelastic solid, a viscous fluid or
any other one). There are two equations at the contact line, which
represent: (i) the equilibrium of the forces acting on the line fixed
to the material points of the body (14) (equilibrium of the two sur-
face stresses and the fluid–fluid surface tension); (ii) the equilib-
rium of the forces acting on the ‘free’ contact line (15)–(19) (i.e.,
line moving with respect to the material points of the body), which
leads to a strong modification of the classical capillary Young’s
equation (as in the case of the thin plate: Olives, 1993, 1996). These
two equations reduce to only one equation in the particular case of
the undeformable solid (leading to the classical Young’s equation)
or that of three fluids in contact (leading to the classical equilib-
rium of the three surface tensions). Note that (14) shows that sur-
face stresses are forces which act on a line fixed to the material
points of the body and that the fluid–fluid surface tension is equil-
ibrated by the two surface stresses (and not by the volume stresses
of the body). This Eq. (14) suggests a finite displacement and the
formation of an edge at the contact line, contrary to the infinite-
displacement solution obtained from classical elasticity (Shanahan
and de Gennes, 1986; Shanahan, 1986) in which surface properties
(such as surface stresses) were not taken into account. As a simpli-
fied image, the body–fluid interface behaves as a tensile mem-
brane, which undergoes a finite displacement when subjected to
a force concentrated on a line. Experiments seem to confirm this
idea (Jerison et al., 2011) and an experimental support of the above
Eq. (14) (Eq. (42) of Olives (2010a)) was recently obtained (Style
et al., 2013). The existence of such a finite-displacement solution
is shown with the explicit example of Section 3 satisfying the line
Eqs. (14)–(19). This elastic solution, based on the approaches of
Kolosov and Muskhelishvili—adapted to the present singularity
problem—and the theory of analytic functions, leads to a descrip-
tion of the singularity at the contact line. While the displacement
components are continuous functions, their first partial derivatives
and the strain tensor components are discontinuous, generally
having different limits when approaching the contact line under
different directions (Section 3.3 and (52)). This solution also leads
to a finite value of the elastic energy (Section 3.5), whereas this en-
ergy is infinite in the classical elastic solution (Shanahan and
de Gennes, 1986; Shanahan, 1986). Owing to the contact line
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singularity, the stress tensor components do not belong to the
Sobolev space H1ðVÞ. Although Green’s formula cannot be directly
applied in this case, it is shown in Section 3.6 that this formula re-
mains valid. This result justifies the theory leading to the line Eqs.
(14)–(19). It also proves, according to (58), that there is no force
contribution of the volume stresses at the contact line (contrary
to what was proposed in Madasu and Cairncross (2004)). In fact,
(58) shows that the validity of Green’s formula is equivalent to
the absence of contribution of the volume stresses at the contact
line. In the presented finite-displacement solution, the validity of
Green’s formula is a consequence of the inequalities (44) for rij

and (54) and (56) for @lrij. The importance of Green’s formula
and its validity for a wider class of functions will be presented in
a future paper.

Dedication

Dedicated to the memory of my mother.

Appendix A. Eulerian and Lagrangian surface quantities

Let us denote by x0 the position of a point of the body in the ref-
erence state, x its position in the present state, u ¼ x� x0 its dis-
placement between the reference state and the present state, x0

its position in the varied state, w ¼ x0 � x ¼ dx its displacement be-
tween the present state and the varied state, @0i ¼ @

@xi
0

and @ i ¼ @
@xi.

Let S0;bf ; Sbf and S0bf respectively be the bf dividing surfaces in the
reference state, the present state and the varied state, and ðxa

0Þ
and ðxaÞ arbitrary curvilinear coordinates on S0;bf and Sbf , respec-
tively, where Greek indices a; b; c,. . .belong to f1;2g (ðxa

0Þ and ðxaÞ
must be clearly distinguished from the three-dimensional Carte-
sian coordinates ðxi

0Þ and ðxiÞ, respectively). The geometrical trans-
formations such that F0 : x0 ! x, defined in the part of E occupied
by the body b, will now be restricted to the bf surfaces. We thus
have the mappings F0 : x0 ! x from S0;bf to Sbf ; F : x! x0 from Sbf

to S0bf ; j0 : x0 ! x0 from S0;bf to E; j : x! x from Sbf to
E; G0 : x0 ! u from S0;bf to E and G : x! w from Sbf to E, and their
respective tangent linear mappings /0 : dx0 ! dx from Tx0 ðS0;bfÞ to
TxðSbf Þ; / : dx! dx0 from TxðSbfÞ to Tx0 ðS0bf Þ; i0 : dx0 ! dx0 from
Tx0 ðS0;bf Þ to E; i : dx! dx from TxðSbf Þ to E; w0 : dx0 ! du from
Tx0 ðS0;bf Þ to E and w : dx! dw from TxðSbfÞ to E.

For arbitrary vectors dx0 and dy0 2 Tx0 ðS0;bfÞ, the Lagrangian sur-
face strain tensor is defined by

esðdx0;dy0Þ ¼
1
2
ðdx � dy� dx0 � dy0Þ ¼

1
2
ðdx� � dy� dx�0 � dy0Þ

¼ 1
2
ðdx�0 � ði0 þ w0Þ

� � ði0 þ w0Þ � dy0 � dx�0 � i�0 � i0 � dy0Þ

ðA:1Þ

(see footnote2), which gives

es ¼
1
2
ðw�0 � i0 þ i�0 � w0 þ w�0 � w0Þ ðA:2Þ

(es being here considered as an endomorphism of Tx0 ðS0;bf Þ), i.e.,
using the coordinates

es;ab ¼
1
2
ð@0aui @0bxi

0 þ @0bui @0axi
0 þ @0aui @0buiÞ ðA:3Þ

(as a covariant tensor). For any vectors dx and dy 2 TxðSbfÞ, the Eule-
rian infinitesimal surface strain tensor des is defined by
2 For example, dx� is the linear form associated to dx; w�0 : E! Tx0 ðS0;bf Þ is the
adjoint of w0.
desðdx;dyÞ ¼ 1
2

dðdx � dyÞ ¼ 1
2
ðdðdxÞ � dyþ dx � dðdyÞÞ

¼ 1
2
ðdx� � w� � i � dyþ dx� � i� � w � dyÞ; ðA:4Þ

which gives

des ¼
1
2
ðw� � iþ i� � wÞ ðA:5Þ

(des as an endomorphism of TxðSbfÞ), i.e.,

des;ab ¼
1
2
ð@awi @bxi þ @bwi @axiÞ ðA:6Þ

(as a covariant tensor). It is related to the variation des of es through

desðdx0; dy0Þ ¼
1
2

dðdx � dyÞ ¼ desðdx;dyÞ;

i.e.,

dx�0 � des � dy0 ¼ dx� � des � dy

¼ dx�0 � /
�
0 � des � /0 � dy0;

which gives

des ¼ /�0 � des � /0

des ¼ /�1�
0 � des � /�1

0 ðA:7Þ

(des and des as endomorphisms), i.e.,

des;ab ¼ @0axf @0bxg des;fg

des;ab ¼ @axf
0 @bxg

0 des;fg ðA:8Þ

(as covariant tensors).
Let dx0 and dy0 be arbitrary vectors of Tx0 ðS0;bfÞ; dl0 and dl the

respective lengths of dx0 and dx; m0 2 Tx0 ðS0;bfÞ a unit vector normal
to dx0, and m 2 TxðSbf Þ the unit vector normal to dx such that
m � ð/0 � m0Þ > 0. The relation between the areas da0 and da of the
two parallelograms respectively built with ðdx0; dy0Þ and ðdx; dyÞ

Am0 dl0 � dy0 ¼ mdl � dy;

where A ¼ da
da0
¼ jdetðI � /0Þj for any isometry I : TxðSbfÞ ! Tx0 ðS0;bf Þ,

gives

m0 dl0 ¼ A�1 /�0 � mdl: ðA:9Þ

We then define the Eulerian surface stress tensor rs such that
the Eulerian surface stress force rs � mdl results from the transport
by /0 of the Lagrangian surface stress force ps � m0 dl0:

/0 � ps � m0 dl0 ¼ rs � mdl;

which gives, according to (A.9),

ps ¼ A/�1
0 � rs � /�1�

0

rs ¼ A�1 /0 � ps � /�0 ðA:10Þ

(ps andrs as endomorphisms of Tx0 ðS0;bfÞ and TxðSbf Þ, respectively), i.e.,

pab
s ¼ A@fxa

0 @gxb
0 r

fg
s

rab
s ¼ A�1

@0fxa @0gxb pfg
s ðA:11Þ

(as contravariant tensors).
From (A.10) and (A.7), we have

trðps � desÞ ¼ A trð/�1
0 � rs � des � /0Þ ¼ A trðrs � desÞ;

which leads to the Lagrangian and the Eulerian forms of the work of
deformation of a surface element

ps : des da0 ¼ rs : des da; ðA:12Þ

i.e.,

pab
s des;ab da0 ¼ rab

s des;ab da:
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Appendix B. Surface equations

According to (A.5), the last term of the equilibrium condition (6)
is first written as

tr rs � desð Þ ¼ tr
r�s þ rs

2
� i� � w

� �
¼ tr r�s � i� � w

� 	
þ tr

rs � r�s
2

� i� � w
� �

: ðB:1Þ

S being a Riemannian manifold with boundary C, we then apply
Green’s formula (Courrège, 1966)Z

S
divX da ¼ �

Z
C

X � mdl

(where X is any vector field of class C1 on S—which is compact—, m the
field of unit vectors on C, tangent to S, normal to C and directed to the
inside of S, and da and dl are the Riemannian measures on S and C,
respectively) to the vector field X ¼ r�s � i� �w ¼ frs

� �w, wherefrs ¼ i � rs, if the components of rs and w belong to C1ðSÞ. At a point
x 2 Sbf ;frs

� 2 TxðSbfÞ � E� (linear mapping from E to TxðSbfÞ), i.e., frs
�

is a section of the vector bundle TðSbfÞ � ðSbf � E�Þ over Sbf . In order
to decompose the term divX ¼ divðfrs

� �wÞ, we first need to define a
covariant derivative and a divergence for frs

�.
In a general way, let us define the covariant derivativer on the

vector bundle ðTðSbf Þ�Þ�q � TðSbfÞ�p � ðSbf � E�Þ�s � ðSbf � EÞ�r over
Sbf (for any p; q; r; s P 0), as the tensorial product of the covariant
derivative r on ðTðSbfÞ�Þ�q � TðSbfÞ�p (for the Levi–Civita connec-
tion) and the usual derivative d on ðSbf � E�Þ�s � ðSbf � EÞ�r ¼
Sbf � ððE�Þ�s � E�rÞ, i.e., by

rXðU � VÞ ¼ ðrXUÞ � V þ U � ðdXVÞ; ðB:2Þ

for any sections X of TðSbfÞ; U of ðTðSbfÞ�Þ�q � TðSbf Þ�p, and V of
ðSbf � E�Þ�s � ðSbf � EÞ�r (this definition may be justified by using lo-
cal frames of ðTðSbfÞ�Þ�q � TðSbfÞ�p and ðSbf � E�Þ�s �ðSbf � EÞ�r). For
any section W of ðTðSbfÞ�Þ�q � TðSbfÞ�p � ðSbf � E�Þ�s � ðSbf � EÞ�r , the
covariant differential of W is then defined as the linear mapping
rW : X !rXW , so that rW is a section of ðTðSbfÞ�Þ�ðqþ1Þ�
TðSbfÞ�p � ðSbf � E�Þ�s � ðSbf � EÞ�r .As an example, for a section W
of TðSbfÞ � ðSbf � E�Þ; rW is a section of TðSbf Þ� � TðSbfÞ � ðSbf � E�Þ
and, by contraction of the covariant index relative to TðSbfÞ� and
the contravariant index relative to TðSbfÞ, we thus define div W , which
is a section of Sbf � E�. With respect to a local chart of Sbf (coordinates
ðxaÞ; Greek indices a; b; c,. . .belong to f1;2g), with the associated
frames of TðSbf Þ and TðSbfÞ�, and to a basis of the vector space E (coor-
dinates ðxiÞ; Latin indices i; j,. . .belong to f1;2;3g), with the associ-
ated dual basis of E�, we may thus write the components

ðrWÞabi ¼ @bWa
i þ Ca

bcWc
i ðB:3Þ

ðdivWÞi ¼ @bWb
i þ Cb

bcWc
i ; ðB:4Þ

where Ca
bc are the Christoffel’s symbols of the Levi–Civita connec-

tion on Sbf .
With this definition, we may now write

rðfrs
� �wÞ ¼ ðrfrs

�Þ �wþfrs
� � w

(w being the usual derivative of w), then

rðfrs
� �wÞ ¼ ðrfrs

�Þ �wþfrs
� � w

(contraction of the covariant index deriving from frs
� and the con-

travariant index deriving from w) and

divðfrs
� �wÞ ¼ divðfrs

�Þ �wþfrs
� : w ðB:5Þ

(contraction of the covariant index deriving fromr and the contra-
variant index deriving from frs

�). Green’s formula applied to
X ¼ frs

� �w may then be written as
Z
S

trðr�s � i� � wÞda ¼ �
Z

S
divðfrs

�Þ �wda�
Z

C
ðfrs

� �wÞ � mdl

¼ �
Z

S
divðfrs

�Þ �wda�
Z

C
ðrs � mÞ �wdl: ðB:6Þ
The condition (7) is then obtained, from (B.1) and (B.6) (since
w ¼ 0 on C).

Let us now consider rs as a contravariant tensor (convention
used in (10)), denote �rs ¼ i � rs (by contraction of the covariant in-
dex of i and the first contravariant index of rs) and write

rði� rsÞ ¼ ðriÞ � rs þ i� ðrrsÞ;

hence

r �rs ¼ ðriÞ � rs þ i � ðrrsÞ

(contraction of the covariant index deriving from i and the first con-
travariant index deriving from rs) and

div �rs ¼ l : rs þ i � divrs ðB:7Þ

(contraction of the covariant index deriving from r and the second
contravariant index deriving from rs; divrs is the usual surface
divergence), where

l ¼ ri; ðB:8Þ

i.e., with the components,

ðdiv �rsÞi ¼ rab
s li

ab þ ðdivrsÞa @axi; ðB:9Þ

with

ðdiv �rsÞi ¼ @bðrab
s @axiÞ þ Cb

bc r
ac
s @axi

li
ab ¼ @abxi � Cc

ab @cxi

ðdivrsÞa ¼ @brab
s þ Ca

bc r
cb
s þ Cb

bc r
ac
s : ðB:10Þ

Moreover, for any sections X and Y of TðSbfÞ, we have

rXði� YÞ ¼ ðrXiÞ � Y þ i� ðrXYÞ;

hence

rXði � YÞ ¼ ðrXiÞ � Y þ i � ðrXYÞ

(contraction of the covariant index deriving from i and the contra-
variant index deriving from Y), i.e.

dXY ¼ ðrXiÞ � Y þrXY ¼ l : ðX � YÞ þ rXY ðB:11Þ

(Y and rXY being identified to i � Y and i � ðrXYÞ, respectively),
which shows that l is the second vectorial fundamental form on
Sbf (see Dieudonné, 1971, (20.12.4)), so that (B.7) and (B.11) respec-
tively represent the decomposition of div �rs and dXY into the nor-
mal component (l : rs and l : ðX � YÞ, respectively) and the
tangential component (divrs and rXY , respectively), with respect
to Sbf . This leads to (11) and (12).
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