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Long exact sequences of algebraic K-groups for certain kinds of multiple pullback rings are 

constructed, with special emphasis on Dedekind-like rings. In the case where excision holds 

they reduce to the usual Mayer-Vietoris sequences. These sequences are then used to obtain 

information about the K-groups of integral group rings of abelian groups of square-free order; 

about certain rings of integers in number fields; and about the coordinate ring of n lines in the 

plane. 

Introduction 

One frequently encounters the following situation when attempting computa- 

tions in algebraic K-theory: R is a ring with unit, I, and Z2 are two-sided ideals of 

R such that I, tl Z, = 0. Denote R/Z, by R, and R/Z, + Z, by k. Then one obtains a 

Cartesian square of rings 

R-R, 

I I 
R,- k 

(0.1) 

leading to a map of quasi-fibration sequences (that is, sequences which induce 

long exact sequences of homotopy groups) 

X--B&P(R)- BQp(R, > 

I I I 
Y-BQP(R,)- BQS(k) 

(04 

where Q is Quillen’s K-theory functor, P(A) is the exact category of finitely 

generated projective modules over the ring A, and X and Y are the appropriate 

homotopy fibres. If the map E induces an isomorphism of homotopy groups, then 
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one can construct a long exact Mayer-Vietoris sequence (MV-sequence) 

. ..~K.(R)~K,(R,)~K,(R,)~K,(k)~K,_,(R)~.... (0.3) 

In general, however, such sequences do not exist, a fact which is well known as 

the failure of excision in algebraic K-theory [21]. 

A natural way to study the excision problem is to introduce the birelative 

K-groups [5, 6, 81 

K,,(R, I,, 1,) = r,,+l (homotopy fibre (E)), n 2 1 . 

When they vanish, sequence (0.3) exists. In [6], K,(R, I,, Z,) was determined for 

i = 1,2; in particular it was shown that K,(R, I,, Z,) is nonzero in general. 

(Birelative K, is discussed in greater generality in [5].) 

This paper studies the existence of Mayer-Vietoris type sequences for Car- 

tesian squares (0.1) which satisfy the additional hypothesis that 

R, and R, are Dedekind domains with common residue 

field k of characteristic p > 0, such that K,(k) is a torsion 

group for y1> 0, which contains no p-torsion. 
(0.4) 

One such example is the Rim square [ll, p.291. Under these assumptions we 

prove (Theorem 2.1) that sequence (0.3) exists, provided we replace the term 

K,(k) by K,(k) @ K, 1 (R, I,, Z,) . Subsequently, this sequence will be referred to 

as the ‘generalized Mayer-Vietoris sequence’ associated to (0.1). 

If char(k) = p, let X be the exact category of finitely generated p-torsion 

R-modules of homological dimension one. Assume for simplicity that the ideals 

p. Ri do not split in R,. Then we show (Theorem 2.4) that with certain 

assumptions about the rings in (0.1): 

Assuming (0.4), the ring R is an example of a Dedekind-like ring. The main 

reference for these rings is [9]. Roughly speaking, a Dedekind-like ring is 

constructed as a multiple pullback ring from finitely many Dedekind domains and 

their residue fields. Examples include integral group rings of cyclic groups of 

square-free order and many rings of algebraic integers which are not integrally 

closed in their field of fractions. 

We show (Theorem 2.2) that suitably modified generalized MV-sequences exist 

for all Dedekind-like rings satisfying an analogue of (0.4). 

Section 1 of the paper contains generalities about Dedekind-like rings and some 

technical results about categories like 2, which are needed in later sections. 

Section 2 contains the main results of the paper. 
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Section 3 is devoted to applications. We derive a comparison theorem 

(Theorem 3.1) for K*(R) and C,(R) of a Dedekind”like ring R, and show that 
G,(R) injects into the K-theory of the total ring of fractions of R, if the same is 
true for the Dedekind domains used to construct R (Theorem 3.2). 

In [ZO] Stein proved a number of results concerning the surjectivity of the map 
&(X)-3 K,(Rltn) for a commutative ring R and a maximal ideal m of R, under 
the assumption that the map K,(R) -+ I(,(R,,,) is surjective. If R is a Dedekind- 

like group ring, we describe all maximal ideals m for which this assumption holds 
(Theorem 3.3). 

Computations include an upper bound for K2(ZC,,), C,, a cyclic group of 
order 30 (Theorem 3.4), and a determination of K,(Z( p)), where 

Z(p)={(m,n)EZ~Z~rn-n (modp)),pprime. 

Furthermore, we show (Theorem 3.6) that for n > 1 square-free, IZ = 1 (mod 8) 
there is an exact sequence 

Z/2-+ K*(Z[vZ])--+ K,(Z[;(l + VX)])-+O. 

In Theorem 3.7 the results of Section 2 are applied to the coordinate ring of IZ 
lines in the plane, generalizing a &-result of Dayton and Roberts. 

1. ~edekind-bike rings 

Definition 1.1. Let {Rp}p be a finite collection of Dedekind domains and 
{kJ(Y=l,..., m} a finite collection of fields. For each LY let a pair of surjective 
ring homomorphisms be given, as shown below (and subsequently referred to as 
generalized ~u~~b~ck diagram): 

(1.1) 

where Z?+) and RiC,) are in { RP }. The case i(cr) = j(tu) is allowed. These 
homomorphisms are required to satisfy the following i~~e~en~ence condition: 

Whenever two of the homomorphisms fi, g, , f2, . . . are 
defined on the same ring R,, then they have distinct 
kernels. 

Define the Dedekind-like ring R determined by these data to be 
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Examples 1.2. (i) Dedekind rings ({k,}, = 0). 
(ii) The integral group ring ZC, of a cyclic group C,, of square-free order IZ 

[lo]. As it is needed later we will briefly recall the construction. Choose 

{Rp} = {Z[ &] 1 din} (including d = 1 and n), where 5, is a primitive dth root of 

unity. For each d and each prime p such that dp(n, define ring homomorphisms 

(1.2) 

Here (p) denotes the ideal p . Z[ ld]. As p does not divide d (since IZ is 

square-free) the ring Z[ ld] /( p) is a direct sum of (finite) fields. Then choose {k,} 

to contain all these summands for all pairs (d, p) such that dpln. The Dedekind- 

like ring determined by these data is isomorphic to ZC,,. 

(iii) Let it > 1 be a square-free integer such that IZ = 1 (mod S), and let 

o = $(l+ ~3). Choosing {Rp} = {Z[w]} and {k,} = {F,} together with the 

generalized pullback diagram 

where f(a + bw) = G + 6 and g(a + bo) = a, it is easily seen that the resulting 

Dedekind-like ring is isomorphic to Z[VE]. 

(iv) There are infinitely many Dedekind-like subrings of Z x . . . X Z. One 

example is 

Z(p)={(n,m)~ZxZ]n=~~(modp)}, pprime. 

(v) The coordinate ring of n lines in the plane. This is a special case of the rings 

constructed in [14]. Let k be a field, and f,, . . , f, E k[X, Y] be equations of n 

distinct straight lines no three of which pass through one point. Let m 2 1 be the 

number of intersection points. Then the ring A = k[X, Y]/f, - . . . . f, can be 

constructed as follows: Let Ri = k[ui] s Alfi. Then A is obtained from niRi via 

the m pullback diagrams (where the maps are the obvious ones) 

k’uil lk 

kb,l / 

one for each intersection point. 
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Remarks 1.3. It is easily seen that Dedekind-like rings are noetherian [9, Lemma 

1.1(i)] and have Krull dimension one. Furthermore, they are not regular; in fact, 

each of the component rings R, has infinite homological dimension as R-module 

[9, Lemma 12.61. They are, however, seminormal [22, Corollary 3.31. From [9] it 

follows easily that Spec(R) can be obtained as the pushout of the diagram 

{Spec(k >> + {Sp4Rp)) . 

The maximal ideals m = ker(R -+ k,) for all cr play a special role throughout 

the theory of Dedekind-like rings. (In fact, these are the maximal ideals at which 

R is not integrally closed in its total ring of fractions [9, Corollary 6.51.) Of 

particular interest for our purposes is the behavior of R under localization and 

completion at these ideals. 

Theorem 1.4. Let R be a Dedekind-like ring, m a maximal ideal of R. 

(i) Zf m = ker(R* k,) f or some CY, then there is a Cartesian square of rings 

R,---(R. )^ r(a) m 

I I 
(1.3) 

CRj(m)> Tnp ka 

(ii) Zf m is any other maximal ideal, then there is some p and a maximal ideal n 

of R, such that 8, z (Rp) ;,. 

Proof. The assertions follow easily from results in [9]; Proposition 6.2 and Lemma 

6.3 describe R,,,, and Proposition 6.9 and Remarks 6.10 describe what happens 

under completion. 0 

To each Dedekind-like ring R is associated a filtration of the ring R” = npR, by 

Dedekind-like subrings ending at R as follows: Define inductively 

R” = {(rI, r2, . . . ) E R”-1 I fa(ri(a)) = &(rj(a))l . 

It is clear that each Ra is Dedekind-like and that R” = R, that is, one has a 

chain 

(1.4) 

For later use (namely, to prove Theorem 2.7) we will now derive some 

information about certain functors induced by the above ring inclusions. As all 

rings in (1.4) are Dedekind-like, it is sufficient to study the last inclusion 
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R C R”-’ which shall be denoted by R C S for simplicity. 

Lemma 1.5. Let M be a maximal ideal of R. There are ring isomorphisms 

(i) S, z (n,R,),, if M = ker(R-+ k,), 

(ii) S,, z R, if nr is any other maximal ideal. 

Proof. First observe that R,, C S, C (n,R,),. Then (ii) follows easily from [9, 

Proposition 6.21. 

(i) From the independence condition in Definition 1.1 it follows that M # 

ker(R+ k,) for all CY #m. Therefore, the ideal p = nnfm ker(R+ k,) is not 

contained in m. Let r E p\m. Then r becomes a unit in R,, and for every YE flR, 
one has that r. r” E S (by definition of S, since r? maps to zero in every ka for 

cx # m). But then Y/l = T”IIr E S,,, hence S, = (nR,>,,. This proves (i). 0 

Using the independence condition in Definition 1.1 and the Chinese Remainder 

Theorem one can find an element t, E ma = ker(R+ k,) for each cr, which has 

only nonzero coordinates. Since the RB’s are domains, ta is a nonzero divisor in R 
and in nR,. Let T denote the multiplicative subset of A = R, S and flR, 
generated by all the t,‘s. Let X,(A) denote the exact category of finitely 

generated T-torsion A-modules of homological dimension one. 

Lemma 1.6. The functor -@JR S: Y&(R) + Z,(S) is well defined and exact. 

Proof. It is sufficient to show that Torf(M, S) = 0 for all M in Y&(R). Let 

O+P,+P,,+M+O 

be a projective R-resolution of M. One obtains an exact sequence of S-modules 

Since M is T-torsion, so is TorF(M, S). As T consists of nonzero divisors, P, gR S 
has no T-torsion, therefore TorF(M, S) = 0. 

Lemma 1.7. Let III, = ker(R+ k,). There are category equivalences 
(i) &(R) z&Y2+(&,) = U, 2J?r(R,,_) x 2 = Zr(R,_) x 3% 

(ii) XT(S) g u, Xr(S,) z Fr.(S,,,J X X, where p runs over all maximal ideals 

of R, resp. S, 2 = Uprm, &(R,), and Yc = Up+“,, XT(&), 
(iii) X,(n, RP) E &, X,((n, RP) ^,,> x 2%‘. 

Furthermore, the functor - G3’R S (resp. - BR (nR,)) induces an equivalence on YC 
(resp. X). 
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Proof. It is sufficient to show that the modules M in X,(R) and X,(S) have finite 

length, in light of the fact that then M ? $@ A,, where p runs over all maximal 

ideals of R, resp. S [l, Chapter 4, Section 2.5, Proposition 81. But this follows by 

an easy induction argument from the fact that if A is a one-dimensional 

noetherian ring and t E A is a nonzero divisor, then A/(t) has finite length [l, 

Chapter 4, Section 2.5, Proposition 91. The decomposition of the categories and 

functors under consideration is then straightforward, using TheorFm 1.4, Lemma 

1.5 and the fact that s,,,_ 

ker(S + RI(,) * k). 
E s,,, x 3 ,,,, where n, = ker(S+ RiC,,,)* k) and n, = 

2. Generalized Mayer-Vietoris sequences 

The main purpose of this section is to prove, for Dedekind-like rings, an 

analogue of the following: 

Theorem 2.1. Let f : A+ B be a ring homomorphism, I C A a two-sided ideal such 
that f (, is an isomorphism. Suppose that BII has characteristic p and K,(B/Z) is a 
torsion group for n > 0 and contains no p-torsion, for some prime p. Let 
K,(A, B, I) denote the birelative K-groups associated to f [5]. Then there is a long 
exact sequence 

*..+K,(A)-+K,(B)@K,(A/Z)-t K,(BII)C13K,_I(A, B,I)+... 

Proof. Consider the commutative diagram of spaces 

F pu +Z 

i I I 
X + Beg’(A) ,BQB(AlZ) 

I I 
BQ(fxpr) 

I 

BQ(fxid) 

Y-BQP(B x AII)BQo.BQ~(BII x A/Z) 

in which all rows and columns are quasi-fibration sequences. By definition, 

T,,+~(F) r K,(A, B, Z), and, clearly, 7~,+i(Z)s K,+,(B/Z). The ideal I is a 

{ p}-excision ideal, hence the groups K,,(A, B, I) are p-primary [3]. Therefore, 

the long exact homotopy sequence associated to the top row of the diagram 

breaks up into split short exact sequences and we obtain 
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Remark. If B/Z is a perfect ring of positive characteristic, whose K-groups in 

positive dimensions are torsion, then the hypotheses of Theorem 2.1 are satisfied 

[7, Theorem 5.41. 

For the rest of the section we will restrict our attention to Dedekind-like rings 

satisfying the following condition: 

All the fields k, have positive characteristic pa, and K,(ka) 
is a torsion group with no p,-torsion for n > 0. (2.1) 

Theorem 2.2. Let R be a Dedekind-like ring satisfying condition (2.1). For every 
(Y 3 let Bi”’ denote the birelative K-groups associated to square (1.3) for all (Y. Then 
there is a long exact sequence for n 2 1, 

. . .+ K,(R)+ ~K,(R,)~~(K,(k,)~B~~,)~K,_,(R)~.... 

Proof. We shall reduce to the situation of Theorem 2.1. Without loss of generality 

we may assume that R is connected (that is, contains no nontrivial idempotents). 

Let T be the multiplicative subset of R and npRp as in Section 1. Then it is easily 

seen that T-‘R and T-‘(n,R,) are ring-isomorphic. Let W(R) denote the exact 

category of those finitely generated R-modules M of homological dimension one 

for which Torf(M, nPR,) =O. Observe that by [12, Corollary 3, p. 271, the 

inclusion P(R) -+ S’(R) induces an isomorphism of K-groups. 

Let X,(R) and &.(fl,R,) be as in Lemma 1.7. Finally, for any ring A, let 

P’(A) denote the category of finitely generated A-modules of homological 

dimension less than or equal to one. 

By virtue of Lemma 1.6 there is a commutative diagram of spaces 

MPW) >BQq(R) aBQP”(T-‘R) 

I I I 

BQ%(nR, > - BQS’(nR,)- BQ@(T-‘(nR,)) 

(2.2) 

The middle vertical map will induce the desired long exact sequence. The rows 

are quasi-fibration sequences by Quillen’s Localization Theorems, and the right 

vertical map is a homeomorphism since P?“(T-‘R)z S’(T-‘(nR,)). Con- 

sequently, the homotopy fibres of the left and middle vertical maps are weakly 

equivalent. Lemma 1.7 then immediately implies that we need only study the 

homotopy fibres of the maps BQXT(l?,J+ BQX,((nR,) 2,) for the various (Y, 

to know the homotopy fibre of the left (and, therefore, the middle) map in (2.2). 

Hence, we may assume that R is complete local, that is, we have a Cartesian 

square 
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R ---+R1 

I I 
R,-k 

(2.3) 

where R, and R, are complete DVR’s with common residue field k. The theorem 
now follows from Theorem 2.1. [7 

Now let R be defined by (2.3) with R, and R, not necessarily complete local 
such that k satisfies (2.1). We will describe the K-theory of the category 2&.(R) of 
all finitely generated T-torsion R-modules of homological dimension one. Let 
{p,} be the set of all maximal ideals of R, and I?, other than m, = ker(R,+ k) 
(i = 1,2), which 1 ie over the image in Ri of the generator t E m = ker(R-+ k) of 
T, and let {Fi} be the set of residue fields associated to these ideals. 

Theorem 2.3. If R, and R, are k-algebras or k is algebraic over a finite field, then 
there is an &morphism for n 2 0: 

Proof. By Lemma 1.7 we know that rc,(~~(R))~~K,,(~r(~,,))~K,(rt). A 
Devissage argument combined with Theorem 1.4(ii) shows that K,(.?“) s 

@i Kn(Fi)+ 

To compute K,( Xr(fi,,, >) assume that R is complete local with residue field k. 
Consider the map of localization sequences 

. ..-+K 

where T, is the image of Tin Ri. The left vertical map is an isomorphism, and the 
bottom sequence is the direct sum of the localization sequences associated to the 
ring maps R, + Ri[Tz~‘J. Note that R,[T,-‘1 is isomorphic to the quotient field of 
Ri. The map 6 and, therefore, fis surjective [lS; 17, Theorem 4.11. As the long 
exact sequences associated to f and the right vertical map have the same ‘third 
terms’, we obtain short exact sequences for n 2 0 

which are split exact. If k is algebraic over a finite field, this follows since the left- 
and the right-hand groups are primary for different primes, and if R, and R, are 
k-algebras, then S and, therefore, f splits [16, Theorem 4.71. El 
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To use Theorem 2.2 to make computations, it is necessary to have information 

about the image of the connecting homomorphism d. We shall use (1.4) to 

construct a filtration of this image and to compute the filtration quotients. Let 
R”i R”-’ be a piece of the filtration (1.4). Let B, denote the birelative 

K-groups associated (via a Cartesian square similar to (1.3)) to the generalized 

pullback diagram used to obtain R” from R” ml. 

Proposition 2.4. There is a long exact sequence for n 2 0, 

. ..~K.+,(R”)~K,+,(R*-‘)~K,+,(k)$B,~K,(K”)~... . 

Proof. Let T be the multiplicative subset of R” generated by a nonzero divisor in 

ker(R”-+ k,). Then it is easily seen that R”[ T-‘1 E Rae’[T-l]. Using Theorem 

1.4(i) the rest of the proof is analogous to that of Theorem 2.2. q 

Consider the commutative square of rings 

R”- R”-’ 

I I 
sa-Ra- 1 

(2.4) 

where 
R-“-l if i(cx) f i(a) , 

if i(a) = i(cx) , 

and S” = {r”~ Ra-’ I &n)(T”) = g,&)>. Th e vertical maps are the coordinate-wise 

projections. 

Lemma 2.5. Square (2.4) has the excision property. 

Proof. This follows from Theorem 2.2 and Proposition 2.4. q 

We are now ready to describe the image of the map d in Theorem 2.2. 

Theorem 2.6. For n 2 1, K,(R) is filtered by the subgroups F” = 
ker(K,,(R)+ K,(R”)) for a = 0, . . . , m. Let F-l = K,,(R). Then 

Fa-l/Fa s im(K,(R)-+ K,(nR,)) if a = 0, 

im(d, 1 ifO<aSm 

(d, as in Proposition 2.4). 

Proof. Let 0 < a < m, the assertion being obvious for a = 0, m. Consider the 

commutative diagram 
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0 ----+F”- K W - KAR”) 

I II I 4 

0- F”-‘-K,,(R) __f K,(R”-‘) 

The rows are exact, and the left vertical map is a monomorphism. By Proposition 

2.4, the alleged filtration quotient is isomorphic to ker h,. A Snake-Lemma 

argument will finish the proof provided that K,,(R) maps onto ker(h,). 

With notation as in (1.4) the diagram 

commutes for all i % m - 1, where the vertical maps are induced by the coordi- 

nate-wise projections. First let i = a, and x E ker(h,). Then g:(x) = 0, and 

therefore, by Lemma 2.5, x = h,+I(x’) f or some x’. If we now choose i = a + 1, 

then clearly gzI:(x’) = 0, so x’ is in the image of ha+*. Induction then shows that 

x is in the image of K,(R), finishing the proof. 0 

3. Applications 

For a ring A, let &&(A) denote the exact category of finitely generated 

A-modules. If A is Noetherian, then .&d(A) is abelian. The groups K,(.&d(A)) 
are commonly denoted by G,(A). 

Theorem 3.1. Let R be a Dedekind-like ring satisfying (2.1) and the hypotheses of 
Theorem 2.3 for each pullback diagram (1.1). Then there is a long exact sequence 

for n 2 1 (notation as in Definition l.l), 

. ..-~(K.(k,)~K,+,(k,)~BIP’)~K,(R)~G,(R)~.... 

Proof. Let T, X,(R), and %(R) be as in the beginning of the proof of Theorem 

2.2. Let X be the category of finitely generated T-torsion R-modules. One obtains 

a commutative diagram of spaces 

Be%(R) -BQT(R) -BQB’(T-‘R) 

I I I 
BQX-- BQ&di(R)- BQ&od(T-‘R) 

(3.1) 
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Since T-‘R is regular (as a localization of the regular ring DR,), the right vertical 
map is a weak homotopy equivalence. The rows are quasi-fibration sequences by 
Quillen’s Localization Theorems. The middle vertical map induces the desired 
long exact sequence, and we need to study only the left vertical map since the two 
maps have weakly equivalent homotopy fibres. An argument along the lines of 
the proof of Theorem 2.2 allows us to assume that R is complete local as in (2.3). 
Let Fi = RJ T-‘1 be the field of fractions of R, (i = 1,2). Diagram (3.1) then 
induces a map of localization sequences 

By Devissage K,(YC) z I&(k), and the left vertical map is an isomorphism since 
fields are regular. By Theorem 2.3, 

where B, denotes the obvious birelative K-group. Since Gersten’s Conjecture is 
true for R, and R, [15,17], the bottom left map and, therefore, the middle 
vertical map is surjective. As the middle and left vertical maps in (3.1) have 
weakly equivalent homotopy fibres, the theorem follows after taking the direct 
sum over all c4!, tl 

Theorem 3.2. Let R be a Dedekind-like ring with total ring of fractions F, such that 
the map K,(R,)-+ K,(F,) is injective for all /3, where FP is thejield offractions of 
R,. Then 

(i) The map G,(R) * K,(F) is injective, 

(ii) There is a short exact sequence 

o--, T Kz(R,)-+ G,(R)+ 9 K,_I(k,)-,O. 

Proof. The total ring of quotients of R is r&F, [9, Lemma 6.41. An argument 
similar to that in the proof of Theorem 2.2 allows us to reduce to the complete 
local case, described by diagram (2.3). Consider the commutative diagram of 
categories 

x+---+ u&xli(R, x RJ - _&od(F, x F2) 

i 
f 

I I 

z 

Yt - J&~(R) w &od( Fl x F2) 



Generalized Mayer-Vietoris sequences 187 

(where X and Z% denote the obvious categories). The rows induce quasi-fibration 

sequences by Quillen’s Localization Theorems, and the left and middle vertical 

functors are forgetful functors. A Devissage argument shows that f induces a split 

epimorphism of K-groups, and g induces the zero map by hypothesis. The 

theorem now follows easily. 0 

Remark. In the case of only one residue field which is finite, the map in Theorem 

3.2(i) is split and the sequence in (ii) is split exact. This follows from [16, 

Theorem 4.41 applied to the diagram in the proof of Theorem 3.2. 

The next application concerns a question considered in [20]: Let R be a 

commutative ring and m a maximal ideal; when is the map K,(R)+ K,(RIm) 

surjective? The results in [20] for the most part assume that the map 

K,(R)+ RJR,,,) . 1s surjective. If R is a Dedekind-like group ring, it is possible to 

determine for which maximal ideals m this assumption holds. The notation is as in 

Example 1.2(ii). 

Theorem 3.3. Let M be a maximal ideal of ZC,,, where C, is a cyclic group of 
square-free order n. The canonical map u: K3(ZCCn)* K3((ZCn),,,) is surjective if 
and only if (ZC,), E (ZC,),. f or some maximal ideal m’ of Z C,, , and p = 1 or p 

is prime, pin. 

Proof. Consider the map of MV-sequences 

where A denotes the obvious ring, the middle and right vertical maps are 

projections, and f is induced by coordinate-wise projection. If m= 

ker(ZC,-+k = k,) for some a, then (ZC,),,, GA,,, where m’= ker(A-+ k). 
Since K3(Z[&]) d oes not change under localization [18, Theoreme 31, the 

MV-sequences of A and Am, are isomorphic. Hence, in this case, u is surjective if 

and only if f is. If d = 1, then A = ZCP , in which case f is surjective since ZCP is a 

direct summand of ZC,, for all primes p dividing n. Now assume that d > 1. If f 
were surjective, then K3(BCn)+ K3(Z[&]) would also be surjective, since 

K3(Z[&]) is a direct summand of K,(A). But K3(Z[&J) shows up as K3(Z[ &,,,]) 
for some other pair (d’, p’) such that d’p’ = d. In particular, this would imply, 

that the map g in the above diagram is also surjective, if (d, p) is replaced by 

(d’, p’). In the commutative diagram 



188 R. C. La~benb~che~ 

the image of a is nonzero [2], and b is injective [13, Theorem S(i)]. Therefore, c 
cannot be the zero map. Consequently, f is not surjective if d > 1. 

If m is any other maximal ideal, then K3((ZCn),,,) c K3(Z[ &I),,,, for some 1. A 
similar argument as above shows that u is surjective if and only if 1 = 1. This 
finishes the proof. 0 

Example. Let C, = (CT), m = (2,1+ (+ + tr’), then R,, z Z[&1c2j. Therefore, 

K,@C,)--, K&?C,)J is not surjective, in contrast to the surjectivity of the 
composition K3(ZC3)-+ K,(ZC,lm) E K,([F,) [20, Theorem, p. 471. 

Finally we shall use Theorems 2.2 and 2.6 to make some computations for the 
rings in Example 3.2. First consider ZC,. Theorem 2.6 reduces the computation 

of K,(ZC,) to the study of the sequences of Proposition 2.4. Lack of information 
about these sequences in most cases leads to rather inconclusive results. As an 
illustration we determine an upper bound for K2(Z&,). Here, HR, = I&$![ &I. 
By standard number theory, Z[ &I/( p) z lFp[ &J for all pairs (d, p) except for 
(15,30). The ideal 2.Z[l;,,] splits as the product of two maximal ideals whose 
associated residue fields are both isomorphic to iF,,. In this case one obtains two 
identical pullback diagrams (after projection onto each of the two copies of [F,,) 

Theorem 3.4. KJZC,,) has a titration by subgroups F”, a = 0, . . . ,13, such that 

(i) 

(ii) 

Proof. The groups F” are defined as in Theorem 2.6. The map 

lu,W,,) + rc,(nJI LJ> is surjective, since Kz of a finite field is zero, and so are 
the birelative K,-groups. Furthermore, the group K2(Z[ ~$1) = 0 [23, pp. 429 and 
4361. This proves (i). 

The birelative Ik;,-group Bid,” associated to the pullback diagram (1.2) of the 
pair (d, p) is isomorphic to the underlying additive group of the residue field [6J, 
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Table 1 

(4 +I E,( id) filtration 

quotient 

CL21 
(L3) 

(175) 

(2>6) 
(2,lO) 

(3>6) 
(3,15) 

(5,lO) 

(5,15) 

(6,30) 

(10,30) 

(15,30) 

(15,30) 

L/3@Z/2 

2/8@213 

L/24@Zi5 

iZ/8@Li3 
2/24CBZ/5 

Z/15CB(Z!/2)2 

2/62463(L/5)* 

b/255@(Z/2)4 

Z/6560CB(Z/3)4 

Z/624CB(Zi5)2 

L/6560@(L/3)” 

Z/255B,(b/2)4 

2/255@(2/2)’ 

0 

0 

0 

0 

0 

OorZi2 

(*) 

(‘:; 

(*) 

i:; 

(*) 

Here, (*) in in the last column indicates an unknown quotient of the group to the left of it. 

i.e. ‘Fp[ &]+ in all cases except for (15,30) where it is ET,. We need to order the 

pullback diagrams in some way to construct filtration (1.4). Choosing the ordering 

as in Table 1 makes it easy to determine the filtration quotients for the first five 

pairs. For the remaining ones this seems to be very difficult. 

By Lemma 2.5 there is a map of long exact sequences for a < 12: 

UR”) f K,(R”-‘) f 

I I 

>K&( L)) @ B?“’ 

I 
= 

K3(Sa) -~~~~~idl~~~~~~~idpl~--l(-t~~~~p~id~~~~~~P~ 

(with notation as in diagram (2.4)). For a 5 6 it is easy to see that the middle 

vertical map maps onto the summand K3(Z[ &,I). Furthermore, the bottom left 

map maps onto K3(Z[ i;?]). The map f’ is an epimorphism for a 5 5 by [19, 

Corollary 1.61 and the fact that K,(Z[[p])-+ K3(Fp) is surjective for p = 2, 3, 5, 

and for a = 6 has a cokernel of order at most 2 [19, Proposition 2.101. Since the 

next map in the top sequence is the map d, of Theorem 2.6, the first six filtration 

quotients are as indicated in Table 1. 0 

Now consider the Dedekind-like ring 

Z(p)={(n,m)EZxZln~m(modp)}, for some primepEZ. 

Theorem 3.5. (i) &(Z(2)) z kz(ZC2) G K2(Z) . 

(ii) There is an exact sequence 

2/3+&Z(3))+ K&?)+O 
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(iii) For p 2 5, there is a short exact sequence 

O-, G,@BZp-+ &Z(p))+ &(Z)+O, 

where GP is a cyclic group of order ( p’ - 1) 124. 

Proof. Consider the MV-sequence 

. .._K.(E)~K,(IF,)83BSY’~~*(Z(P))~K,(Z)_,O 

where ~~(~(~)) z K&Z) @ &(Z( p)). The zero on the right is K,(ff,) @ @“I. We 
know that B$‘zZfp, K,(F,)sZ/p2-1, and K,(Z)zZ/48. The map 

K3(Z)-+ K3(ffP) is surjective for p =2, 3, 5 [19], and for p >5 the image has 
order 24 [2]. This completes the proof. D 

The next application concerns the rings Z[v%I], m = 1 (mod S), m square-free, 
of Example 1.2(iii). It is well known that Z[v%] in this case is not integrally 
closed in Q!(m) and that h[w], w = t(l + ~5) is its integral closure. 

Theorem 3.6. The inclusion Z[V?‘E] -j Z[w] induces an exact sequence 

z/2+ K2(Z[~])+ K*(Z[@])-+O. 

Proof. This follows immediately from the MV-sequence associated to 
Z[vZ]+Z[w], using the fact that I(,(H)-+ KX(jF2) is surjective and 
K,([F,)@B, =o. 0 

Finally we shall consider the rings of Example 1.2(v), thereby generalizing a 
result of Dayton and Roberts [4, Theorem 0] about Kz of IZ lines in the plane. 

Theorem 3.7. Let k be a field of characteristic p > 0. Let f, , . . . , f, E k[X, Y] be 
equations of n distinct straight lines no three of which pass through a point. Let 
m L 1 be the number of jntersection points, and let A = k[X, Y] ffI * . . . -f,. Then 
for all i 2 1 

K,(A)= iY,(k)@(m - n + l)Kj+,(k)@mB,, 

where Bi is the ith birelative K-group of the pullback diagram 

with the obvious maps, and, for any group G, aG means a-fold direct sum. 
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Proof. Since the maps in the above pullback diagram induce isomorphisms in 

K-theory, Theorem 2.1, and therefore Theorem 2.2, is valid without any assump- 

tions about K,(k). We obtain the MV-sequence 

. . .+ iii(A)s oFI Ki(k[up])+= m(K,(k)@ B,_,)A . . + , 

where K,(A) = K,(k) Cl3 Z?,(A). It is then straightforward to see that the map f is 

zero. The theorem follows. q 

For i = 2, we obtain [4, Theorem 0] in the positive characteristic case, since 

B, = k’. 
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