
Discrete Mathematics 245 (2002) 93–105
www.elsevier.com/locate/disc

Polynomial algorithms for nested univariate clustering�

Pierre Hansena ; ∗, Brigitte Jaumardb, Bruno Simeonec
aGERAD and 	Ecole des Hautes 	Etudes Commerciales, Ecole Polytechnique Montr	eal,

5255 Ave. Decelles Montreal, Quebec, Canada H3T 1V6
bGERAD and 	Ecole Polytechnique de Montr	eal, 5255 Ave. Decelles Montreal, Quebec,

Canada H3T 1V6
cDepartment of Statistics, University “La Sapienza”, Rome, Italy

Received 17 September 1998; revised 11 July 2000; accepted 16 October 2000

Abstract

Clique partitioning in Euclidean space Rn consists in 3nding a partition of a given set of N
points into M clusters in order to minimize the sum of within-cluster interpoint distances. For
n=1 clusters need not consist of consecutive points on a line but have a nestedness property.
Exploiting this property, an O(N 5M 2) dynamic programming algorithm is proposed. A �(N)
algorithm is also given for the case M =2. c© 2002 Published by Elsevier Science B.V.

Keywords: Clustering; Clique; Polynomial algorithm

1. Introduction

Let O= {O1; O2; : : : ; ON} denote a set of N entities and D=(dk‘); k; ‘=1; 2; : : : ; N ,
a matrix of real numbers such that dkk =0; dk‘ =d‘k and dk‘¿ 0 for all k and
‘. Partitioning problems of cluster analysis [8–11,13] consist in 3nding a partition
PM = {C1; C2; : : : ; CM} of O into M clusters C1; C2; : : : ; CM , i.e., Cj �= ∅; Ci ∩ Cj = ∅
for i; j �= i=1; 2; : : : ; M and

⋃M
j=1 Cj =O, which minimizes (or maximizes) an objective

function F(C1; C2; : : : ; CM). The dk‘ are called dissimilarities and express the magni-
tude of the di@erences observed between entities Ok and O‘. The objective function

�We are grateful to the referees for their careful reading and their many suggestions which led to substantial
improvements in the paper’s presentation. Research supported by ONR grant N00014-95-1-0917, NSERC
(Natural Scienti3c Research and Engineering Council of Canada) grants GPO105574 and GPO036426, FCAR
(Fonds pour la Formation de Chercheurs et l’Aide Ea la Recherche) grant 95ER1048 and done during visits of
the 3rst two authors at University “La Sapienza”, Rome, of the 3rst author at IEcole Polytechnique FIedIerale
de Lausanne and of the second author at UniversitIe de Fribourg.
∗ Corresponding author. Tel.: +1-514-340-6053-5675; fax: +1-514-3405665.
E-mail address: pierreh@crt.umontreal.ca (P. Hansen).

0012-365X/02/$ - see front matter c© 2002 Published by Elsevier Science B.V.
PII: S0012 -365X(01)00135 -2

94 P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105

F(C1; C2; : : : ; CM) expresses the desire to obtain a partition with clusters which are
homogeneous and=or well separated. These objectives can be made mathematically
precise in many ways, thus giving rise to a large variety of partitioning problems.
In the general case, such problems are usually NP-hard [3,7,17]. (A notable exception

is maximizing the split of a partition, or smallest dissimilarity between entities in
di@erent clusters, which can be solved in �(N 2) time by the single-linkage algorithm
[6,4].) Particular cases are, of course, often easier.
We consider in this paper univariate clustering with dissimilarities equal to Euclidean

distance (or, in other words, Univariate Euclidean Clique Partitioning (UECP)). Then
the entities Ok; O‘ : : : are points xk ; x‘ : : : on the line and dk‘ = |xk − x‘|. Moreover,
we assume that entities are at M di@erent points or more. This implies that in any
optimal partition no cluster is empty. For many objective functions, clusters in an
optimal partition, have the string or consecutiveness property [15]; they consist of
consecutive points along this line. When this property holds, it is often the case that
the contribution to the objective function value of a cluster bounded by entities at xi
and xj can be computed in linear time and updated in constant time when a point is
added or removed at an end of the cluster. Then a straightforward O(N 2) dynamic
programming algorithm applies [1,15]. Low order polynomial algorithms may also be
obtained for several more complicated objective functions and for problems with bounds
on the clusters size [5,14]. Moreover, for some criteria better results are at hand: e.g.
exploiting the recent O(n log log n) algorithm of Thorup [16] for sorting n numbers
on a RAM machine within Gower and Ross’ [6] single linkage algorithm leads to an
O(N log logN) algorithm for maximizing the split.
However, the string property is not always satis3ed for univariate Euclidean cluster-

ing. The clique partitioning problem consists in minimizing the sum of within cluster
distances between pairs of points:

F(C1; C2; : : : ; CM)=
M∑
j=1

d(‘j);

where

d(Cj)=
∑

h;‘: Ok ;O‘∈Cj; xk¡x‘

dk‘:

The following example, from (2), shows the string property does not hold for this
objective.

Example 1. N =5; x1 = 0; x2 = x3 = x4 = 1; x5 = 2; M =2. The only optimal partition
is P∗

2 = {{x1; x5}{x2; x3; x4}} with F(C∗
1 ; C

∗
2)= 2.

A weaker condition does hold. Let H (Cj) denote the convex hull of Cj; j=1; 2; : : : ; M .
Call the partition PM = {C1; C2; : : : ; CM} nested if

∀i; j ; i �= j : Cj ∩ H (Ci)= ∅ or Ci ∩ H (Cj)= ∅;

P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105 95

Fig. 1. A nested partition and its encompassment tree.

or, equivalently, if the clusters Cj can be renumbered such that

∀i; j ; i ¡ j: Cj ∩ H (Ci)= ∅:
Boros and Hammer [2] prove:

Theorem 2. Every optimal partition of UECP is nested.

Another proof is given, and some further weaker properties of univariate partitions are
explored in [12].
By de3nition a cluster Ci with H (Ci)= [xk ; x‘] is encompassed by a cluster Cj with

H (Cj)= [xr; xs] if xr ¡xk . This implies x‘ ¡xs. The encompassment relation will be
denoted by Ci ❁ Cj.
The encompassment relation is irreQexive, asymmetric and transitive. Furthermore,

we have the following Triangular Encompassment (TE) property:
For any three district clusters Ci; Cj and Ck , if Ck ❁ Ci and Ck ❁ Cj then either
Ci ❁ Cj or Cj ❁ Ci.
The proof is easy and omitted here.

Due to the TE property the Haase diagram of encompassment is a rooted forest, or if
a dummy cluster encompassing all other is added, a rooted tree (called encompassment
tree, see Fig. 1).
Clique partitioning is NP-hard in the general case [3,17]. The complexity of univari-

ate Euclidean clique partitioning was left as an open question in [2]. It is the main
purpose of this paper to answer this question, in Section 2, by providing a polynomial
algorithm. This algorithm exploits the nestedness property, using dynamic program-
ming, and has a complexity in O(N 5M 2). Furthermore, a �(N) algorithm is provided
in Section 3 for the case M =2.
It is well known that in hierarchical agglomerative clustering an initial partition with

each cluster consisting of a single entity is 3rst considered and then pairs of clusters
are merged in order to minimize at each step the increase (or decrease) in objective

96 P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105

function value. Such a scheme may be viewed as a greedy algorithm. It leads to a
hierarchy of partitions containing jointly 2N − 1 clusters Cj such that

∀i; j ; i �= j: Cj ∩ Ci = ∅ or Ci ⊂ Cj or Cj ⊂ Ci;

or, equivalently, the Cj can be renumbered such that

∀i; j ; i ¡ j: Ci ⊂ Cj or Cj ∩ Ci = ∅:

Hence these clusters are nested, but in a di@erent sense than that of [2]. One might
wonder if agglomerative hierarchical clustering solves univariate clique partitioning
optimally. The following example shows it is not the case.

Example 3. N =8, x1 = 0, x2 = 4, x3 = x4 = x5 = x6 = x7 = 5, x8 = 6, x9 = 9, M =3.
Agglomerative hierarchical clustering gives a partition P3 = {{x1}{x2; x8; x9}{x3; x4;
x5; x6; x7}} with a value F(C1; C2; C3)= 10. The only optimal partition is P∗

3 = {{x1; x2};
{x3; x4; x5; x6; x7}; {x8; x9}} with F(C∗

1 ; C
∗
2 ; C

∗
3)= 7.

In the optimal solutions of Examples 1 and 3 above, entities at the same point on the
line belong to the same cluster. This is always possible.

Proposition 4. In at least one optimal solution UECP all entities at the same point
belong to the same cluster.

Proof. Suppose that point x= xj has q replications and that, in some optimal parti-
tion and w.l.o.g., q1 of them belong to cluster C1; q2 to cluster C2; : : : ; qr to cluster
Cr; r¿ 2. Then the contribution of x to the objective function is q1�1 + · · · + qr�r ,
where �h

∑
k:0k∈Ch

|x − xk |. Let �m =minh=1; :::; r �h. Re-assign all q replications of x
to cluster Cm (if when doing so a cluster becomes empty this contradicts optimality).
Then the contribution of x to the objective function becomes q�m6 q1�1 + · · ·+ qr�r .
In this way, one obtains a new optimal partition where all replications of x belong to
the same cluster.

Note that not all optimal partitions need to have all entities at the same point in the
same cluster, as shown by the next example.

Example 5. N =4; x1 = 0; x2 = x3 = 1; x4 = 2; M =2: P∗
2 = {{x1; x2; x3}; {x4}} and

P∗
2
′ = {{x1; x2}; {x3; x4}} are both optimal partitions with value F∗ =2.

It follows from Proposition 4 that UECP may be viewed as clustering entities with
positive integer multiplicities at distinct points on the line. In what follows, we will
assume for simplicity of notation all multiplicities to be equal to 1. Modi3cations to
address the general case are straightforward.

P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105 97

2. A polynomial algorithm

The nestedness property can be used to solve the univariate clique partitioning prob-
lem. Since one optimizes a function of N points on a line, dynamic programming
appears to be the natural approach to exploit the total ordering of these points. Such
an approach works well in the case of squared distances, for which the string prop-
erty holds. This not being the case here one may consider performing computations
in a bottom-up fashion in the encompassment tree. Then the optimal value for a com-
plete subtree, i.e., a subtree induced by the set of all descendants of a given node
Ck with H (Ck)= [xi; xq] and encompassing p − 1 cluster will be denoted by giqp.
(The same notation giqp will be used to designate the total optimal value for sev-
eral subtrees on disjoint consecutive subsets of points from {xi; : : : ; xq}.) This value
and those of indices i; q and p are all the information regarding the subtree which
is required for computation at the immediate predecessor node, Ch of Ck in the tree.
Unfortunately, it is hard to derive an easily computable recursion for giqp as any
subset of points of {xi+1; : : : ; xq−1} can be a potential child of Ck . One would then
want to exploit the total ordering of points of Ck . To this e@ect consider an arbitrary
point x‘ ∈C′

k with i¡‘¡q. The optimal value for the subtree rooted at Ck is the
sum of

(i) optimal values for clusters immediately encompassed by Ck and left of x‘;
(ii) optimal values for clusters immediately encompassed by Ck and right of x‘;
(iii) distances between pairs of points of C′

k both to the left of or at x‘;
(iv) distances between pairs of points of Ck both to the right of or at x‘;
(v) distances between pairs of points on opposite sides of x‘ (see Fig. 2).

Contributions to the optimal value of points within H (Ck) to the left of or at x‘ consists
of (i), (iii) and part of (v). This last fact causes some diRculty when deriving a left
to right recursion for the inner dissimilarity. The distances of (v) depend not only on
the number but also on the actual position of the points of Ck to the right of v‘. This
diRculty is resolved by considering only the part of the distances of (v) on the left of
and up to x‘. One can compute this value knowing only the number of points of Ck

to the right of x‘.
More formally, we introduce the notion of “charge”. Given two reals x; y (with

x6y) the relative distance with respect to [a; b] is de3ned as the length of [x; y] ∩
[a; b]. Then the charge of a partition PL = {C1; C2; : : : ; Ck} with respect to [a; b] is
de3ned by

h[a;b]PL =
∑

j=1;:::;L

∑
k;‘|0k ;0‘∈Cj

d[a;b](xk ; x‘):

Clearly, the charge coincides with the sum of within cluster distances if L=M and
[x1; xN] ⊂ [a; b].

98 P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105

Fig. 2. Illustration of the concept of charge given in Eq. (1). (Broken segments not included in the charge.)

Consider an interval [xi; x‘] and a nested partition PM = {C1; C2; : : : ; CM} such that:

(i) xi is the 3rst entity of Ck ;
(ii) x‘ is the tth entity from left to right in Ck ;
(iii) The set [xi; x‘] encompasses p− 1 clusters of PM di@erent from Ck ;
(iv) |Ck |= s and hence H (Ck)= [xi; xq] where q= i + s− 1.

In terms of charge, one has

h[xi ;x‘](PM)=
∑

j|Cj⊂[xi ;x‘]

d(Cj) + d(Ck ∩ [xi; x‘]) + (s− t)
‘−1∑

v=i|0v∈Ck

dv‘: (1)

In words h[xi ;x‘](PN) is the sum of three terms (see Fig. 2): (i) within cluster distances
for clusters with a range within [xi; x‘]; (ii) distances between pairs of points of Ck

within [xi; x‘]; (iii) distances from points xv within Ck to x‘ multiplied by the number
s−t of points of Ck outside of [xi; x‘]. The algorithm recursively computes the minimum
charge fst

i‘p of a partition PM satisfying properties (1)–(4).
The charge has two interesting features. First, one can compute the gi‘p form the

fst
i‘p. Indeed,

gi‘p =Min
(
min
s
fss
i‘p min

i6j6‘;p1|p1+p2=p
(gijp1 + qj+1; ‘;p2)

)
(2)

as t= s implies that ‘= q,

d[xi ;x‘](x; y)=dxy ∀x; y∈Ck:

(The sum on the right-hand side of (2) corresponds to the case of several sub-
trees on connecting points of {xi; : : : ; xq}.) Second, and more important, there is a
polynomial time computable recursion for the charge. Let xj denote the point of Ck

P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105 99

Fig. 3. Illustration of Eq. (3).

immediately preceding x‘ (see Fig. 3). Then, from (1) and Bellman’s Optimality
Principle,

fst
i‘p = min

i6j¡‘
p1+p2=p

{fs; t−1
ijp1

+ gj+1; ‘−1;p2 + (t − 1)(s− t + 1)(x‘ − xj)}; (3)

where p1 and p2 respectively, denote the number of clusters encompassed by {xi; xj}
and {xj; x‘} (see again Fig. 3).
The three terms on the right-hand side of (2) correspond to the charge of Ck and

the p1 − 1 clusters of PM encompassed by Ck in [xi; xj], the charge of the p2 clusters
of PM in [xj+1; : : : ; x‘−1] (which is equal to their sum of interpoints distances) and the
sum of relative distances d[xj ;x‘](x; y) for pairs of points (x; y) of Ck (t − 1 points of
Ck are on the left of]xj; x‘[and s − t − 1 on the right). The algorithm computes the
charges fst

i‘p, in increasing order of u= ‘− i, and for all corresponding p; s and t. For
all such i; ‘ and p after the charges have been found for all possible s and t the value
gi‘p is computed. Hence, when the left-hand side of (3) is computed, values needed
on the right-hand side are available.
Rules of the algorithm are as follows:

Algorithm Univariate Euclidean Clique Partitioning (UECP)

(a) Input
Number N of entities, points x1 ¡x2 ¡ · · ·¡xN , number of clusters M .

(b) Initialization
Set gii1 =fs1

ii1 = 0; i=1; 2; : : : ; N; s=1; 2; : : : ; N − i + 1
(c) General step

For u=1 to N − 1 do
For i=1 to N − u do

‘= i + u

100 P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105

For p=1 to ‘ − i + 1 do
For s=1 to N − i − p+ 1 do
For t=1 to s do
Compute fst

i‘p using formula (3)
(where gj+1; ‘−1;p2 = 0 if j+1¿‘− 1) and set pointers to the largest j
such that the minimum in (2) is attained and the corresponding largest
p2 (i.e., for that minimum value and j).
End For

End For
When all s and t have been examined, compute gi‘p by formula (2) and
(a) if the minimum is the 3rst term on the right-hand side of (2): for the
largest value of s such that this minimum is attained, list the indices of
the corresponding cluster, as well as the g-values, enpoints and numbers of
clusters that are children of Ck ; (b) if the minimum is the second term on
the right-hand side of (2): add pointers to the optimal gijp1 ; gj+1; ‘;p2 and to
their indices.
End For

End For
End For

(d) Optimal Solution
Using in top-down fashion the above information reconstruct the optimal partition
P∗
M = {C∗

1 ; C
∗
2 ; : : : ; C

∗
M}.

Note that the tie-breaking rules on j; p2 and s are arbitrary, but needed for the
algorithms polynomial complexity to be guaranteed (In other words, 3nding
all optimal nested partitions might not be polynomial).

Observe that algorithm UECP provides optimal partitions into 1; 2; : : : ; M clusters.
We next prove its correctness and evaluate its complexity.

Theorem 6. Algorithm UECP provides an optimal clique partition into M clusters in
O(N 5M 2) time.

Proof. To show that the algorithm is correct we must prove the validity of Eqs. (2) and
(3). As both of them use results one from the other, we shall use simultaneous induction
on u= ‘ − i. For u=0 the initial values gii1 =fs1

ii1 = 0 given in the initialization step
are correct. Suppose that there exists a smallest u= ‘ − i such that either Eq. (2) or
Eq. (3) is incorrect. Consider 3rst the latter case. By the minimality of u the values
of fs; t−1

ijp1
and gs+1; ‘−1;p2 are correct. Hence, the left-hand side of Eq. (3) is correct

by Bellman’s optimality principle. Consider then the former case. From the induction
hypothesis and correctness of Eq. (3) it follows that all values on the right-hand side
of Eq. (2) are correct, and from the justi3cation of this equation given above that
the value on the left-hand side is correct as well. We thus have a contradiction: any

P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105 101

partition satisfying conditions (i)–(iv) and whose charge w.r.t. [xi; xj] is di@erent from
the right-hand side of Eq. (3), or whose value for the complete subtree w.r.t. [xi; x‘]
di@ers from the right-hand side of Eq. (2) is dominated.
Regarding complexity, the dominant step is the application of Eq. (3). Parameters

i; ‘; s and t take O(N) values and p takes O(M) values; the formula implies consid-
ering O(N) values for j and O(M) values for p1, from which those of p2 follow. So
O(N 5M 2) operations are required.

3. The case M = 2

Complexity of the algorithm presented in Section 2 is rather high. A much more
eRcient algorithm may be obtained for the particular case where M =2. There are 2
nested clusters. Let i and j denote the indices of the 3rst and last entities of cluster
C1. Cluster C2 consists of entities indexed by 1 to i − 1 (if i¿ 1) and j + 1 to
N (if j¡N). One cannot have both i=1 and j=N as C1; C2 �= ∅. Let Fi

j denote
the objective function value for that bipartition. The algorithm is based on eRcient
updating of Fi

j when i or j is increased one unit at a time. Consider 3rst the case
of 3xed i. Let Lij+1 denote the increase in sum of distances for C1 when the entity
indexed by j + 1 is added to this cluster and Ri

j+1 the corresponding decrease in sum
of distances for C2. Then

Fi
j+1 =Fi

j + Lij+1 − Ri
j+1; (4)

where

Lij+1 =
j∑

k=i

|xk − xj+1|=(j − i + 1)xj+1 −
i∑

k=1

xk (5)

and

Ri
j+1 =

N∑
k=j+2

|xj+1 − xk |+
i−1∑
k=1

|xk − xj+1|

= (j + i − N)xj+1 +
N∑

k=j+2

xk −
i−1∑
k=1

xk : (6)

Proposition 7. The update Lij+1 − Ri
j+1 of Fi

j is an increasing function of j for all
>xed i¡N=2 + 1.

Proof. From Eqs. (5) and (6)

Lij+1 − Ri
j+1 = (N − 2i + 2)xj+1 −

N∑
k=i

xk +
i∑

k=1

xk

which, when i¡N=2 + 1, increases with j due to the ordering of the points.

102 P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105

Corollary 8.

Lij+1 − Ri
j+1 − (Lij − Ri

j)= (N + 2− 2i)|xj − xj+1|: (8)

The next result shows one need not bother about j when i¿N=2− 1.

Proposition 9. If i¿N=2 + 1 then j=N in all optimal solutions of univariate clique
bipartitioning; i.e.; the string property holds.

Proof. Assume by contradiction i¿N=2 + 1 and j¡N . Then

|C1|= j − i + 16N=2¡i and

Lij+1 − Ri
j+16

j∑
k=i

|xk − xj+1| −
i∑

‘=1

|x‘ − xj+1|¡ 0

as |xk − xj−1|¿ |x‘ − xj+1| for k =1; : : : ; i − 1 and ‘= i; i + 1; : : : ; j. But then the
bipartition is not optimal.

Let j(i) be the smallest j such that Fi
j(i) =minj¿i Fi

j .

Proposition 10. Function j(i) is nondecreasing in i.

Proof. For C1 one has

Li+1
j+1 − Lij+1 =− |xi − xj+1|

and for C2

Ri+1
j+1 − Ri

j+1 = |xi − xj+1|:
Hence,

Li+1
j+1 − Ri+1

j+1 − (Lij+1 − Ri
j+1)=− 2|xi − xj+1| (9)

which is negative. Reducing updates of Fi
j for a unit increase of j can only increase

or keep constant the optimal value of j.

We next consider updating Fi
j when i increases. Let Di

j denote the decrease in sum
of distances for C1 when the ith entity is transfered to C2 and I ij the corresponding
increase in the sum of distances for C2. Then

Fi+1
j =Fi

j − Di+1
j + I i+1

j ; (10)

where

Di+1
j =

j∑
k=i+1

|xk − xi|

P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105 103

and

I i+1
j =

i−1∑
k=1

|xk − xi|+
N∑

k=j+1

|xk − xi|:

These quantities are updated as follows for a unit increase of i and 3xed j (assuming
without loss of generality that j¿ i + 1; in the algorithm j will be increased 3rst in
the case i= j):

Di+1
j − Di

j =
j∑

k=i

(|xk − xi| − |xk − xi−1|)

=−
j∑

k=i

(|xi − xi−1|)=− (j − i + 1)|xi − xi−1|

and

I i+1
j − I ij =

i∑
k=1

(|xk − xi| − |xk − xi−1|) +
N∑

k=j+1

(|xk − xi| − |xk − xi−1|)

=
i∑

k=1

|xi − xi−1| −
N∑

k=j+1

|xi − xi−1|=(i + j − N − 1)|xi − xi−1|:

Thus,

I i+1
j − Di+1

j − (I ij − Di
j)= (2j − N)|xi − xi−1|: (11)

For a unit increase of j and 3xed i the updates are as follows:

Di+1
j+1 − Di+1

j = |xj+1 − xi| (12)

and

I i+1
j+1 − I i+1

j =− |xj − xi|: (13)

The three propositions and the updating rules above are exploited in the following
linear algorithm for univariate clique bipartitioning.

Algorithm Univariate Euclidean Clique Bipartitioning (UECB)

(a) Input
Number N of entities, points x1 ¡x2 ¡ · · ·¡xN .

(b) Initialization
Set i=2; j=2,

F2
2 =

N∑
k=3

|xk − x1|+
N∑

k=4
(N − k)(k − 3)|xk − xk−1|

L23 = |x3 − x2|
R2
3 =

N∑
k=4

|x3 − xk|+ |x1 − x3|
D2

2 = 0

104 P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105

I 22 = |x2 − x1|+
N∑

k=3
|xk − x2|

Fopt =F2
2 ; iopt = 2; jopt = 2.

(c) General step: nested clusters
While i6 �N=2 + 1
 and j¡N

if Lij+1 − Ri
j+1 ¡ 0 or i= j then set j= j + 1

update Fi
j by (4)

update Lij+1 − Ri
j+1 by (4)

update Di+1
j − I i+1

j by (12) and (13)
if Lij+1 − Ri

j+1 ¿ 0 and i¡ j set i= i + 1
update Fi

j by (10)
update Lij+1 − Ri

j+1 by (9)
update I ij − Di

j by (12) and (13)
if Fi

j ¡Fopt set Fopt =Fi
j , iopt = i, jopt = j.

(d) General step: clusters with string property
While i6N , set i= i + 1

update Fi
N by (10)

update I iN − Di
N by (12) and (13)

if Fi
N ¡Fopt set Fopt =Fi

N , iopt = i, jopt =N .

Theorem 11. Algorithm UECB solves the univariate Euclidean bipartitioning problem
in �(N) time.

Proof. Any bipartition is speci3ed by the values of i and j. The algorithm considers
all values of i and for each such value those successive values of j for which Fi

j

decreases. That no values of j other than the last one lead to a better solution for that
i exist follows from Propositions 7 and 10. The total number of updates of Fi

j and of
updates of the updates is of N −1 for i and N −1 for j, i.e., O(N). These updates are
done in constant time following formulae (4)–(11). As reading the data takes S(N)
time the algorithm is in �(N).

Due to the nestedness property, the case M =3 can be solved in O(N 3) time by
considering all possible intervals [xi; xj] for cluster C1 removing the corresponding
entities and applying algorithm UECB to the remaining ones. Similarly, an O(N 5)
algorithm may be obtained for the case M =4.

As pointed out by an anonymous referee, Proposition 10 leads to another linear-time
algorithm.

References

[1] R. Bellman, A note on cluster analysis and dynamic programming, Math. Biosci. 18 (1973) 311–312.
[2] E. Boros, P.L. Hammer, On clustering problems with connected optima in Euclidean spaces, Discrete

Math. 75 (1989) 81–88.

P. Hansen et al. / Discrete Mathematics 245 (2002) 93–105 105

[3] P. Brucker, On the complexity of clustering problems, in: M. Beckmann, H. Kunzi (Eds.), Optimization
and Operations Research, Lecture Notes in Economics and Mathematical Systems, Vol. 157, Springer,
Heidelberg, 1978, pp. 45–54.

[4] M. Delattre, P. Hansen, Bicriterion cluster analysis, IEEE Trans. Pattern Analysis Machine Intelligence
PAMI-2(4) (1980) 277–291.

[5] C. De Simone, M. Lucertini, S. Pallottino, B. Simeone, Fair dissections of spiders, worms and
caterpillars, Networks 20 (1990) 323–344.

[6] J.C. Gower, G.J.S. Ross, Minimum spanning trees and single-linkage cluster analysis, Appl. Statist. 18
(1969) 54–64.

[7] P. Hansen, M. Delattre, Complete link cluster analysis by graph coloring, J. Amer. Statist. Assoc. 73
(1978) 397–403.

[8] P. Hansen, B. Jaumard, Computational methods in clustering from a mathematical programming
viewpoint, in: H.H. Bock, W. Polasek (Eds.), Data Analysis and Information Systems, Studies in
Classi3cation, Data Analysis and Knowledge Organization, Springer, Heidelberg, 1996, pp. 24–40.

[9] P. Hansen, B. Jaumard, Cluster Analysis and Mathematical Programming, Math. Programming 79 (1997)
191–215.

[10] P. Hansen, B. Jaumard, E. Sanlaville, Partitioning problems in cluster analysis: a review of mathematical
programming approaches, In: E. Diday et al. (Eds.), New Approaches in Classi3cation and Data
Analysis, Studies in Classi3cation, Data Analysis and Knowledge Organization, Springer, Heidelberg,
1994, 228–240.

[11] J.A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.
[12] F.K. Hwang, U.G. Rothblum, Y.-C. Yao, Localizing combinatorial properties of partitions, RUTCOR

Research Report 2–94, Rutgers University, 1994.
[13] L. Kaufman, P.J. Rousseuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley,

NewYork, 1990.
[14] M. Lucertini, Y. Perl, B. Simeone, Most uniform path partitioning and its use in image processing,

Discrete Appl. Math. 42 (1993) 227–256.
[15] M.R. Rao, Cluster analysis and mathematical programming, J. Amer. Statist. Assoc. 66 (1971)

622–626.
[16] M. Thorup, Randomized sorting in O(n log log n) time and linear space using addition, shift and bitwise

Boolean operations, Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, LA 1997, 352–359.

[17] W.J. Welch, Algorithmic complexity: three NP-Hard problems in computational statistics, J. Statist.
Comput. Simulation 15 (1982) 17–25.

