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1. INTRODUCTION

Centrally symmetric convex bodies in d-dimensional Euclidean space Rd

are related to various transforms of functions on the unit sphere S d&1 in
Rd. In this paper we will investigate how this relationship is affected by
projections of the bodies onto lower dimensional subspaces. The results we
obtain will also give information about central sections of certain star-
shaped sets.

The cosine transform T, in Rd, is defined on the Montel space C�
e of

even, infinitely differentiable functions on Sd&1 by

(Tf )(x)=|
Sd&1

|(x, u) | f (u) *d&1(du), for x # S d&1 and f # C�
e ,

where ( } , } ) is the usual scalar product in Rd and *j denotes the j-dimen-
sional spherical Lebesgue measure. We will denote by K0 the class of all
convex bodies (non-empty, compact, convex sets) which are centrally sym-
metric with respect to the origin. In [16] it was shown that, corresponding
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to every K # K0 with support function h(K, } ), there is a generating distribu-
tion \K defined by

\K ( f )=|
S d&1

h(K, u)(T&1f )(u) *d&1(du), for f # C�
e .

This definition makes use of the fact that T is a bijection on C�
e (see, for

example, [12]). In fact, T can be extended to a bicontinuous bijection on
the dual space De of even distributions on S d&1; see [6] for further details.
It follows that \K is the inverse T&1h(K, } ) where, as usual, even con-
tinuous functions (and even signed Borel measures) are thought of as
special types of distributions. The body K is said to be a generalized
zonoid if \K is a signed measure, and a zonoid if \K is a positive measure.
Throughout the paper, the word positive means non-negative when it is
applied to functions, measures, or distributions. Background information
on zonoids, generalized zonoids, and centrally symmetric bodies can be
found in [14; 7; 13, in particular Section 3.5]).

Orthogonal projections K | L of zonoids and generalized zonoids K onto
subspaces L of Rd where discussed in [17]. There, a projection operator
?L , acting on functions and measures on S d&1, was defined in such a way
that the generating measure of K | L (which is again a generalized zonoid)
satisfies

\K | L=?L\K . (1.1)

This was used to obtain a characterization of those signed measures which
are generating measures of generalized zonoids. Our first goal in this paper
is to extend these results to arbitrary centrally symmetric convex bodies
and to obtain a characterization of those distributions which are generating
distributions of such bodies.

Equation (1.1) reveals a kind of commutativity between the operators ?L

and T. For example, for f # C�
e , we have

(Tf ) |L=TL?L f. (1.2)

Here TL denotes the cosine transform in L and, for functions g defined on
Sd&1, we denote by g | L the restriction of g to S k&1(L), the unit sphere of
the k-dimensional subspace L. In (1.2) and all that follows, we assume
k�2. Our second goal is to establish a relation similar to (1.2) for another
important spherical transform in Rd, the Radon transform R. This is the
(bicontinuous) bijection on C�

e defined by

(Rf )(x)=|
Sd&2(x=)

f (v) *d&2(dv), for x # S d&1 and f # C�
e ,

302 FALLERT, GOODEY, AND WEIL



File: 607J 165703 . By:CV . Date:22:07:01 . Time:08:57 LOP8M. V8.0. Page 01:01
Codes: 2886 Signs: 2004 . Length: 45 pic 0 pts, 190 mm

where x= is the subspace orthogonal to x. We will show that

(Rf ) |L=RL{L f, (1.3)

where RL denotes the spherical Radon transform in the subspace L and {L

is another projection operator on the sphere. We will use (1.3) in the study
of centrally symmetric, star-shaped sets which are intersection bodies. Inter-
section bodies have recently been of interest because of their connection
with the Busemann�Petty problem (see [3, 10, 18]). Corresponding to the
fact that the projection of a zonoid is a zonoid, we will show, in Section 4,
that the central section of an intersection body is an intersection body.

It is known that there is a strong connection between the operators R
and T, namely

R=gT=Tg, (1.4)

where g is a second-order differential operator on Sd&1 (see [6], where
a slightly different normalization is used). The connection between (1.2)
and (1.3) becomes more apparent from the relationship between the projec-
tion operators ?L and {L and the block operators g on Sd&1 and gL on
Sk&1(L). These equations could be used to show that

?Lgf =gL{L f, (1.5)

for all f # C�
e . In the final section we will use techniques from harmonic

analysis to show that (1.5) holds for all f # C�, the space of infinitely dif-
ferentiable functions on Sd&1.

The reader is referred to [8, 15] for background information on func-
tional analysis, in particular on the theory of distributions; to [1, 9, 13] for
the geometry of convex bodies, and to [4] for star-shaped bodies, in par-
ticular intersection bodies.

2. SPHERES AND SUBSPHERES

We will denote by Ce the Banach space of even continuous functions on
Sd&1. Its dual Me is the space of finite signed (even) Borel measures on
Sd&1. The space Me will be given the weak* topology whereas De will be
given the strong topology, unless otherwise stated. If f # Ce we may put

+f (A)=|
A

f (u) *d&1(du), for all Borel sets A/S d&1, (2.1)

to obtain a measure +f # Me which is absolutely continuous with respect
to *d&1 and which has Radon Nikodym derivative d+f�d*d&1= f.
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Throughout this work we will only use Radon Nikodym derivatives in the
context of absolutely continuous measures. As usual, measures of the form
+f defined in (2.1) allow us to view Ce as a subspace of Me which, in turn,
is a subspace of De . We mentioned in the Introduction that the transforms
T and R can be extended to bicontinuous bijections on De . We recall that
this follows from the self adjointness of both operators. To be precise, if
S=T or R, we have

|
Sd&1

f (u)(Sg)(u) *d&1(du)

=|
Sd&1

(Sf )(u) g(u) *d&1(du) for all f, g # C�
e ,

see [4], for example. It follows that the extensions to De may be defined
by

(T\)( f )=\(Tf ) and (R\)( f )=\(Rf ) for all f # C�
e and \ # De .

Consequently, T : Me � Me and R : Me � Me , and these are continuous
transformations. If + # Me and f # C�

e , we have

(T+)( f )=|
S d&1

(Tf )(u) +(du)=|
S d&1 |Sd&1

|(u, x) | f (x) *d&1(dx) +(du)

and so, by Fubini's Theorem, T+ # Ce is the function given by

(T+)(u)=|
S d&1

|(u, x) | +(dx) for u # S d&1. (2.2)

The analogue for the Radon transform is

(R+)( f )=|
Sd&1

(Rf )(u) +(du)=|
Sd&1 |Sd&1(u=)

f (v) *d&2(dv) +(du).

So R+ # Me is the measure given by

(R+)(A)=|
S d&1

*d&2(A & u=) +(du) for all Borel sets A/S d&1.

Consequently, R+ is a mixture of spherical Lebesgue measures *d&2 on the
subspheres Sd&2(u=).
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It follows from (2.2) that T(Me) is actually a subspace of Ce . On the
other hand, there are measures whose Radon transforms are not con-
tinuous functions. This difference in the behaviour of T and R seems to be
at the heart of the differences that arise in the treatment of projection
bodies and intersection bodies in Sections 3 and 4.

If L is a subspace of Rd of dimension k�2 and G is a space of functions,
measures or distributions on S d&1, we denote by G(L) the corresponding
space on Sk&1(L). We note that if f # Ce , then f |L # Ce(L). On the other
hand, the restriction +f | L , defined by restricting A in (2.1) to be a Borel
subset of Sk&1(L), only yields the trivial measure. So the restriction
operator should only be applied to Ce and not to Me or De . In the other
direction, though, we have the following continuous embeddings

Me(L)/�Me and De(L)/�De .

In the case of distributions \ # De(L) and functions f # C�
e , we obtain the

latter embedding from the definition \( f )=\( f |L). For measures + #
Me(L) this gives

+( f )=+( f |L)=|
Sd&1

( f | L)(u) +(du)=|
S k&1(L)

f (v) +(dv),

for f # Ce . It follows that the extension of + # Me(L) to Me is, as usual, the
measure defined by

+(A)=+(A & S k&1(L)) for all Borel sets A/S d&1.

These extensions also allow us to apply the transforms T and R to elements
of Me(L) and De(L). For \ # De(L) and f # C�

e , we have

(T\)( f )=\((Tf )|L) and (R\)( f )=\((Rf )|L).

One of the main tools we will use in the following is a disintegration of
the spherical Lebesgue measure which appears in [17]. We will state it
here for completeness. If L is a subspace of Rd and u # S d&1, we denote by
u | L the orthogonal projection of u onto L. If, moreover, dim L=k and
v # Sk&1(L), we let

Hd&k(L, v)=[u # Sd&1: u | L=:v with :>0]

be the open half sphere of dimension d&k generated by v and the
orthogonal space L=.
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Lemma 2.1. Let L/Rd be a subspace of dimension k and A/Sd&1 a
Borel set. Then we have

*d&1(A)=|
S k&1(L)

|
H d&k(L, v) & A

|(w, v) |k&1 *d&k(dw) *k&1(dv).

3. PROJECTIONS OF GENERATING DISTRIBUTIONS

Our primary objective in this section is the extension of the results of
Weil [17] to arbitrary centrally symmetric bodies. This requires us to find
an extension of (1.2), namely,

(T\)|L=TL?L\, (3.1)

which is valid for a class of distributions \ large enough to include the
generating distributions of all centrally symmetric convex bodies. In order
for the left side of (3.1) to make sense, we should restrict \ to be a distribu-
tion with T\ # Ce . It is easy to see that any such distribution can be
extended to a continuous linear functional on E=T(Me) when the latter
space carries the final topology for the mapping T on Me ; see [17] for a
similar argument. It follows that T&1(Ce)/E$. In fact, we will show that
the reverse inclusion also holds. First, we note that the natural embedding
of C�

e in E is continuous, and therefore E$/De . So, if \ # E$, we see that
T\ is a distribution which can be extended to a continuous linear func-
tional on Me by putting (T\)(+)=\(T+). But Ce is the dual of Me , there-
fore T\ # Ce and so we have E$=T&1(Ce). We note that if \ # E$ with
T\= f # Ce , we have

\(T+)=(T\)(+)=|
S d&1

f (u) +(du) for all + # Me .

We will give E$ the initial topology for the mapping T : E$ � Ce .
Our objective now is to show that (3.1) holds for all distributions \ # E$.

The spherical projection operator ?L is defined for f # Ce and subspaces L
of dimension k by

(?L f )(v)=|
H d&k(L, v)

|(w, v) |k f (w) *d&k(dw), for v # S k&1(L), (3.2)

see [17]. In order to extend this to E$, it is convenient to introduce the
adjoint operator ?*L which lifts functions in Ce(L) to functions in Ce . For
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f # Ce(L) we denote by f� the positive homogeneous extension of f to the
whole of L. Then ?*L is defined by

(?*L f )(x)= f� (x | L) for f # Ce(L) and x # S d&1. (3.3)

We note that for + # Me(L), we have TL + # E (L) and

(?*LTL +)(x)=|
S k&1(L)

|(x | L, v) | +(dv)

=|
Sd&1

|(x, u) | +(du)=(T+)(x), (3.4)

for all x # Sd&1. Consequently ?*L : E (L) � E and this mapping is con-
tinuous.

The following lemma shows that ?*L is indeed an adjoint of ?L and helps
us to see how the latter should be extended to E$.

Lemma 3.1. If f # Ce and g # Ce(L), we have

|
S k&1(L)

(?L f )(v) g(v) *k&1(dv)=|
Sd&1

f (u)(?*Lg)(u) *d&1(du).

Proof. We see from Lemma 2.1, (3.2), and (3.3) that

|
Sk&1(L)

(?L f )(v) g(v) *k&1(dv)

=|
Sk&1(L)

g(v) |
H d&k(L, v)

|(w, v) |k f (w) *d&k(dw) *k&1(dv)

=|
Sk&1(L)

|
H d&k(L, v)

ĝ(w | L) f (w) |(w, v) |k&1 *d&k(dw) *k&1(dv)

=|
Sd&1

f (u)(?*Lg)(u) *d&1(du),

as required.

It follows from Lemma 3.1 that, for \ # E$, it is appropriate to define ?L\
by

(?L\)( f )=\(?*L f ) for f # E (L). (3.5)
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We now formulate the main result of this section.

Theorem 3.2. (a) Let L/Rd be a subspace, then ?L is a continuous
mapping from E$ to E$(L). If \ # E$, we have

(T\)|L=TL?L\. (3.6)

Moreover, if \=\K is the generating distribution of a (centrally symmetric)
convex body K, then ?L\ is the generating distribution of K | L.

(b) A distribution \ # E$ is the generating distribution of a (centrally
symmetric) convex body, if and only if ?L\�0 for all planes (two-dimen-
sional subspaces) L.

Proof. (a) First we assume that \ # E$ and that + # Me(L). Then, from
(3.4) and (3.5) we have

(?L\)(TL +)=\(?*LTL +)=\(T+).

It immediately follows that ?L\ # E$(L). So we know that both sides of
(3.6) are elements of Ce(L). If we put T\= f # Ce and TL?L \= fL # Ce(L),
then (3.6) is equivalent to f |L= fL . To prove the latter, we choose
g # Ce(L) and let +g be the measure whose Radon Nikodym derivative with
respect to *k&1 on S k&1(L) is g. Then we see from (3.4) and (3.5) that

|
S k&1(L)

( f | L)(v) g(v) *k&1(dv)=|
Sd&1

f (u) +g(du)=+g(T\)=\(T+g)

=\(?*LTL +g)=(?L\)(TL +g)=(TL?L\)(+g)

=|
S k&1(L)

fL(v) g(v) *k&1(dv)

and so f |L= fL , as required. The continuity of ?L : E$ � E$(L) follows
immediately from (3.6). For the final statement in (a), we use the fact that
the support function of K | L is the restriction of the support function of K
to Sk&1(L).

(b) If \ # E$ is the generating distribution of a convex body K and if
L is a two-dimensional subspace, then (from (a)) ?L\ is the generating dis-
tribution of K | L. Since any two-dimensional centrally symmetric body is a
zonoid, K | L is a zonoid, and hence \K | L�0.

Conversely, if ?L\�0 for all two-dimensional subspaces L then, for each
such L, we see that TL?L\ is the support function of a zonoid in L. By (a),
TL?L\=(T\)|L and so the function T\ is convex on all two-dimensional
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subspaces. It follows that T\ is the support function of a centrally sym-
metric convex body K/Rd and therefore \=\K .

We note that Me /E$ and that we could use (3.5) to show that if + # Me

then ?L + # Me(L). In fact, we have a rather stronger result. If + # Me then
the measure +~ # Me is defined in [17] by

+~ (A)=|
A

&u | L& +(du), for all Borel sets A/S d&1.

Lemma 3.3. Let + # Me /E$ and let L/Rd be a subspace, then
?L + # Me(L). In fact, ?L + is the image measure of +~ under the (+~ -almost
everywhere defined) measurable mapping x [ (x | L)�&x | L&, for x # S d&1.

Proof. Let +̂ be the image measure mentioned in the statement of the
lemma and let f # C�

e (L). The transformation theorem for measures,
together with (3.3) and (3.5), shows that +̂ satisfies

|
Sk&1(L)

f (v) +̂(dv)=|
Sd&1

f \ u | L
&u | L&+ &u | L& +(du)=|

S d&1
f� (u | L) +(du)

=|
S d&1

(?*L f )(u) +(du)=(?L +)( f ),

and so +̂=?L +, as required.

This result could be used, together with Theorem 3.2, to show that the
projection of a (generalized) zonoid is again a (generalized) zonoid. Of
course, the fact that zonoids are limits of finite vector sums of line segments
provides a simple proof of this fact.

We conclude this section with two observations concerning the operator
?*L . First, if h # Ce(L) is the support function of K/L and if u # Sd&1, we
have

max
x # K

(x, u)=max
x # K

(x, u | L)=h� (u | L)=(?*Lh)(u).

Consequently, ?*L lifts support functions of bodies in L to support functions
of the same (lower dimensional) bodies in Rd. Second, (3.4) shows that ?*L
can be extended to the whole of De(L) using the definition

?*L\=TT &1
L \ for \ # De(L).

In this setting, the continuity of the embedding De(L)/�De gives the con-
tinuity of ?*L : De(L) � De .
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4. THE SPHERICAL RADON TRANSFORM AND
INTERSECTION BODIES

In this section we consider the class S0 of star bodies. These are compact
star-shaped sets, centrally symmetric with respect to the origin, and such
that the radial function r(K, } ) of K # S0 is continuous. In this context, the
intersection bodies and generalized intersection bodies introduced by
Lutwak [10] (see also [5]) play a role in S0 analogous to that of the
zonoids and generalized zonoids in K0 . A body K # S0 is said to be a
generalized intersection body, if r(K, } ) is the Radon transform of an even
signed measure +, and an intersection body, if this measure + is non-
negative. Since the Radon transform R is also a bicontinuous bijection on
De , generalized intersection bodies (respectively, intersection bodies) K are
characterized by the fact that R&1r(K, } ) is an element of Me (respectively,
a nonnegative element).

Our next objective is to find an analogue of Theorem 3.2 for the Radon
transform. To this end, we first define the spherical projection operator {L .
For f # Ce and for subspaces L with dim L=k, we put

({L f )(v)=|
H d&k(L, v)

|(w, v) |k&2 f (w) *d&k(dw)

for f # Ce and v # Sk&1(L). (4.1)

We define a corresponding lift operator {*L by

({*L f )(x)=&x | L&&2 f� (x | L)=&x | L&&1 f \ x | L
&x | L&+ , (4.2)

for f # Ce and almost all x # Sd&1. Lemma 2.1 shows that

|
S d&1

&x | L&&1 *d&1(dx)=|
S k&1(L)

|
Hd&k(L, v)

|(w, v) | k&2 *d&k(dw) *k&1(dv),

which is finite, for k�2. It follows that {*L maps Ce(L) into the integrable
functions on S d&1.

We will be particularly interested in distributions \ for which R\ # Ce .
Just as in the previous section, this class is the dual of the space F=R(Me)
endowed with the final topology for the mapping R on Me . In this setting,
if \ # F$ with R\= f # Ce , then

\(R+)=(R\)(+)=|
Sd&1

f (u) +(du) for all + # Me .
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We will give F$=R&1(Ce) the initial topology for the mapping
R : F$ � Ce .

We now define {*L on F (L) by

{*LRL+=R+ for + # Me(L). (4.3)

To see that (4.3) is consistent with (4.2) we assume RL+= f # Ce(L) and let
g # Ce . Then we have, from Lemma 2.1,

|
S d&1

({*L f )(u) g(u) *d&1(du)

=|
Sk&1(L)

|
H d&k(L, v)

|(w, v) |k&1 ({*L f )(w) g(w) *d&k(dw) *k&1(dv)

=|
Sk&1(L)

|
H d&k(L, v)

|(w, v) |k&2 g(w) f (v) *d&k(dw) *k&1(dv)

=|
Sk&1(L)

|
H d&k(L, v)

|(w, v) |k&2 g(w) *d&k(dw)(RL+)(dv)

=|
Sk&1(L) _RL |

Hd&k(L, } )
|(w, } ) |k&2 g(w) *d&k(dw)& (v) +(dv)

=|
Sk&1(L)

|
S k&2(L & v=)

|
Hd&k(L, z)

|(w, z) | k&2 g(w)

*d&k(dw) *k&2(dz) +(dv)

=|
Sk&1(L)

|
S d&1(v=)

g(w) \v=(dw) +(dv)

=|
Sd&1 |S d&2(x=)

g(w) \x=(dw) +(dx),

where \x= is the measure on Sd&2(x=) given by

\x=(A)=|
Sk&1(L & x=)

|
H d&k(L, z) & A

|(w, z) |k&2 *d&k(dw) *k&2(dz)

for Borel subsets A of Sd&2(x=). If x # L and z # L & x=, we have

Hd&k(L, z)/x=,
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and so we may apply Lemma 2.1 in x= to see that \x= is Lebesgue measure
*d&2 on S d&2(x=). Hence

|
Sd&1

({*L f )(u) g(u) *d&1(du)=|
S d&1 |Sd&2(x=)

g(w) *d&2(dw) +(dx)

=|
S d&1

(Rg)(x) +(dx)

=|
S d&1

g(u)(R+)(du).

It follows that (4.3) is consistent with (4.2). We also see, from (4.3) and the
continuity of the embedding Me(L)/�Me , that {*L : F (L) � F is con-
tinuous. The next result shows that {*L is the adjoint of {L .

Lemma 4.1. (a) If f # Ce and g # Ce(L), we have

|
S k&1(L)

({L f )(v) g(v) *k&1(dv)=|
Sd&1

f (u)({*Lg)(u) *d&1(du).

(b) If f # Ce and + # F (L), we have

|
Sk&1(L)

({L f )(v) +(dv)=|
S d&1

f (u)({*L+)(du). (4.4)

Proof. (a) Again the main tool in the proof will be Lemma 2.1. We
see that

|
Sk&1(L)

({L f )(v) g(v) *k&1(dv)

=|
S k&1(L)

|
H d&k(L, v)

|(w, v) |k&2 f (w) g(v) *d&k(dw) *k&1(dv)

=|
S d&1

f (u) &u | L&&2 ĝ(u | L) *d&1(du)

=|
S d&1

f (u)({*Lg)(u) *d&1(du),

as required.

(b) We note that (a) and (b) are the same if the measure + has
Radon Nikodym derivative g with respect to *k&1. Since RL maps C�

e (L)
into C�

e (L), the denseness of C�
e (L) in Me(L) shows that C�

e (L) is also
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dense in F (L). It follows that (b) may be proved by showing that both
sides of (4.4) are continuous as functions of + # F (L). For the left side, this
is a consequence of the continuity of RL : Me(L) � Me(L), and for the right
side, we use the continuity of R : Me � Me .

We use Lemma 4.1 to extend the definition of {L from Ce to F$. For
\ # F$ and + # F (L), we put

({L\)(+)=\({*L+). (4.5)

Theorem 4.2. Let L/Rd be a subspace, then {L is a continuous map-
ping from F$ to F$(L). If \ # F$, we have

(R\)|L=RL{L\. (4.6)

Moreover, if r(K, } )=R\ is the radial function of a star body K # S0 , then
RL{L\ is the radial function of the central section K & L of K.

Proof. The proof is completely analogous to that of Theorem 3.2(a).
The final step uses the fact that the restriction of the radial function of a
star body is the radial function of its corresponding section.

We could obtain an analogue of Theorem 3.2(b) as a consequence of
(4.6). This would state that, for \ # F$, the function R\ is positive if and
only if {L\ is positive for all two-dimensional subspaces L. But this result
is trivial since, for dim L=2, we see that {L\ and R\ are just rotations of
one another. A different analogue of Theorem 3.2(b) would provide a
characterization of \ # F$ for which R\ is the radial function of a convex
body. Here we can use (4.6) and Gardner's positive solution of the three-
dimensional Busemann�Petty problem [3] to obtain a partial result. We
see from (4.6) that R\ is the radial function of a convex body if and only
if, for all L of a fixed dimension, RL{L\ is the radial function of a convex
body. In the case dim L=3, Gardner's result shows that this implies that
{L\ is positive. So we conclude that if R\ is the radial function of a convex
body then {L\ is positive for all subspaces L of dimension three.

We will now consider the case where + # F$ is a positive measure. In
particular, we want to show that, in this case, {L+ is also a positive
measure.

Lemma 4.3. If + # F$ is a positive measure, then the set function +� ,
defined by

+� (A)=|
A

&u | L&&1 +(du), for Borel sets A/Sd&1,
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is a finite positive measure and {L+ is the image measure of +� under the
(+� -almost everywhere defined ) measurable mapping x [ (x | L)�&x | L&, for
x # S d&1.

Proof. First we show that the positive measure +� is finite. If R+= f # Ce

and g0 # Ce(L) is identically one on S k&1(L), it follows from (4.2), (4.5),
and (4.6) that

+� (Sd&1)=|
S d&1

&u | L&&1 +(du)=+({*Lg0)=({L+)(g0)

=ck({L+)(RLg0)=ck(RL{L+)(g0)=ck(R+)|L (g0)

=ck |
Sk&1(L)

f (v) *k&1(dv),

for some constant ck , dependent only on k. So +� is finite, as claimed.
Moreover, if g # C�

e (L), we also have

({L+)(g)=|
Sd&1

({*Lg)(u) +(du)=|
Sd&1

&u | L&&1 g \ u | L
&u | L&+ +(du),

which completes the proof.

Corollary 4.4. Let K # S0 be an intersection body and L/Rd a sub-
space. Then K & L is an intersection body in L.

Proof. For an intersection body K # S0 , there is a positive measure
+ # Me such that r(K, } )=R+. If r is the radial function of K & L in the sub-
space L, then r=r(K, } )|L , and Theorem 4.2 implies that

r=(R+)|L=RL{L+.

It follows from Lemma 4.3 that {L+ is a positive measure and therefore
K & L is an intersection body.

We note that we have been unable to show that {L : Me & F$ �
Me(L) & F$(L). For signed measures +, it is not clear that +� is well-defined.
Consequently, we cannot prove that sections of generalized intersection
bodies are necessarily generalized intersection bodies. Nor is it clear that
the radial function of a generalized intersection body is the difference of
radial functions of intersection bodies. The difficulty arises from the fact
that if + # F$, it might not be true that the positive and negative parts of
+ are in F$.
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As in the case of ?*L we can extend {*L so that it is a continuous transfor-
mation from De(L) to De by putting

{*L\=RR&1
L \ for \ # De(L). (4.7)

If K is a convex body in L, we will denote its first surface area measure
(calculated in L) by S$1(K, } ), and denote by S1(K, } ) the first surface area
measure of the same body now considered as a subset of Rd. We recall from
Goodey and Weil [6] that, for K # K0 , we have S1(K, } )=R\K . It follows
from (4.7) that, for all centrally symmetric convex bodies K in L,

{*LS$1(K, } )={*LRL\K=R\K=S1(K, } ).

So {*L has an effect on first surface area measures similar to that of ?*L on
support functions. There is, of course, a simple connection between support
functions and first surface area measures, namely, gh(K, } )=S1(K, } ),
where g is the differential operator relating R and T in (1.4). It is
reasonable to expect that many of the analogies between Sections 3 and 4
may be explained by this relationship. This expectation is reinforced by the
observation that radial functions of intersection bodies are Radon
Nikodym derivatives of first surface area measures of zonoids. We will
investigate these relationships further in the final section.

5. PROJECTIONS AND THE LAPLACE�BELTRAMI OPERATOR

Our objective in this section is to investigate the connections between the
results of Sections 3 and 4. In particular, we will show that (3.6) and (4.6)
imply Eq. (1.5) for all f # C�

e . However, we will give an independent proof
that (1.5) holds for all f # C�. This will be achieved by studying the effects
of the various operators on spherical harmonics. For background informa-
tion on the latter, the reader is referred to Mu� ller [11].

We recall that, for n=0, 1, ..., the spherical harmonics of degree n on
Sd&1 are the eigenvectors of the Laplace�Beltrami operator 2 with
eigenvalue &n(d+n&2). They span a finite-dimensional subspace of the
Hilbert space L2(S d&1) and we will denote its dimension by N(d, n).
In fact, these spaces of spherical harmonics are the irreducible invariant
(with respect to the rotation group) subspaces of L2(S d&1). Each of the
operators T, R, and g=(2+d&1)�2 acts as a multiple of the identity on
the spherical harmonics of fixed degree. For the block operator g and for
the spherical harmonic of degree n on Sd&1, we will denote this multiple
by bn, d . It follows that

bn, d=(&n(d+n&2)+d&1)�2=&(n&1)(d+n&1)�2. (5.1)
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The corresponding multiples for T and R will be denoted by tn, d and rn, d

respectively. It is clear that they are both zero for odd values of n. Our next
objective is to give explicit formulas for them in the case of even values of n.
To do this, we need only apply the appropriate operator to one spherical
harmonic of degree n, and a natural choice for the latter is one which has
rotational symmetry. In fact, there is precisely one (up to scalar multiples)
such choice and this is obtained from the Legendre polynomials. In view of
our later calculations we will describe them in terms of the Gegenbauer
polynomials C &

n . These can be defined by C &
0(t)=1, C &

1(t)=2&t, and the
recursion formula

(n+1) C &
n+1(t)=2(n+&) tC &

n(t)&(n+2&&1) C &
n&1(t); (5.2)

see, for example Erde� ly et al. [2]. It follows that, for even values of n,

C &
n(0)=(&1)n�2 1(&+(n�2))

1((n�2)+1) 1(&)
. (5.3)

The Legendre polynomial Pn(d, } ) of degree n in dimension d can be
defined by

Pn(d, } )=
1(d&2) 1(n+1)

1(d+n&2)
C (d&2)�2

n . (5.4)

If u0 is the north pole of S d&1 then Pn(d, (u0 , } ) ) is the unique spherical
harmonic of degree n which has value 1 at u0 and is invariant under rota-
tions which leave u0 fixed. We put

|i=*i (Si)=
2?(i+1)�2

1((i+1)�2)
for i=0, 1, . . . .

For even values of n, we use (5.3) and (5.4) to see that

rn, d =(RPn(d, (u0 , } ) ))(u0)=|d&2 Pn(d, 0)

=(&1)n�2 1(d&2) 1(n+1) 1((d+n&2)�2)
1(d+n&2) 1((n+2)�2) 1((d&2)�2)

|d&2

=(&1)n�2 ?(d&1)�21(n)
2n&21((n�2)) 1((d+n&1)�2)

. (5.5)

The corresponding calculation for tn, d can be found in Schneider [13,
Eq. (3.5.7)] where it is shown that, for even values of n,

tn, d=(&1)(n&2)�2 ? (d&1)�21(n&1)
2n&21((n�2)) 1((d+n+1)�2)

. (5.6)
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It follows immediately from (5.1), (5.5), and (5.6) that rn, d=bn, dtn, d and so
we have a proof of the (well-known) relation

R=gT=Tg, (5.7)

which was mentioned in the Introduction.
It follows from (5.7) that \ # F$ if and only if g\ # E$ and so (3.6) gives

(R\)|L=(Tg\)|L=TL ?Lg\ .

On the other hand, (4.6) gives

(R\)|L=RL{L\=TLgL{L \.

Using the injectivity of TL , we deduce that

?Lg\=gL{L \, (5.8)

for all \ # F$.
We already showed that ?L : E$ � E$(L) and {L : F$ � F$(L) are con-

tinuous. It follows immediately from (5.7) that g : F$ � E$ is continuous.
So both sides of (5.8) are continuous as functions of \ # F$. Since C�

e is
clearly dense in F$, we see that (5.8) is equivalent to the validity of (1.5)
for all f # C�

e . We now come to the main result of this section which shows
that (1.5) actually holds for all f # C�.

Theorem 5.1. If L/Rd is a subspace and f # C� we have

?Lgf =gL{L f. (5.9)

First we will prove a lemma which allows us to assume that
dim L=d&1.

If L is a subspace of Rd of dimension k�2, we assume that
?L : C� � C�(L) and {L : C� � C�(L) are defined by (3.2) and (4.1).
Furthermore, if L and M are subspaces with M/L, we use the following
notation for the corresponding operators in L:

?L
M : C�(L) � C�(M) and {L

M : C�(L) � C�(M).

Lemma 5.2. If L and M are subspaces of Rd with M/L, we have

?L
M ?L f =?M f and {L

M {L f ={M f for f # C�.
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Proof. We just give the proof of the first statement since the second is
entirely analogous. We assume that dim M=m and dim L=k. For
z # Sm&1(M) and f # C�, we have

(?Mf )(z)=|
H d&m(M, z)

|(v, z) |m f (v) *d&m(dv).

We note that, for v # Hd&m(M, z), we have

(v | L) | M=v | M=:z

for some :>0. So if y is the unit vector in the direction of v | L, then
y # H k&m(M, z)/L, and v # Hd&k(L, y) satisfies (v, z)=(v, y)( y, z).
Lemma 2.1 therefore gives

(?Mf )(z)=|
H k&m(M, z)

|( y, z) |m |
H d&k(L, y)

|(w, y) |k *d&k(dw) *k&m(dy)

=(?L
M?L f )(z),

as required.

Proof of Theorem 5.1. As noted above, we may assume that
dim L=d&1. It clearly suffices to prove (5.9) for functions f which are
spherical harmonics. We will choose the coordinates so that L=u=

0 and
put Sd&2=L & Sd&1. We will use cylindrical coordinates to identify each
u # S d&1 with the pair (t, y) where t=(u, u0) and y # Sd&2. The spherical
harmonics of degree n on Sd&1 are spanned by the functions of the form

f (u)=An, j (d, t) Sj, k(d&1, y) 0� j�n, 1�k�N(d&1, j), (5.10)

see [11], for example. For each j with 0� j�n, the functions Sj, k(d&1, } )
with 1�k�N(d&1, j) span the space of spherical harmonics of degree j
on Sd&2 and An, j (d, } ) is the d-dimensional associated Legendre function
of degree n of order j. The latter are defined by

An, j (d, t)=:d, n, j (1&t2) j�2 Pn& j (d+2j, t),

where

:d, n, j=�N(d+2j, n& j) |d+2j&2

|d+2j&1

.
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So it will suffice to prove (5.9) for functions f of the form given in (5.10).
If p=1, 2, ..., we let ? p be the projection operator defined on C� by

(? pf )( y)=|
H 1(L, y)

|(v, y) | p f (v) *1(dv) for y # S d&2(L).

We note that if f is of the form in (5.10), then

(? pf )( y)=qd, n, j, pSj, k(d&1, y) for y # S d&2(L),

where

qd, n, j, p =|
1

&1
(1&t2)( p&1)�2 An, j (d, t) dt

=:d, n, j |
1

&1
(1&t2)( p+ j&1)�2 Pn& j (d+2j, t) dt. (5.11)

It follows that (5.9) is equivalent to

bn, dqd, n, j, d&1=bj, d&1qd, n, j, d&3 for 0� j�n

for all n and for all d. We may use (5.1), (5.4), and (5.11) to see that this,
in turn, is equivalent to

(n&1)(n+d&1) |
1

&1
(1&t2)(d+ j&2)�2 C (d+2j&2)�2

n& j (t) dt

=( j&1)(d+ j&2) |
1

&1
(1&t2)(d+ j&4)�2 C (d+2j&2)�2

n& j (t) dt, (5.12)

for all 0� j�n. Equation (5.12) is clearly true if n& j is odd since, in that
case, both sides of the equation are zero. So we will concentrate on the case
where n& j is even. It is convenient to reformulate (5.12) in terms of
k=n& j and to put &=(d+2n&2k&2)�2. Our objective then is to show
that

(n&1)(n+d&1) |
1

&1
(1&t2)(d+n&k&2)�2 C &

k(t) dt

=(n&k&1)(d+n&k&2) |
1

&1
(1&t2)(d+n&k&4)�2 C &

k(t) dt, (5.13)
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for all even k�n and for all n. We note that this is trivially true in the case
n=1, since then we have k=0. For n{1 we put

I(d, n, k)=|
1

&1
(1&t2)(d+n&k&2)�2 C &

k(t) dt, (5.14)

and prove that

I(d, n, k)=\&1
2 +

k�2

C &
k(0)

1(1�2) 1((d+n&k)�2)
(n&1) 1((d+n+1)�2)

_(n&1)(n&3)(n&5) } } } (n&k&1) (5.15)

for all even k�n. We note that (5.13) follows from (5.15) because

(n&1)(n+d&1) I(d, n, k)=(n&k&1)(d+n&k&2) I(d&4, n+2, k).

We will prove (5.15) by induction on k. The case k=0 is straightforward
since

I(d, n, 0)=|
1

&1
(1&t2)(d+n&2)�2 dt=

1(1�2) 1((d+n)�2)
1((d+n+1)�2)

for all d and for all n�0, as required. The inductive step will make use of
(5.2) and the recursion formula

2&(1&t2) C &+1
n&1(t)=(2&+n&1) C &

n&1(t)&ntC &
n(t) (5.16)

which can also be found in [2]. The combination of (5.2) and (5.16)
together with our choice of & gives

C &&2
k+2(t)=

(d+2n&k&6)(d+2n&k&5)
(k+1)(k+2)

C &&2
k (t)

&
(d+2n&2k&6)(d+2n&4)

(k+1)(k+2)
(1&t2) C &&1

k (t). (5.17)

Furthermore, (5.2) and (5.16) show that

C&&2
k+2(0)=&

d+2n&k&6
k+2

C &&2
k (0)=&

d+2n&2k&6
k+2

C &&1
k (0). (5.18)
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It now follows from (5.14), (5.17), and (5.18) together with the inductive
assumption that, for n�k+2, we have

I(d, n, k+2)=|
1

&1
(1&t2)(d+n&k&4)�2 C &&2

k+2(t) dt

=
(d+2n&k&6)(d+2n&k&5)

(k+1)(k+2)

_|
1

&1
(1&t2)(d+n&k&4)�2 C &&2

k (t) dt

&
(d+2n&2k&6)(d+2n&4)

(k+1)(k+2)

_|
1

&1
(1&t2)(d+n&k&2)�2 C &&1

k (t) dt

=
(d+2n&k&6)(d+2n&k&5)

(k+1)(k+2)
I(d, n&2, k)

&
(d+2n&2k&6)(d+2n&4)

(k+1)(k+2)
I(d+2, n&2, k)

=\&1
2 +

(k+2)�2

C &&2
k+2(0)

1(1�2) 1((d+n&k&2)�2)
1((d+n+1)�2)

_(n&3)(n&5) } } } (n&k&3),

as required.
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