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ABSTRACT Long tail kinetics describe a variety of data from complex, disordered materials that cannot be described by conventional
kinetics. It is suggested that the kinetics of diffusive motion in complex biological media, such as cytoplasm or biomembranes, might also
have long tails. The effects of long tail kinetics are investigated for two standard biophysical measurements, fluorescence recovery after
photobleaching (FRAP), and dynamic light scattering (DLS). It is shown that long tail kinetic data would yield significantly distorted and
misleading results when analyzed assuming conventional kinetics.

INTRODUCTION
From a variety of kinetic data measuring random mo-

tions of molecules in biological systems it has been cus-

tomary to report diffusion constants D and immobile
fractionsflM. The theoretical basis for this analysis is the
conventional diffusion equation:

DV2p(r, t) = ap/Ot, (1)

which has the usual Green's function (in one dimen-
sion):

P(x, t) = exp(-x2/4Dt)/(47rDt)'/2. (2)

It has become increasingly clear for a variety of phe-
nomena in a variety of fields that transport and diffusion
are often not well represented by conventional diffusion
(Eq. 1), especially for data from complex, disordered me-
dia, which are much better represented by long tail ki-
netics (1). Phenomenologically, long tail kinetics can be
represented by a distribution function /(t), which gives
the probability of a molecule jumping at time t if it last
jumped at time 0. A simple canonical form for t1(t) is

41(t) = 0/(1 + t)l+,1 (3)

where the parameter f must be greater than 0. Conven-
tional diffusive behavior is obtained in the limit d = oo;
technically, one would replace Eq. 3 by 4(t) = fit'1 for
t > 1 and Vt(t) = 0 for t < 1, but conventional behavior is
also obtained when Q(t) = exp(-t), which corresponds to
a tail that falls off faster than any power of ,B in Eq. 3. In
contrast, for : < 1 the kinetics are fundamentally differ-
ent. In particular, there is no diffusion constant D! In-
deed, transport coefficients in general depend upon the
length and time scales of the experiment (1).
The possibility of long tail kinetics in biological sys-

tems arises because a diffusing probe molecule will visit a
variety ofdifferent environments characterized by its rel-
ative proximity to various macromolecules or by caging
ofthe probe in disordered arrangements ofmacromolec-
ular structures. The kinetic time constant for movement
from these different environments will be different and
this will provide a continuous spectrum oftrapping ener-

gies e. This is one way that long tail kinetics can arise as is
discussed by Scher et al. (1) who also give an insightful
phenomenological formula for the parameter F. Their
derivation assumes that the energy E of the probe mole-
cule is distributed, due to the variety ofdifferent environ-
ments, according to p(E) - exp(-E/kTO), where To is sim-
ply a temperature-like parameter characterizing the dis-
tribution. Then, the long tail parameter ,B is given by
T/TO, where T is the actual temperature. For an energy
distribution that is narrower than a thermal Boltzmann
distribution, T/To = f > 1, one expects ordinary ki-
netics. However, long tail kinetics are expected when the
probe energy distribution becomes broader than ther-
mal, To > T. Since differences in van der Waals energies
of probes near different macromolecules are easily
greater than kT, it seems likely, supposing an exponen-
tial energy distribution, that To > T and that long tail
kinetics should be considered for biological systems.
The purpose of this paper is to examine whether long

tail kinetics would make any significant difference in the
interpretation of biophysical diffusion data as obtained
by standard experimental methods. The focus of this
paper is on the method of fluorescence recovery after
photobleaching (FRAP) (2, 3). In particular, it is shown
that analyzing long tail data, assuming the data conform
to the normal diffusion equation, leads to the nonsensi-
cal result that values ofD andfNM vary widely as the space
and time windows of the experiment are varied. Dy-
namic light scattering (DLS) (4) is also investigated and
it is shown that the standard procedure for extracting a

coefficient of diffusion D is also invalid for this method
of measurement when the data have long tail kinetics.

RESULTS

Fig. 1 shows the FRAP signal F(t) for long tail kinetics
and for conventional diffusive kinetics. The signal F(t) in
Fig. 1 takes the value F(O) = 0 at time 0 when all mole-
cules in a strip of width L have been bleached, and it
takes the value F(oo) = 1 when molecules from outside
the bleached strip have repopulated the strip. Fig. 1
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FIGURE I FRAP signal, F(t), versus log(time). Comparison ofconven-
tional diffusive kinetics and long tail kinetics (13 = 0.3).

shows that the FRAP signal is greatly stretched in time
compared to the FRAP signal for conventional diffu-
sion.

Fig. 2 shows the best fit, using conventional diffusive
kinetics and assuming that there is an immobile fraction,
to a portion of the data in Fig. 1. With good data over

three decades of time it should be possible to diagnose
long tail kinetics by the systematic deviations shown in
Fig. 2. However, with no alternative theory one might
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FIGURE 3 The solid circles show the same long tail data as in Fig. 2
versus linear time. The solid curve shows a visually appealing fit using
conventional diffusive kinetics. The systematic errors in the fit are at
the 3% level.

feel comfortable reporting fM and D values from the fit
to the same data shown in Fig. 3. This latter fit is not as
good as the fit in Fig. 2, but use ofa linear instead ofa log
scale for the time obscures systematic deviations and al-
lows a visually more pleasing fit. Table 1 shows the val-
ues offM = 1 - IM and D that are obtained by fitting
different portions of the long tail kinetics data in Fig. 1.
The last column ofTable 1 lists the systematic error a of
the fit. Ifthere were additional random noise at the same
level (-3%) as the systematic error a, it would be even
more difficult to see the systematic errors in Figs. 2
and 3.

Table 1 emphasizes that the fitted coefficient of diffu-
sion D decreases dramatically as the time window is
shifted to later times. This is typical behavior for long tail
kinetics, which really do not have a constant coefficient
of diffusion. The reason for the comparatively good fit is
that the values of mobile fraction fM also vary dramati-
cally with the time window being fit by conventional
diffusive kinetics.

TABLE 1 Best fit values of mobile fraction fM and coefficient of
diffusion D to long tail kinetics in Fig. 1 with time windows
beginning at tl and ending at t2

log (t 1) log (t2) fm DIDo Sigma

-9.3 -6.3 0.0535 640,000 0.005
-6.3 -3.3 0.157 640 0.014
-3.3 -0.3 0.410 1.00 0.031
-0.3 2.7 0.708 0.0047 0.029
2.7 5.7 0.886 0.000031 0.014

The sigma of the fit is given in the last column. The apparent coeffi-
cients ofdiffusion D are normalized to the value Do in the middle time
interval.
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FIGURE 2 Three decades of the long tail data in Fig. 1 are shown by
solid squares. The solid curve shows the best fit using conventional
diffusive kinetics with immobile fractionfJM = 0.59.
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FIGURE 4 Dynamic light scattering self-intermediate scattering func-
tion F(w) as a function ofw = q2ta, with a = 1 for conventional kinetics
and a - 0.31 for long tail kinetics with (3 = 0.3.

It is equally interesting that ifthe space window (width
L of the bleached strip in the FRAP experiment) is in-
creased by a factor of r, while keeping the time window
the same, the new values ofDIDo andfM are again given
by Table 1, but after scaling the time window by a factor
of r-4-5. This means that increasing spot size in FRAP
measurements will cause an apparent increase in DIDo
and an apparent decrease infM if the kinetics have long
tails.
Turning to dynamic light scattering, Fig. 4 shows the

behavior of the self-intermediate scattering function
F(w) (4). For conventional diffusion, the variable w is q2t
and F(w) = exp(-wD), so that D may be obtained by the
slope of the line in Fig. 4. In contrast, for long tail ki-
netics with : = 0.3, w is proportional to q2t", with a -

0.31, and for large w, F(w) decays only algebraically as
w with y 1.02. As seen in Fig. 4, log [F(w)] for long

tail kinetics does not have a constant slope so that at-
tempts to extract D by fitting the data to a straight line
will yield a different D depending upon the range of the
data that are fit.

tion is given by the usual Gaussian approximation to the
binomial distribution:

G"(x) = exp(-x2/2n)/(27rn)'/2. (5)

The standard random walk Green's function for one-
dimensional diffusion given in Eq. 2 follows from Eqs. 4
and 5 by assuming that Pn(t) is a delta function located at
n = 2Dt. This means that the number of hops increases
linearly with time. The only difference in long tail ki-
netics is that the form of P"(t) is considerably different.
The other features of standard random walk theory,
namely the mean hopping length and the Gaussian form
for Gj(x), are used in the same way as in the conven-
tional theory.
The hopping Green's function, Pj(t), was estimated

using Monte-Carlo simulations. A uniform distribution,
p(y) = 1, y E [0, 1], was generated pseudorandomly by a
standard Monte-Carlo algorithm. The time t to the next
hop was calculated by 1 + t = l/yl"E. Since the probabil-
ity i1 satisfies ,6(t)dt = -p(y)dy, 41(t) is given by Eq. 3. This
method was also used to simulate classical kinetics,
where i/(t) is given by exp(-t) by taking t = -ln (y). In
this latter case, Pn(t) has a maximum at n = t with a width
that grows only as n1/2, so that on a relative time scale
Pn(t) effectively becomes a delta function at large time.
In strong contrast, Pn(t) for A = 0.3 has its maximum at
n = 0 for all simulated times as shown in Fig. 5. This
means that the most probable number of hops remains
zero. However, as time increases, there are fewer and
fewer molecules that have not hopped, PO(t) = (1 + t)-,
as expected from Eq. 3.

c
0-

CALCULATIONS

The basic Green's function P(x, t) for long tail kinetics
can be written as

P(x, t) = z G,(x)Pn(t).
n=O

(4)

The index n is the number of times molecules have
hopped in time t, and Pj(t) is the probability that mole-
cules have hopped n times in time t. The mean hopping
distance is taken to be 1. For molecules that have hopped
n times, starting at x = 0, the probable spatial distribu-

1500
n1.3

FIGURE 5 Simulations for the hopping Green's function Pn(t) versus
number of hops n to the power 1.3 for ,B = 0.3 for times t = 10', m =
I . .. 6. The number of hopping histories was IO'.
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FIGURE 6 Calculations of the Green's function P(x, t) versus distance
x to the power 1.1 for:3 = 0.3 for times t = 102m, m = 1 ... 5.

Empirically, the simulated values of Pn(t) are well ap-
proximated by straight lines when log P is plotted versus

nI+0 as shown in Fig. 5. Since PO(t) = (1 + t)- , this means
that P,(t) may be approximated as

L L-x

F(t) = I1- E Ax t).
x=--L x=-L-x

(8)

The FRAP signal for ordinary diffusive kinetics was also
calculated in the same way, except that Eq. 2 was used
for P(x, t) instead of Eq. 7.
The dynamic light scattering self-intermediate scatter-

ing function F(w) is the spatial Fourier transform ofP(x,
t) (Berne and Pecora, 1976), and the form in Eq. 7 was
used in a numerical integration to obtain the result
shown in Fig. 4.
The differences in the natural scaling for long tail ki-

netics and ordinary diffusive kinetics are revealed in Eqs.
2 and 7. For normal diffusive kinetics, increasing the
length scale L by a factor of 10 results in an increase in
the time required for 50% depletion by a factor of 100
because the scaling requires constant L2/tL in the expo-
nential ofEq. 2. In contrast, for long tail kinetics, scaling
in Eq. 7 requires constant L1'/t217, so tL scales as L
This scaling was employed in setting the time scale in
Fig. 1 so that the FRAP signals change most rapidly near
t = 1.

(6)

where c is chosen to normalize the distribution: for large
t, c = 1(2 + /3/1 + /). The approximate form in Eq. 6
clearly breaks down for larger /: for = 0.5 the exponent
of n has increased to - 1.9 instead of 1.5 and for d = 0.7
the maximum is not at n = 0.

Insertion of Eqs. 5 and 6 into Eq. 4 gives values ofP(x,
t). Empirically, log P(x, t) is remarkably linear as a func-
tion ofxl l as shown in Fig. 6. Although there is an anom-
alously large value at x = 0, this anomaly becomes
smaller as t becomes larger. In addition, the slopes ofthe
curves in Fig. 6 behave in a regular fashion as t is varied,
decreasing by a factor of - 2.2 as t increases by 100.
These regularities can be approximated by the following
normalized form:

P(x, t) 0.0104t- exp(-0.014x`'/t007). (7)

Comparing this approximate form for = 0.3 with the
conventional Green's function in Eq. 2 highlights some
major differences. First, the x dependence has changed
from x2 to x' -, as is emphasized in Fig. 6. Second, the t
dependence is much slower with t0_'7 behavior in the
exponential instead of t'.
The signal in Fig. 1 was computed approximately us-

ing Eq. 7. The photoactivated (bleached) strip was taken
to have length 2L = 1,000, where the basic length unit is
x = 1 and a normalized Green's function was centered at
each of the 1,000 values of x in the strip. The FRAP
signal is then given by

DISCUSSION

The specific result of this work is that long tail kinetics
would substantially change the time course in the ki-
netics ofbiomolecular motion. This change could lead to
confusing and suboptimal interpretation ofexperiments,
such as FRAP experiments, as shown in the Results sec-
tion. In particular, the reported coefficient ofdiffusion D
and immobile fraction fiM would depend upon the length
and time scales ofthe measurement. This reflects the fact
that long tail kinetics do not have diffusion constants
and that the appearance of an immobile fraction would
be due entirely to fitting an inappropriate theory to the
data.

It should be emphasized again that the calculated ex-
ample oflong tail kinetics in this paper was solely for the
value : = 0.3. For larger values of / up to 1, the differ-
ences between long tail kinetics and ordinary diffusive
kinetics would be smaller but qualitatively similar.
The preceding paragraph emphasizes that A is an un-

known phenomenological parameter that would be re-
quired to fit the theory to data. The other parameters
that enter the theory set the length scale and the time
scale, but the scaling relation mentioned at the end ofthe
previous section shows that these are not independent
variables and that only one additional independent pa-
rameter is required. Additionally, the length scale L of
the experiment is required, for a total of three parame-
ters. An appropriate combination of the parameters re-
quired could be the length scale L of the experiment
divided by the mean hopping distance, the time scale for
hopping and /3. Conventional diffusive theory also re-
quires three parameters, which are usually taken to be
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the length scale L of the experiment, the coefficient of
diffusion D, and the immobile fraction fiM. Therefore,
the long tail theory cannot be discriminated against on
the grounds of parametric proliferation.
The conventional model consisting oftwo distinctpop-

ulations ofprobe molecules, one fractionflM that is com-
pletely immobile and the other fraction fM that is com-
pletely mobile, with no exchange between the fractions,
is clearly an ideal one. The conventional model is appro-
priate in the case of strong chemical bonding of a frac-
tion ofthe probe molecules to immobile structures. How-
ever, for physical interactions of the probe molecules
with a fluctuating and disordered host environment, im-
mobilization would never be complete and the extent of
immobilization would constitute a continuous spectrum
that would be best represented by long tail kinetics. It
would seem appropriate that long tail kinetics be consid-
ered when analyzing kinetic data for diffusive motion in
biological systems.
Both the conventional diffusive kinetic theory and the

long tail kinetic theory are phenomenological theories.
Both have an equally good base in random walk theory.
More specific theory, necessary for evaluating the param-
eter ,B theoretically, involves modeling the details ofeach

system and doing arduous model specific calculations,
perhaps involving random walks in a disordered and/or
percolating network (5). Meanwhile, the kind ofrandom
walk theory presented here could be useful to diagnose
from experiments whether unconventional kinetics,
such as represented phenomenologically by long tails,
occur in biological systems.
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