Exactness of G-sequences and monomorphisms

Jian Zhong Pan a, Moo Ha Woo b, *

a Institute of Mathematics, Academia Sinica, Beijing 100080, China
b Department of Mathematics Education, Korea University, Seoul 136, South Korea

Received 7 April 1999; received in revised form 18 August 1999

Abstract

In this paper, we first show monomorphicity of the inclusion map of a CW-pair implies exactness of the G-sequence of the pair. Next we apply exactness of G-sequences to solve monomorphicity of maps, that is, if $n \neq 7$, any map from the n-sphere to S^7 is not monomorphic. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: G-sequences; Evaluation subgroups; Monomorphisms

AMS classification: 55P45

1. Introduction

Gottlieb [3] introduced the Gottlieb group, $G_n(X)$, of a space X which consists of all $\alpha \in \pi_n(X, x_0)$ such that there exists an affiliated map $A: S^n \times X \to X$ such that $[A|_{S^n \times x_0}] = [\alpha]$ and $A|_{x_0 \times X} = id_X$, where s_0 and x_0 are base points of S^n and X, respectively. This group, $G_n(X)$, is also characterized by

$G_n(X) = w_\omega(\pi_n(X^X, id_X)) \subset \pi_n(X, x_0),$

where $\omega: X^X \to X$ is an evaluation map at $x_0 \in X$. Thus $G_n(X)$ is also called an evaluation subgroup of $\pi_n(X, x_0)$. Gottlieb extensively studied $G_1(X)$ in [2] and $G_n(X)$ for $n \geq 2$ in

* The first author is supported by NSFC Project 19701032 and ZD 9603 of the Chinese Academy of Science, and the second author is supported by the Korea Research Foundation made in the program year of 1998 and TGRC-KOSEF 99.

* Corresponding author.

E-mail address: woomh@kuccnx.korea.ac.kr (M.H. Woo).
Among other things he has shown that if X is an H-space, then $G_n(X) = \pi_n(X)$ for all n. He also had computed

$$G_n(S^n) = \begin{cases} 0 & \text{for } n \text{ even,} \\ Z & \text{for } n = 1, 3, 7, \\ 2Z & \text{for other odd } n. \end{cases}$$

In [5–7], the Gottlieb groups were generalized by Lee, Kim and Woo as the notions of generalized evaluation subgroups and relative evaluation subgroups. As the homotopy sequence of a topological pair plays an important role in computing homotopy groups, Lee and Woo introduced the G-sequence of a pair which is consisted by subgroups of homotopy groups, that is, Gottlieb groups, generalized evaluation subgroups and relative evaluation subgroups.

Here we introduce the G-sequence of a CW-pair from [6,7]. For convenience, from here on we assume a space is a homotopy type of a CW-complex and a topological pair is a pointed CW-pair.

Let (X, A) be a CW-pair and X^A (or A^X) be the space of all maps from A into X (or from X into A). Then the inclusion map $i: A \to X$ induces the inclusion map $\tilde{i}: A^X \to X^A$ given by $\tilde{i}(f) = if$. Let $\omega: (X^A, i) \to (X, x_0)$ and $\omega: (X^A, A^X, id) \to (X, A, x_0)$ be the corresponding evaluation maps at the base point $x_0 \in A \subset X$. Then these induce homomorphisms

$$\omega_{\ast}: \pi_n(X^A, i) \to \pi_n(X, x_0) \quad \text{and} \quad \omega_{\ast}: \pi_n(X^A, A^X, id) \to \pi_n(X, A, x_0).$$

The generalized evaluation subgroups $G_n(X, A)$ are defined by $[\omega_{\ast}(\pi_n(X^A, i))] = \{[f] \in \pi_n(X) \mid \exists \text{ map } H: A \times I^n \to X \text{ such that } [H|_{\partial I^n}] = [f] \}$ and the relative evaluation subgroups $G_n^{rel}(X, A)$ are defined by $[\omega_{\ast}(\pi_n(X^A, A^X, i))] = \{[f] \in \pi_n(X, A) \mid \exists \text{ map } H: (X \times I^n, A \times \partial I^n) \to (X, A) \text{ such that } [H|_{\partial I^n}] = [f] \}$. The inclusion maps and the evaluation maps induce the following commutative diagram

$$\cdots \to \pi_n(A^X) \overset{i_\ast}{\to} \pi_n(X^A) \overset{j_\ast}{\to} \pi_n(X^A, A^X) \overset{\partial}{\to} \pi_{n-1}(A^X) \to \cdots$$

$$\cdots \to G_n(A) \overset{i_\ast}{\to} G_n(X, A) \overset{j_\ast}{\to} G_n^{rel}(X, A) \overset{\partial}{\to} G_{n-1}(A) \to \cdots$$

$$\cdots \to \pi_n(A) \overset{i_\ast}{\to} \pi_n(X) \overset{j_\ast}{\to} \pi_n(X, A) \overset{\partial}{\to} \pi_{n-1}(A) \to \cdots$$

Since the top and the bottom rows are exact, the middle part make sequence. We call this middle sequence the G-sequence of a CW-pair (X, A). This sequence is not necessarily exact [7,8]. In [6,7], it was known that if the inclusion map $i: A \to X$ has a left homotopy inverse or is null homotopic, then the G-sequence of (X, A) is exact.

A map $f: X \to Y$ is a monomorphism [4] in the category of based topological spaces and based homotopy classes of maps if, for any space Z and any two maps $u, v: Z \to X$, $f \circ u \simeq f \circ v$ implies $u \simeq v$. The monomorphicity of a map is a weaker condition than the existence of a left homotopy inverse of the map. For example, the Hopf map
$h : S^3 \to S^2$ is monomorphic but it does not have a left homotopy inverse. Ganea [1] studied monomorphism of the Hopf fibrations, especially, he showed that $h : S^7 \to S^4$ and $h : S^5 \to S^8$ are not monomorphic.

In this paper, we show that if the inclusion map of a CW-pair is monomorphic in the category of based CW-complexes, then the pair has an exact G-sequence. As applications of exact G-sequences, we can show that if a map from a space X to a G-space is monomorphic, then X is also a G-space. It is also shown that the Hopf map $h : S^7 \to S^4$ is not monomorphic (which was erroneously listed as monomorphic by Hilton) by a different method from Ganea.

2. G-sequences and monomorphisms

Let $p : (X, x_0) \to (Y, y_0)$ be a map in the category of based CW-complexes and let $\hat{p} : (X^X, id) \to (Y^X, p)$ and $\tilde{p} : (X^X, id) \to (Y^X, p)$ be the induced maps given by $\hat{p}(f) = pf$ and $\tilde{p}(f) = pf$, respectively, where $Y^X = (Y, y)^{X, x}$ is a subspace of the function space Y^X consisting of based maps and pf denotes composition of p and f.

In order to prove the main theorem, we need to introduce a lemma.

Lemma 2.1. If a map $p : (X, x_0) \to (Y, y_0)$ is monomorphic in the category of based CW-complexes and based homotopy classes of maps, then the induced maps \hat{p} and \tilde{p} are monomorphic.

Proof. We prove only the case for \hat{p}. Let (Z, z_0) be a based CW-complex and $u, v : (Z, z_0) \to (X^X, id)$ be pointed maps such that $\hat{p}u$ is homotopic to $\hat{p}v$ relative to a base point z_0. Since the conjugate map

$$\mu : (Y^X, p)^{(Z, z_0)} \to (Y, y_0)^{(Z \times X)/(Z \times z_0, q_0)}$$

is the natural homeomorphism, $\mu(\hat{p}u)$ is homotopic to $\mu(\hat{p}v)$ as a map from $((Z \times X)/(Z \times z_0), q_0)$ to (Y, y_0), where q_0 is the base point of $(Z \times X)/(Z \times z_0)$. Since $\mu(\hat{p}u) = p\mu(u)$ and $\mu(\hat{p}v) = p\mu(v)$, we have $\mu(u)$ is homotopic to $\mu(v)$ by the fact that p is a monomorphism. This implies that u is homotopic to v (not necessarily relative to base point). Now we need to show these two maps to be homotopic relative to base point.

Let $H : Z \times I \to X^X$ be a homotopy from u to v and $\sigma(t) = H(z_0, t)$ be the loop at id_X in X^X. We define a map

$$K : (Z \times I \times 0) \cup (z_0 \times I \times I) \cup (Z \times 0 \times I) \cup (Z \times I \times I) \to X^X$$

by $K(z, s, 0) = H(z, s) \circ \sigma(1 - s)$, $K(z_0, s, t) = \sigma(s(1 - t)) \circ \sigma(1 - s(1 - t))$, $K(z, 0, t) = u(z)$ and $K(z, 1, t) = H(z, 1) \circ \sigma(1 - t) \circ \sigma(t)$. By the homotopy extension property, there is an extension $\overline{K} : (Z \times I \times I) \to X^X$ of K. If we take a homotopy $G : Z \times I \to X^X$ by $G(z, s) = \overline{K}(z, s, 1)$, then G is a homotopy from u to v relative to z_0. Therefore \hat{p} is a monomorphism. □

Theorem 2.2. Let (X, A) be a connected CW-pair. If the inclusion map $i : A \to X$ is monomorphic, then the G-sequence of (X, A) is exact.
Proof. If we consider the following commutative diagram

\[
\begin{array}{ccc}
(A^A, id) & \xrightarrow{i} & (X^A, i) \\
\downarrow{k_1} & & \downarrow{k_2} \\
(A^A, id) & \xrightarrow{i} & (X^A, i) \\
\downarrow{\omega_1} & & \downarrow{\omega_2} \\
A & \xrightarrow{i} & X
\end{array}
\]

where \(k_i’s\) are inclusions, \(\omega_i’s\) evaluation maps, \(\bar{i}(f) = if\) and \(\bar{i}(f) = if\), then the map \((\omega_1, \omega_2): i \rightarrow i\) is a fibre map in the category of pairs with the induced map, \(\bar{i}\), of the fibers \(A^A, X^A_1\) of \(\omega_1, \omega_2\), as the fiber, because \((A^A, id) \xrightarrow{\bar{k}_1} (A^A, id) \xrightarrow{\omega_1} A\) and \((X^A_1, i) \xrightarrow{\omega_2} (X^A, i) \xrightarrow{\omega_0} X\) are fibration sequences. If we use the fibre map \((\omega_1, \omega_2): \bar{i} \rightarrow i\) in the category of pairs, the sequence

\[
\cdots \rightarrow \pi_n(X^A_1, A^A, id) \rightarrow \pi_n(X^A, A^A, id) \rightarrow \pi_n(X, A) \rightarrow \cdots
\]

is exact (see [4, p. 77]).

Since the inclusion map \(i: A \rightarrow X\) is monomorphic, \(\bar{i}: (A^A, id) \rightarrow (X^A_1, i)\) and \(\bar{i}: (A^A, id) \rightarrow (X^A, i)\) are also monomorphic by Lemma 2.1. Thus we have the following commutative diagram

\[
\begin{array}{ccc}
0 & \rightarrow & \pi_n(A^A, id) \\
\downarrow{k_{1z}} & & \downarrow{k_{2z}} \\
0 & \rightarrow & \pi_n(A, id) \\
\downarrow{\omega_{1z}} & & \downarrow{\omega_{2z}} \\
0 & \rightarrow & \pi_n(A) \\
\downarrow{i_z} & & \downarrow{j_z} \\
G_n(A) & \rightarrow & G_n(X, A) \\
\downarrow{\delta} & & \downarrow{j_z} \\
G^\text{Rel}_n(X, A) & \rightarrow & \cdots
\end{array}
\]

such that each row and each column is exact. Let us consider the \(G\)-sequence of \((X, A)\)

\[
\cdots \rightarrow G_n(A) \rightarrow G_n(X, A) \rightarrow G^\text{Rel}_n(X, A) \rightarrow \cdots
\]

It is easy to prove exactness at \(G_n(A)\). By the surjectivity of \(\bar{j}_z\) and the commutativity of above diagram of homotopy groups, we have

\[
G_n^\text{Rel}(X, A) = (\omega_1, \omega_2)z \bar{j}_z(\pi_n(X^A, i)) = j_z \omega_{2z}^z(\pi_n(X^A, i)) = j_z(G_n(X, A))
\]

and hence the \(G\)-sequence is exact at \(G^\text{Rel}_n(X, A)\) by using the triviality of \(\delta\).

To prove the \(G\)-sequence is exact at \(G_n(X, A)\), we use the above diagram of homotopy groups. Let \(\alpha \in G_n(X, A)\) with \(j_z(\alpha) = 0\). Then there is \(\beta \in \pi_n(X^A, i)\) such that \(\alpha = \omega_{2z}(\beta)\). Let \(\gamma = j_z(\beta)\). By the commutativity of the diagram, we have \((\omega_1, \omega_2)z(\gamma) = 0\) and hence \(\gamma = (k_1, k_2)z(\delta)\) for some \(\delta \in \pi_n(X^A_1, A^A, id)\). By surjectivity of \(j_z\), there exists
\[\eta \in \pi_n(X^4_A, i) \text{ such that } \delta = \tilde{f}_2(\eta). \] Since \(\tilde{f}_2(\beta - k_{2\xi}(\eta)) = 0 \), there exists \(\xi \in \pi_n(A^4, \text{id}) \) such that \(\beta - k_{2\xi}(\eta) = \tilde{i}_2(\xi) \). Therefore we have
\[
\alpha = \omega_2(\beta) = \omega_2(k_{2\xi}(\eta) + \tilde{i}_2(\xi)) = \omega_2\tilde{i}_2(\xi) = \tilde{i}_2\omega_1(\xi).
\]
Therefore \(\alpha \) belongs to the image of \(\tilde{i}_2 \) and hence the \(G \)-sequence of \((X, A)\) is exact. \(\square \)

Corollary 2.3 [6]. If the inclusion map \(i : A \to X \) has a left homotopy inverse, then the \(G \)-sequence of \((X, A)\) is exact.

3. Applications

It is difficult to determine whether a map is monomorphic or not. However if we use exactness of the \(G \)-sequence, we can obtain a useful result to determine the monomorphicity of a map. A space \(X \) is a \(G \)-space if \(G_n(X) = \pi_n(X) \) for each \(n \geq 1 \) [9]. Every \(H \)-space is a \(G \)-space, but the converse is not true. It is well known that the \(n \)-sphere is a \(G \)-space if and only if \(n \) is 1, 3 or 7. In general, the image of \(G \)-spaces under monomorphisms need not be \(G \)-spaces. For example, let \(h : S^3 \to S^2 \) be the Hopf bundle, then \(h \) is monomorphic [4] and \(S^3 \) is a \(G \)-space but \(S^2 \) is not a \(G \)-space. However we have the following.

Theorem 3.1. Let \(p : X \to Y \) be a monomorphism and \(Y \) be a \(G \)-space. Then \(X \) is also a \(G \)-space.

Proof. Let \(p : X \to Y \) be a monomorphism and \(M_p \) be the mapping cylinder of \(p \). Then the inclusion \(i : X \to M_p \) is also monomorphic. By Theorem 2.2, the \(G \)-sequence of \((M_p, X)\) is exact. Since \(Y \) is homotopy equivalent to \(M_p \) and \(Y \) is a \(G \)-space, we have \(G_n(M_p, X) = \pi_n(M_p) \). Therefore we have the following commutative diagram

\[
\begin{array}{ccc}
0 & \to & G_n(X) \to i_2^* \to G_n(M_p, X) \to j_2^* \to G_{n\text{Rel}}(M_p, X) \to 0 \\
& \downarrow & \downarrow & \downarrow & \\
0 & \to & \pi_n(X) \to i_2^* \to \pi_n(M_p) \to j_2^* \to \pi_n(M_p, X) \to 0
\end{array}
\]

It is sufficient to show \(\pi_n(X) \subset G_n(X) \). Let \([\alpha]\) be an element of \(\pi_n(X) \). Then \(i_2^*([\alpha]) \) belongs to \(G_n(M_p, X) \) and \(j_2^*(i_2^*([\alpha])) = 0 \). By exactness of \(G \)-sequence of \((M_p, X)\), there is an element \(\beta \in G_n(X) \) such that \(i_2^*([\alpha]) = i_2^*(\beta) \). Since \(i_2^* \) is monomorphism, \([\alpha]\) belongs to \(G_n(X) \). \(\square \)

Corollary 3.2. If a map from the \(n \)-sphere to a \(G \)-space is a monomorphism, then \(n = 1, 3 \) or 7. Especially, if \(n \neq 7 \), then any map from the \(n \)-sphere to \(S^7 \) is not monomorphic.

The Hopf map \(h : S^7 \to S^4 \) had first been listed as monomorphic by Hilton [4, p. 169] but it was shown to be not monomorphic by Ganea [1]. In [8, p. 293], the authors showed
that the G-sequence of the CW-pair (M_h, S^7) is not exact, where M_h is the mapping cylinder of the Hopf map h. Suppose the Hopf map $h: S^7 \to S^4$ is monomorphic. Then the inclusion map $i: S^7 \to M_h$ is also monomorphic. By Theorem 2.2, the G-sequence of the pair (M_h, S^7) is exact. Therefore this also yields an alternative proof of the following.

Remark 3.3. The Hopf map $h: S^7 \to S^4$ is not a monomorphism.

References