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Abstract

We show that a nonparametric estimator of a regression function, obtained as solution of a
specific regularization problem is the best linear unbiased predictor in some nonparametric
mixed effect model. Since this estimator is intractable from a numerical point of view, we
propose a tight approximation of it easy and fast to implement. This second estimator achieves
the usual optimal rate of convergence of the mean integrated squared error over a Sobolev
class both for equispaced and nonequispaced design. Numerical experiments are presented
both on simulated and ERP real data.
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1. Introduction and problem statement

In this work we consider the classical nonparametric regression problem with
additive noise:

(t,Y)), i=1,....n, Y;=f(t;)+o0e, whereFe;=0, Ee’ =1, (1)
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the ¢’s are uncorrelated random variables and the (#;) is a deterministic
(nonnecessarily regular) design. The value of ¢ may be known or unknown. We
wish to estimate the unknown function f in a nonparametric framework. Hence f
will be supposed to belong to some smoothness class % . Problem (1) is studied under
two different sets of assumptions on the unknown function f. Either /" is considered
as a deterministic function and the class # is a ball in a Sobolev space of regularity s
or f has the form

f(1) = u() + 0" (o), (2)

where p is a deterministic function and z is a stochastic process which will be
specified later. In the first case, the data Y = (Yy,...,Y,)" are independent
observations. In the second case, Y are correlated variables since they are noisy
observations of discretisation points of the process f. Moreover, according to the
specific structure of covariance considered for the stochastic process z, f lies in a
larger space than the Sobolev space considered under the deterministic hypothesis
for f.

It is a classical and well-known result that when estimating a deterministic f', the
minimax rate obtained over some class % of Sobolev regularity s is of order
n=2/(s+1) if the mean integrated squared error (MISE) is considered (see for example
[19] or [30]).

Many different linear estimation procedures already exist to reach this rate. Some
kernel methods, orthogonal projection, local polynomial, wavelet or spline
estimators can be found for example in [2,5,6,14,15,17,34]. All these nonparametric
estimators depend on an unknown smoothing parameter. Hence, objective methods
were developed by a number of authors for selecting an optimal value of the
smoothing parameter (see for example [11,20,22,24]). Among these criteria we will
use the generalized cross-validation method.

The aim of this paper is twofold. Assuming that f is deterministic we propose a
linear estimator of /" as a solution of a minimization problem defined in the wavelet
domain. We prove that this estimator is the best linear unbiased predictor for a
specific mixed effect regression function f given by (2). The computational
complexity of the algorithm to determine this estimator of f is of the order @(n?)
and does not really take advantage of the fast wavelet discrete transform. Hence, we
propose a second estimator which is easy and fast to implement. This new estimator
is a tight approximation of the first one. Indeed, we prove that it achieves the same
rate of convergence for the MISE as the first one up to a constant.

When 7 is the classical Sobolev space H3[0, 1], where s is a strictly positive integer,
it can be defined as a reproducing kernel Hilbert space # (r.k.h.s.) with some specific
reproducing kernel (r.k.). In this framework precisely described in [34], the so called
s-th order smoothing spline is the minimizer of the functional

n 1
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over the set # = H3[0, 1]. It is known that the s-th order smoothing spline achieves
the minimax rate of convergence of the MISE when the design is deterministic (see
[22]).

Herein we mimic the usual spline approach to generalize the estimation problem
over a Sobolev space with noninteger index. When s is a real number larger than 1/2
(hence including values of s less than one) we state that H5[0, 1] is still a r.k.h.s
H = H (@ A with a reproducing kernel constructed with a wavelet basis. Next we

estimate / with the solution f; of the following penalized minimization problem:

n

min > (3= + A2 1B 4)

where 2, denotes the orthogonal projector (with respect to the scalar product over
) over the subspace ;.

For such an optimization problem, when taking 4 =0, the solution will
interpolate the points (¢, ¥;) by a function of H® with a huge norm in the Sobolev
space. Conversely, taking 4 = oo leads to a solution with a small norm in H* but

approximating badly the unknown function f. Hence the term A||%\f| 27, which

penalizes the details in the wavelet expansion of f (equivalent to A fol [re (x)]zdx
which penalizes wild oscillations of f in the spline approach) permits to make a
compromise between good approximation and smoothness of the investigated
solution. It remains to balance the bias and the variance of the resulting
nonparametric estimator.

As for the case of the spline regularization problem (3), we show that fi is also
solution of a connected problem. We make the assumption that f is the trajectory of
the process given by (2) where z(7) is a Gaussian process whose covariance function
is defined by the reproducing kernel K' associated with #°| and b = in/a>. We then
prove that for this particular choice of the parameter b the estimator ﬁ is the
minimum variance unbiased predictor for the unknown trajectory f. Under
assumption (2), f is the sum of a deterministic part and a random one which
describes, respectively, the fixed and the random effects with the specific covariance
structure described above, we show that it lies almost surely in a Besov space larger
than H*. This phenomenon is intimately linked with the paradox already noticed by
many authors (see for example [34,16]) when interpreting a spline estimator in a
Bayesian setting. Indeed, in our case f; has also a Bayesian interpretation under the
same prior assumption than the one that are considered in mixed models (see [4]).

It is interesting and relevant to examine Bayesian analogs of corresponding
wavelet smoothing frequentist models and procedures. The connection between
smoothing methods based on penalized likelihood and mixed effect models and their
Bayesian interpretation has been often made implicitly in the literature, but to our
knowledge a notable exception on a formal use of such connections is Wahba’s 1983
paper (see [33]) exploiting the Bayesian interpretation to construct confidence
intervals about splines estimates. It is in the same spirit that we have developed our
method since the frequentist properties of confidence intervals for wavelet estimates
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are problematical. To keep the length of this paper reasonable we focus here on the
connection between wavelet smoother and BLUP. Our results about Bayesian
interpretation and construction of confidence intervals will be the subject of another
paper.

Since ﬂ(t) is the solution of the regularization problem (4), due to a general result
of Li [21] it is the minimax linear estimator over a suitable Sobolev ball.

To conclude, this first part of the work generalizes the situation described in [34]
for Sobolev space H®, to the case of s real number larger than 1/2. While achieving
the revised version of this paper we noticed that independently from us a similar
problem was studied in [18].

Practical formulas for the explicit solution f; are computer intensive and would
require a specific numerical treatment as it has been done for the smoothing spline,
where some special decompositions have been introduced. In fact for the splines case,
the Reinsch algorithm (see [16] and references therein) endowed with the GCV
criterion (see [11]) reduces the computational cost to the order ¢(n). The same idea

cannot be directly applied for evaluating ﬂ since the Reinsch algorithm is directly
related to the structure of the splines basis. We therefore propose an alternative
estimator, f}(z), which is easier and faster to compute than f: Indeed, f; requires
O(n) operations to be computed, using fast wavelet transform; moreover, compared
with smoothing spline algorithm, it does not suffer of instability and it can be
extended to noninteger s.

The approximated estimator f; was already studied in [2,6] for an equispaced
design. We show that f; is good enough to assure that it reaches the optimal rate
O(n=2/st1)) also in the nonequispaced case.

To finish we present some numerical simulations and real data applications. We
furnish comparisons with other nonparametric estimators.

The paper is organized as follows: In Section 2, we recall the main definitions and
tools about wavelets and Besov spaces. Moreover, we prove that the Sobolev space
of regularity s with nonnecessarily integer index is a reproducing kernel Hilbert
space. Next, in Section 3 we define f; as the solution of a regularization problem and
we give its formal expression. In Section 4 we state the Gauss—Markov property

of ﬂ, in the mixed effect model. Finally, Section 5 is devoted to the approximated

solution of f;,, denoted f;, for both equispaced and nonequispaced designs. In
Section 6, numerical results on simulated and real data are discussed.

2. Wavelets and Besov spaces
2.1. Orthogonal wavelets on [0, 1]
We start this section by briefly reviewing some useful facts from basic wavelet

theory, that will be used to derive our estimators. A general introduction to the
theory of wavelets can be found in [9,12,25,32,35]. The construction of orthonormal
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wavelet bases for L?(R) is now well understood. There are many families of wavelets.
Throughout this paper we will consider compactly supported wavelets such as
Daubechies’ orthogonal wavelets. For the construction of orthonormal bases of
compactly supported wavelets for L>(R), one starts with a couple of special,
compactly supported functions known as the scaling function ¢ and the wavelet .
The collection of functions Y, (x) = 2/2y(Yx — k), j,keZ, then constitutes an
orthonormal basis for L?(R). For fixed jeZ, the ¢;;(x) = 2/*p(Yx — k), keZ are
an orthonormal basis for a subspace Vchz(lR). The spaces V; constitute a
multiresolution analysis.

We denote Pif =3 ., {f, ;x> ®;x the orthogonal projection of f* on the
approximation space V;. The multiresolution analysis is said to be r-regular if ¢ is
C", and if both ¢ and its derivatives, up to the order r, have a fast decay. One can
prove that if a multiresolution analysis is r-regular, the wavelet i is also C" and has
vanishing moments up to the order r (see [12, Corollary 5.2]). Moreover, we suppose
that the moments of ¢ are equal to zero up to the order r except the zeroth one which
is equal to one. Such wavelets were constructed by Daubechies in 1990 and are called
coiflets (see [12]).

The smoother wavelets provide not only orthonormal bases for L*(R), but also
unconditional bases for several function spaces including Besov spaces (see [31]).

Let us consider now orthogonal wavelets on the interval [0, 1]. Adapting wavelets
to a finite interval requires some modifications as described in [10]. To summarize,
for J such that 2/ >2r, the construction in [10] furnishes a finite set of 2/ scaling
functions ¢, and for each j>J, 2/ functions y;, such that the collection of these
functions forms a complete orthonormal system of L,[0, 1]. With this notation, the
L,[0, 1] reconstruction formula is

271 2-1
@O =0k + Y D> Butal0), (5)
k=0 j=J k=0

where o5 = fio 1 /(0@ x(0)dt, Big = [/ (O0Wx(t)di and we denote ||f|]* =
f[oyl]fz(t) dr.

2.2. Besov spaces

In the following, we will use Besov spaces on [0, 1], B, , which are rather general
and very well described in terms of sequences of wavelet coefficients. In particular for
a suitable choice of the three parameters (s, p, ¢) we can get Sobolev spaces or Holder
spaces. For the definition of Besov spaces, properties and functional inclusions we
refer to [31]. Here we just give the following characterization of the Besov space B, ,
in terms of wavelet coefficients of its elements.

Lemma 2.1. Let 0<p, g< o0 and s>max{(1/p — 1),0}. If the scaling function ¢ and
the wavelet function  correspond to a multiresolution analysis of L,[0,1] that is
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([s] + 1)-regular (here [-] stands for the integer part), then a function f in L,[0,1]
belongs to the Besov space B, , if and only if it admits the decomposition (5) such that

1/q
1lgy, = Il illy, + ZZJ‘““/Z UP|(B a0 IIZ,> <+ o

Jor JeN. The ||f|| . is equivalent to the Besov space norm.
Pq

For a proof see [13].
Let H® denote the Sobolev space of functions of L;[0, 1] with noninteger s. By
classical embedding relations (see for example [31]) we have H* = Bj,. Using

Lemma 2.1, we can consider the following inner product over H* for any f € H® and
ge H*:

271 21
=3 o+ Z Blalin:
k=0 j=J k=0
271 21
o0 1Pkt Z Z B ks
=0 j=zJ k=0
<f,g>Hx = ) (00 + 3 2 B (BLdn. (6)

j=J

The set of functions {¢@;, k=0,....,2 —Liy;y, j=J,k=0,...,2 — 1} is an
orthogonal (but not orthonormal) basis of H*. Indeed, we have

Lemma 2.2. Let J be an integer. For any j=J,j=J, k. k' eZ,

D <Pri»Prp ) 1s = Okkrs
(i1) <(PJ,ka %,k' > =0,
(111) <Wj,k7 Wj’,k’ >H“' = 5j.j’(sk,k’2215'

The proof of this result is straightforward so it is omitted.
2.3. Wavelet reproducing kernel Hilbert space

For a complete review on r.k.h.s. we refer to [7]. Put J a fixed integer and
introduce the two following symmetric real valued functions defined on [0, 1]2:

21 Vo1
Os,1) = Z ®y(8)@si(2) and K'( Z ZA] k()W (2),
k=0 J7 k=0

where Vj>J, ;€ R" such that 3°,_;2/7;< + .
Note that, since ¥ is bounded and compactly supported, for any fixed 7€]0, 1],
> ¥, (1)] is bounded by 0(2/?) for any v>0. Thus >, 42 < + oo guarantees that
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K'(s,7) is bounded for any (s,7)€[0,1]>. Moreover, K® and K' are obviously
positive-definite functions. Hence we can define two unique reproducing kernel
Hilbert spaces #y and 2| with K® and K' as their reproducing kernels. We observe
that #o =V, = span{p; .,k =0, ...,2" — 1}. Since

/ [K°(s,0)]* dsdr =2’ <o and / [K'(s,0)]* dsdt< oo,
0.1 0,12

from the general theory of r.k.h.s. (see [34, Lemma 1.1.1.]), we have that f € #, and
f e if and only if

27 _1 2
2 def. .2 def.
112, S <o and |7, <Y Zi—

k=0 =7 k=

We define the direct sum, s, of the two spaces # and #'| as: H = H (DA
where # is endowed with the norm ||f|[5, = ||f||if0 + |[/‘”H2j,1 Due to [7] # is a
r.k.h.s. Since # and | are orthogonal in L, by construction and the #-norm is
defined through the #p-norm and #°;-norm, we keep orthogonality (in 2#) between
Ay and ;. The associated scalar product will be denoted <.,.>, and its
reproducing kernel is given by

271 V-1
5,1) = Z ?ri(8) (1) + Z AW ()W (),
k=0 j=J k=0
so for any fe
2 2 2 =~ B
15 = 120 B, + 112N, = D i+ Z f (7)
k=0 j=J k=0 J

where 2; denotes the projection over #; i=0,1. Moreover, setting K,(-) =
K(t,-) = K(-,t) (resp. K'(-) = K!(t,-) = K'(-,1), for [ =0,1), K, (resp. K!) is the
representer of the evaluation functional at ¢ in # (resp. in ), i.e.,

Vied, (fK)y=f(1) and Nfed) <f K>y =f(1).

Next, for some particular choices of 4; we state that the r.k.h.s. % coincides with the
Sobolev space H*, for any real s>1/2.

Proposition 2.1. Let s>1/2; put J;=2"% and suppose that (¢,y) defines a
multiresolution analysis of L1,[0,1] that is ([s] + 1)-regular, then

H =7

The proof of this result is deferred to Section A.1.
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3. Regularization approach

In this section we solve a regularization problem (following the spline
regularization approach developed in [34]) over a reproducing kernel Hilbert space
(r.k.h.s.) which will coincide with a Sobolev space endowed with a wavelet
orthogonal basis. The solution of (4) is given by the following theorem.

Theorem 3.1. Let ® be the n x 2/ matrix defined by ®; = ¢, (1;) foranyi=1,...,n
and k =0, ...,2" =1 and ®, the 1 x 2/ row matrix defined by @1y = @;,(t) for any
k=0,....,27 — 1 and for any te[0,1]. Moreover, let X be the n x n matrix defined by
i, =K'"(t;,4) foranyi=1,....nandj=1,....,n and X, the 1 x n matrix defined by
2. =K' (t,4;) for any j =1, ...,n and for any t€0,1].

The minimizer of problem (4) is given by

271 "
fi(t) = Z &J,k¢]1k([) + Z dz’K,l,.(l‘)
k=0 =1
=&,0 + Z,é, 5
where
8= (dsg, ....ds1) = (@TE7' @) ' @TE 1y,

d=(d,...,d,)" =271, — (@7 @) ' dTS )y,

S=X+nil, and Y=(Y,...Y,)". (9)

The proof of this result is deferred to Section A.1.
Note that f;() can be written in terms of a wavelet expansion as follows:

21 2J-1 n
L) =" drupri () +> > Bia(t) where By = didip; (1)
k=0 j=J k=0 i=1

4. Mixed model approach

Linear predictors of unknown mixed effects, relying on noisy observations Y =
(Y, ..., Yn)T of f at the design points 7y, ...,t,, are often considered in a large
number of applications for their simplicity and their power. In [28] a rather complete
survey is presented for parametric estimation in mixed models. Moreover, some
examples are studied under mixed model hypothesis and classical regression model.
The comparison of these approaches shows clearly why “mixed model is a good
thing” in certain situations.
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We will study (1) in a mixed model framework. Recall that the observed data, Y,
are discretized observations (at fixed points 7y, ..., t,) of the trajectory of a stochastic
process Y(¢) given by

Y(1) =f(t) + ae(z), te]0,1],
where f has the form (2) and {&(¢),7€[0, 1]} is a zero mean Gaussian process with
Cov(e(s),&(t)) = 0. Moreover, we assume that u(f) = 2,2;:_01 ay k@ (t) and
{V/bz(t),te[0,1]} is a centered Gaussian process with covariance function
E(z(s)z(¢)) = K'(s, ). Since ff012K (t,8)dsdt< + oo, K' admits the Karhunen—
Loéve expansion and hence the following representation in quadratic mean holds:
2-1

= ZZ ﬂjklpjk(t)’ (10)

j=J k=0

where B are independent and f; ~N(0,%;), (see [26] for the proof). Under the

assumptions described by (2) and (10), the trajectories of the processes z(z) and f(¢)
belong to a space of regular functions. We state that the regularity of this space
depends on the choice of the sequence 4;. We have:

Theorem 4.1. Let s>1/2 and suppose that the wavelet system {;}, is fixed and is
[s] + 1-regular. Consider the stochastic series,
2-1

1) = Z Z Bix i (1)

J=J k=0

where ;. are centered independent normal random variables such that Var(By.) = ;;
then the following properties are equivalent:

(i) each sample of the stochastic series S(t) belongs to B’;T;O/ 2[07 1], almost surely

(a.s.).
(i) ;= 0(2°%).

The proof of this result is deferred to Section A.2. A more general result has been

proved in [1].
As for the regularization approach we assume that 2; = 2~ %S hence f lies in B’X l/ 2

by Theorem 4.1.

Remark 4.1. We observe that in the regularization approach we assumed that, for
the choice of 4; = 2-% the unknown function / belongs to the Sobolev space H*. In
the mixed model approach the unknown f is assumed to be a sample path that
belongs a.s. to a larger space, BA[OIO/ ?. This is the well-known paradox described in
[16] for the spline case. However, we have proved in [4] that the Bayesian predictor is
exactly ﬂ(z), the solution of the regularization approach and lies in the smaller space
H® (indeed, using classical injections, we have H* = Bj, c B, EB;_%/ ).
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Herein we present the BLUP (best linear unbiased predictor), f(l)7 for f(¢), using
only the observed data Y. The following definition of BLUP for a function f is a
natural extension of the parametric case (see [28]).

~

Definition 4.1. A predictor f{r), relying on the noised observation (data) Y
given in (1), is the BLUP for f(¢) in model (2) if and only if the following properties
hold:

() vr 3L, = (I(¢), ..., 1,(¢)) such that f{¢) = L,Y.

(1) vr Ef(1) = Ef (1) = u(1).

(i) v and V§ such that §(r) = L, Y and Eg(r) = Ef (¢), E[flt) —f()]* <E[g(s) —
S0P

The following theorem gives us the explicit form of the BLUP for predicting f (7).
Moreover, we state that the solution of the exact regularization problem is the BLUP
for a suitable choice of /.

Theorem 4.2. The BLUP for the prediction of f(t) in model (2), relying on the data Y,
is given by

A = L*Y, (11)
where the vector 1 x n, L¥, takes the form

Lf ="My 'o"T M 4 M7, — o(@T M ) dT MY,

@, &, X and X, are defined in Theorem 3.1 and M = (X + (¢ /b)I,). Moreover, with
the position nj. = 6* /b the following identity holds:

viel0,1] A1) = fi(t) where f;(t) is given by Theorem 3.1.

The proof of this result is deferred to Section A.2.

The predictor in (11) can be expressed in the equivalent formf(t) = @,4 + b'/24(1),
where & = (@M '@)'®T MY is the least square weighted predictor for the
model Y(t) = @0+ ¢ (1) with &(f) = b'?z(t) + oe(t), and b'22(t) = T, M (I —
O(@" M) '®T M) Y is the predictor of the centered Gaussian effect.

Remark 4.2. Since ﬁ(l) is solution of the variational problem (4) which is connected
with that discussed in [21], by Theorems 2.1 and 2.2 of [21] we conclude that ﬂ(z) is
the linear minimax estimator of f(¢) in the class {f € H*: H?/’JH?WI S"Tz}
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5. Wavelet approximated solution

To develop the approximated estimator f;, we assume that f belongs to H® and
without loss of generality n = 2. Moreover, we assume that there exists a function
h(t)e H*~! and two positive constants /; and %, such that 0 <h; </(f) <hy< oo and
f:*' h(t) dt = 1/n for any i. We introduce the function

H) /0 h(u) du

Note that H(0) =0, H(1) =1, H(t;) = i/n and in the equispaced case H(t) =t.
Moreover, since / is strictly positive, then H is invertible. With this assumption,
when f € H® we have that foH~! belongs to H* (where - denotes the composition of
two functions). Note that, since /(¢) is bounded from below and from above, we
have the following equivalence:

N, = 1 oH| 1, (12)

For any f'e L,[0, 1] the orthogonal projector in ¥y denoted Pyf is

V-1 271 N-1 2-1
Pyf = E ON kPN o = E T kP T+ Bl -
k=0 k=0 Jj=J k=0

The empirical orthogonal projector in Vy, denoted by ITyf, is defined for a function
f known on a general design, 0<t;<--- <t,<1, as

V_y 2Ny
S (ties1)
Iyf = Z(Z ——— oy H, on> | Owi
i=0

o, 2 , Vo1 N-1 2—1 .

cl.

DI AT DD DY (13)
i=0 k=0 j=J k=0

Expression of ITy simplifies when it is applied to a function f known on an
equispaced design. In this particular case we denote it ITy and we have

LA
HNf - IZO: \/ﬁ (PN,['

With this notations we have ITyf = Py(y(foH ')H).
Under the assumptions on the multiresolution analysis, the following approxima-
tion results hold, for any f e H*:

1 = Paf Iz, < CIANl 27>, (14)

1nf — Pyfll,<C27Y, (15)

ITInf — Pufllg, <C272Y, (16)
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where C is any constant independent of f', see [6] for the proof of results (14) and
(15); while, (16) comes from the following inequalities:

2
1Pf = Inf 112, < 1P| = T (foH)eH][7,
X ClfeH™ = Iy(f-H )|, < €27,

where the constant C does not depend on N. According to definition (13) we use the

projector Iy over the process, Y, known on the design fy, ..., 1,, in the following
sense:
) V] 21 N-1 21
ONY =) enion,= Y Craprp+ dikV;k (17)
i=0 k=0 J=J k=0

and similarly over the noise ¢ as

2N 1 271 N—1 2-1
five =" aiioni =D %un+ > D Bulix (18)
=0 =0 =7 k=0

Due to the linearity of the operator Iy, we have
EN‘rk = Oc/;V,k + a?\/,k? hence EJJ( = chak + OC‘SI’k and j/k = ﬁj’k —+ ﬁ;,k'

Since [IyY (resp. Pyf) belongs to Vy, the coefficients {¢;x, kK =0,...,27 —
I; c?}ﬁh j=J,...,N—1, k=0,...,27 — 1} (resp. oyx and B, ) are obtained using
the FWT (Mallat’s algorithm) from the coefficients ¢y (resp. o k).

In a general design setting, we suppose the function H known or easily estimated
and we define the n X n matrix

P = ({onoH, Qn ;D )ico... 2V 1. k=0... 251

then the empirical coefficients in (17) are evaluated by ¢, . = Py Y/+/n. Note that for
the equispaced design we have Py = I,, moreover in the general case Py is a sparse
matrix and it can be easily computed using the cascade algorithm.

Due to the orthonormality of the wavelet system, using the expression of J#-norm
in terms of wavelet coefficients given in (7) and approximation results given in (14)—
(16), the exact minimization problem (4) can be approximated up to a term of order
0(2=>N) by the following one:

B>
Lo tAY i—" (19)

Jik J

IINY = Pnf|

Next, using the expansion of Pyf and IIyY in terms of wavelet coefficients,
minimizing expression (19) with respect to fe# is equivalent to minimize the
following expression with respect to the coefficients (oc 2) and (B ) 4

w V-1 B/Zk
EOID

J=N i

2/ 1 N-1

i
Z(Oﬂj,k — )+ [ Bix —

k=0 j=J k=0

N
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Such an expression is minimum for the coefficients (d; ), and (f;x) defined by

&y, =Tk, k=0,..2 -1,

~ Aj ‘
ik=——dip, J<JSN-1; k=0,...,2 -1,

Bk PRy lj k J

Bix =0, j=N; k=0,...,2 —1

and the approximated solution denoted f; is given by

271 N-1 2-1

L= 0+ Bl
= = o

Remark 5.3. Note that the expression of f; coincides with the one obtained for the
equispaced design in [2,6].

In [2.6] it is already proved that the approximated estimator f;, in the equispaced
design case and for a particular choice of the parameter 4, converges to the unknown

function f with the optimal rate (/(n 2s+1) when mean integrated squared error is
concerned. The rate of f; is given up to a constant whereas the rate of f; is minimax.

The following theorem states that the same property for estimator f; holds in the
nonequispaced design case.

Theorem 5.1. Under the regularity assumption on the wavelet bases, for f € H® with
s>1/2, we have

3 ; 1
MISE(f;) = Ellfy = fIP<0@ 7" + 4 +2""N +27V7),
2s
moreover, when taking A = O(n 2s+1) we have

o 25
MISE(f;) = O(n 2s+1).
The proof of this result is deferred to Section A.3.

6. Numerical results

In this section we show some results obtained by applying the “approximated”
wavelet estimator f; to simulated and real data. It is known that the choice of the
smoothing parameter A can deeply affect the optimal rate of convergence of the
estimator. In order to preserve the optimal rate property we need to select it in a
‘good’ way. In the following experiments, the choice of 4 has been done according to
the GCYV criterion (see [34]).

In [2,3] is proved that f; endowed with GCV reaches the optimal rate of
convergence.
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6.1. Simulated data

To show the behavior of the estimator f;, both for the equispaced
and nonequispaced design, some numerical experiments have been worked out.
Data have been generated according to model (1) with signal-to-noise ratio
(SNR) equal to 3. In order to measure the performance of ﬂ we consider index R,
defined as

Ro= 1S i) - 1w
k=1

and we evaluate it, for each test function, over different realizations of noise.
Moreover, we compare f; with the local and global spline estimators recently studied
in [8] and with the local polynomial estimator proposed in [29]. Indeed, the local
spline estimator for univariate models have a roughness penalty that adapts to
spatial heterogeneity of the regression function. The estimates are p-th degree
piecewise polynomials with p — 1 continuous derivatives. A large and fixed number
of knots are used and smoothing is achieved by adding a quadratic penalty on the
jumps of the pth derivative in the knots. To be spatially adaptive, the penalty
is itself a linear spline but with relatively few knots and values in the knots
chosen to minimize GCV. For our comparisons we consider the p-spline with p = 2
which was recognized to be the most efficient in [8]. The global spline estimator is
almost equivalent to the classical smoothing spline estimator. The local polynomial
estimator is a classical and well suited method to treat the boundary effects which are
well recognized drawbacks when using periodic wavelets. Spatial adaptivity of the
local polynomial estimator described in [29] is achieved by using a data-dependent
bandwidth selection. We have explored many functions (not showed here for the
sake of brevity) and as it has been pointed out in [8], the local spline estimator has a
really good performance over heterogeneous functions and sometimes outperforms
the other estimators. In such cases f;, the global spline and the local polynomial
estimators are comparable. However the computational cost of the local spline
estimator is often much larger than the one of f;. From our intensive simulations we
have found that in many cases the behavior of the four estimators is similar and f;
can also outperform global, local spline and local polynomial estimators, especially
for functions which exhibit some singularities. In any case we stress that the
advantage of using the “approximated” wavelet estimator is mainly due to its lower
computational cost.
We consider three different kinds of test functions defined for 7€[0, 1]:

® An infinitely times differentiable function:
fi(t) = 0.5+ 0.2 cos(4nt) + 0.1 cos(24nx).

® A function that has a discontinuity in the first derivative:

Sr(t) = exp(=|r = 1/2]).
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® A well-known discontinuous function, Heavysine, that does not satisfy the
assumptions of Theorem 5.1, but represents a typical 1-D signal.

In Figs. 1 and 2 we show, for a particular realization of noise and for the test
functions fi(z) and Heavysine, respectively, the noisy observations and the true
function, the estimates obtained using the wavelet estimator, the local spline
estimator, the global spline estimator and the local polynomial estimator, for a
sample size n = 2° in the case of equispaced data. Moreover, in the lower right part
of Figs. 1 and 2 we show the boxplots of R, using the four methods over 500
simulated samples for the same test functions and grid design. They reveal a better
performance of the wavelet estimator when applied to test functions f;. Indeed, the
wavelet estimator f; is able to keep the second cosine component often regarded as
noise (in several samples) when using the other methods. When Heavysine is
considered the wavelet estimator reconstructs better the main singularity.

Wave - 512 Wavelet Local Spline
1 1
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0.6 0.6
0.4 0.4
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0 0
0 0.5 1 0 0.5 1 0 0.5 1
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1 1 T T |
6 ! ! ‘
0.8 0.8 ! w |
5 [
0.6 0.6 ‘
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0.4 0.4 o %
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0.2 0.2 E
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P S
0 0.5 1 0 0.5 1 1 2 3 4

Fig. 1. Plot true and noisy functions (upper left) and the regularized solution obtained using the wavelet
estimator endowed with GCV (upper middle), the local spline estimator (upper right), the global spline
estimator (lower left), and the local polynomial estimator (lower middle). In the lower right panel the
boxplots of R, computed over 500 simulated samples are showed for the four methods: (1) Wavelet
estimator, (2) Local spline estimator, (3) Global spline estimator and (4) Local polynomial estimator. The
test function is fi, n = 2°, SNR = 3 and the design is regular.
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Fig. 2. Plot true and noisy functions (upper left) and the regularized solution obtained using the wavelet
estimator endowed with GCV (upper middle), the local spline estimator (upper right), the global spline
estimator (lower left), and the local polynomial estimator (lower middle). In the lower right panel the
boxplots of R, computed over 500 simulated samples are showed for the four methods: (1) Wavelet
estimator, (2) Local spline estimator, (3) Global spline estimator and (4) Local polynomial estimator. The
test function is HeavySine, n = 2°, SNR = 3 and the design is regular.

Next, to present the previous estimators in the nonequispaced case, we use the test
function f>(¢) and the following grid design:

el — 1

f; = i=1,..n (20)

e—1"

The computational results, in this situation are presented in Fig. 3. For the

considered sample size n = 2° the mean behaviors of the four estimators are similar,
but when 7z increases the performance of the wavelet estimator improves.

6.2. A real data application

The estimator f; has been applied to a real data example concerning with human
event-related potentials (ERPs) records described in [23]. Ten subjects were
presented five squares, one of which was randomly green colored; then a circle
randomly appears inside one of the boxes. If the circle fills the attended green box,
then the subject is required to press a thumb button as soon as possible. ERP records
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Fig. 3. Plot true and noisy functions (upper left) and the regularized solution obtained using the wavelet
estimator endowed with GCV (upper middle), the local spline estimator (upper right), the global spline
estimator (lower left), and the local polynomial estimator (lower middle). In the lower right panel the
boxplots of R, computed over 500 simulated samples are showed for the four methods: (1) Wavelet
estimator, (2) Local spline estimator, (3) Global spline estimator and (4) Local polynomial estimator. The
test function is f>, n = 2°, SNR = 3 and the design is given in (20).

are sampled at 512 Hz for 1000 ms (i.e. each record consists of 512 equispaced noisy
observations). The original experiment arises in a different context, here we would like
to describe the mean behavior of the observed measurements. In fact, smoothed data
are used for classification or other purposes. In Figs.4 and 5 we show the noisy
observations and the estimates obtained applying f;, the local and global spline and the
local polynomial estimates, for two different records. Analysis of figures shows a
comparable mean behavior of the four estimators. Since a periodic wavelet basis is used
in the computation, some boundary effects are visible for the wavelet estimate. This
drawback could be reduced by using boundary corrected wavelets. For many
applications of interest for this particular data set, the boundary effects are not crucial.

7. Conclusions

In this paper the BLUP is obtained using an orthogonal wavelet basis. A wavelet
estimator, f;, fast and easy to compute is proposed. We prove that f; achieves the
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Fig. 4. Plot evoked potential as a function of time: noisy observations (o) and wavelet estimator endowed
with GCV (continuous line), local and spline estimator (dash-dotted and dashed lines respectively) and the
local polynomial estimator (dotted line) for record 1.

usual optimal rate of convergence in the MISE sense over a Sobolev class. Numerical
experiments on simulated and real data are presented and comparisons with local
and global spline and local polynomial estimators are carried out. As a general
conclusion, we suggest to use wavelet estimator when the size of the sample is large.
The wavelet estimator should be also used when the regression function presents
some singularities, global spline estimator when the function is smooth and local
spline or local polynomial estimators when heterogencous smooth functions are
considered.

Acknowledgments

Work supported by CNR and CNRS in the framework of the project *“Metodi
basati sulle wavelets per la stima non parametrica e la regolarizzazione di problemi
malposti”. Authors wish to deeply thank Professor Anestis Antoniadis and Dr.
Umberto Amato for stimulating discussions and continuous encouragement to the
work. The authors are also grateful to the associated editor and to the referees for
their useful comments which significantly improved the presentation of the paper.



C. Angelini et al. | Journal of Multivariate Analysis 85 (2003) 267-291 285

Record 2
T T T T T T T T T
(o]
1r o o © .
° o
(o]
o a4
[e} Oo o 0o
05 °20&50 -
X\ o Ooo %0 ° g%dc’)c
oo g ©
° 0003 8|
— . © o0
?x_ 0 S o X
= %
T Oooo °, IZ@ (o)
e o o
g ° °
2 -05 ° 00 o -
0°,2,° © o
o o
o
-1 i
o Data
—— Wavelet estimator
.15 — Local Spline H
° Global Spline
- Local Polynomial
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

Fig. 5. Plot evoked potential as function of time: noisy observations (¢) and wavelet estimator endowed
with GCV (continuous line), local and spline estimator (dash-dotted and dashed lines respectively) and the
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Appendix A

In this section we give the proofs of all main results we have obtained. In
the proofs we use the notations p = (u(t1), on(ta), 2= (z(1), ..., 2z(t,))" and

&= (817 "'78}1)T

A.1. Proofs of the results in Section 3

Proof of Proposition 2.1. To prove the result we have to check the following
properties:

(i) Vte[0,1], K,eH" .

(i) Vf e H*, (Kif > =1 (0):

We have the following wavelet expansion for K;:

2/ 1 2-1

Ki(-) = Z FOIITIORE Z Z’lﬂﬁj,k(l)l//j,k(')
k=0

Ji>J k=0
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Next, using the inner product in H* defined in (6) we have

2/—1 -1

|Kz||H: Z@Jk +Z 22}32) lp,k

j=J

The first term in the right-hand side of the previous expression is obviously finite,
because J is finite and ¢, is bounded. Moreover, due to the compact support

property of , sz ! n 2. (1) is bounded by ¢(2). Then the choice 4; = 2-% implies
that ;. , 23177 < o0 as soon as s>1/2. Hence the second term being also
bounded (i) holds.

When using the wavelet expansion of K, bilinearity of the inner product and
properties given in Lemma 2.2, by straightforward calculations, the choice 4; = 279

implies (i1). O

Proof of Theorem 3.1. In this proof we omit the subscript # in the inner product
{+,-> # (or in the norm || - || ). By a property of Hilbert space, the minimizerﬂ of
(4) admits the representation

2/ 1

ZOUWMJFZCZKIJFP, (A1)

2f 2f

where p is some element in | (hence perpendicular to ) perpendicular to

Ktln ...,K}”. Before going further on in the proof we remark that since pe#; is
perpendicular to Ktli and 2, is a self-adjoint operator, for any i=1,...,n, the

following equalities hold:

(p. K,y =<2p, K> = <p, 21K, = {p,K}> =0,

(K, K> = (K K> =K' (1,17).
Now we compute the two terms which constitute (4) using expression (A.1) and the
previous remark. Since these calculations mimic the proof given in page 12 of

Wahba’s book (see [34]) we outline the end of the proof.
The first term in (4) can be written as

Uy — (@5 + SdIR = (¥~ (@2 + 2d)T (Y ~ (@i + 3d) (A2)

Solving problem (4) with respect to f is equivalent to minimize the sum
of (A.2) and of 2||2, in,, multiplied by n with respect to the function p and the

vectors d and 4. The solution is given by p =0 and d and 4 are as given in the
theorem. [



C. Angelini et al. | Journal of Multivariate Analysis 85 (2003) 267-291 287

A.2. Proofs of the results in Section 4

Proof of Theorem 4.1. Put 4; = 2%(-1/2) Z;Ol (ﬁfk —/;). Since B, k=0, ...,

2 — 1, are centered Gaussian independent variables with Var(p; ) = 4;, we have
4j(s—1/4) 52
E4;=0 and Var(4;) =2 271952

Applying Markov inequality for any >0 to the r.v.s 4; for all j and summing up the
inequalities we obtain

2 .
Z P(|Aj|>6)<6_2 Z 24](~ 1/4),;_

j=J j=J

Suppose now that (ii) is true. Then the right-hand side of the previous inequality is
finite, hence the series of the general term P(|A4;|>¢) converges, which implies a.s.,
convergence of A4; to zero, by Borel Cantelli Lemma. Due to definition of A4;
this convergence implies that >3 2%0~1/2) ,8/2 . admits a finite limit, thus
sup;s; 2¥6-1/2 0] B < + oo (as.), which is equivalent to S(r)e By Y?[0,1] by
Lemma 2.1.

Conversely, suppose (i) holds; hence 2%6-1/2) $°7~ 1 /2k <c (a.s.) for some constant
¢ independent of j. Next, taking the expectation of both sides of this inequality we

obtain 2%¥06-1/2) Zi:ol J;<c which is equivalent to (i). O

Lemma A.1. Let A be a positive definite matrix of order m, B a m x k matrix

and u a k-dimensional vector. Denote by S~ any generalized inverse of BT A~'B.
Then

inf xTAx=u"Su
{xeR" s.t. BTx=u}

and the infimum is a minimum obtained at x* = A”'BS™u.

Proof. See [27]. O

Proof of Theorem 4.2. From properties (i) and (iii) of Definition 4.1, finding the
BLUP, f(t), is equivalent to solve the following constrained minimization problem:

inf E[L,Y — ()] A.
(L, s.:.nL,eV,} LY = ()], (A3)

where the constraint on L, = (/;.../,) is given in order to satisfy property (ii) of
BLUP’s definition. Such a condition can be explicitly written as
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Using the expression of Y and f(¢) given in (1) and (2), taking in account constraint
(A.4) and the independence between z and ¢, we obtain

E[LY —f(t))? =E[L(u+ 5"z + ae) — u(t) — b'*z(1)]
=L, Var(b'?z + ae) LT + b Var(z(1)) — 2bL,E(zz(2)).

It can be easily verified that Var(h'/?z + a¢) = (bZ + 6°I), Var(z(t)) = K'(t,1) and
E(zz(1)) = XT. Substituting these values, we have

E[LY — ()] = b{LML] + K'(1,0) — L,xT — 2,LT},
where M = (X + (¢2/b)I,). By standard calculation, the latter expression can be
rearranged as

E[L Y —f(0)] =b{(L - EM " YM(L, - £,M™")" + R},
where R = K'(#,1) — Z,M~'XT. Since R is independent of L, in the optimization

problem (A.3), it can be neglected. Hence, solving (A.3) is equivalent to solve the
constrained minimization problem

i — -1 _ —I\T
{L s}.ng,ey,}[(l" SMT)M(L -2 M)

By Lemma A.1, for x = (L, — Z,M")T, A=M,B=® and u = <I>,T — @TM’IZIT,
we immediately obtain the minimizer in (11). The last part of the theorem is
trivial. O

A.3. Proofs of the results in Section 5

Lemma A.2. Under the regularity assumption on the wavelet system and on the
Sfunction H and setting JeN, for any j=J and k =0, ...,j we have:

2 2
E(#,)’<Cay and E(B,)'<Coy J<j<N-1,

where C is a constant independent on N, o, and ﬂfk are defined in (18).

Proof. By definition we have the following expression for of

IN_| 9N_ - 2N
+
<§ E 7<§DN[°H ¢N,>¢N17¢Jk> E 81+1S, ,

where we define 57 = 3", a1 @y 1, @4 > With ay; = (o oH, py >

From the 1ndependence of the components of g, we obtain

12\—1 N " o2 N e
E(o )" =E| > Zwm/ %) =— > (&)

=0 [I'= =0
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To end the proof of the first part of the lemma we will show that Z,(S,J’k )? is
uniformly bounded with respect to N. Note that for fixed /, ¢ ,oH and ¢ ; have
compact supports with a nonempty intersection for a finite number of indices i only.
Furthermore, for any / and N this number is bounded by a constant K. Put my
and M; the minimum and the maximum index i such that g;; has a nonzero
value. Moreover, there is a constant « such that for any i and /[
ari<|loy ;(H)| |lon (Xl |Supp @ ;(x)| <a. Thus we have

M, M,

Jk

S = E , ari Py i Pyir <a E LONBPIKY
i=my i=my

and

M, M,
k —my—
(Sll' )2<a22M' ! Z Copis (PJJ(>2<C Z <(PN,57(PJ<k>2-

i:}’)”I[ i:IWI

Finally, by direct substitution

oV 1 -1 M oN_| MF
<C Z Z LONiPILD 2 =C Z Z <<PN,ia€0J,k>2
I:O 1=0 i=m i=0  I=m}
V]
<C max | M} — | Z <€0N,iv¢J,k>2<cl||<ﬂj,k||2Lz<C1~
i=0

In the previous step we have used the fact that if both my; and M; are strictly
increasing sequences such that max; |M; — m;| <K then we have max; |M}* — mf|<K.
For the second part of the lemma we put

12“1 2N 1

Z €rvl Z LoniH oy i > ON i VinD -

6

/k*\/—

As in the previous case, we state Z,(/["k)2< G. O

Proof of Theorem 5.1.
EIf, — AP < 22|f — Oy (f-H ) H|]> + [[Hy(f<H")oH — Iyf|

def.
+E|[nf — £ = 22(B1 + By + By).

Let us consider the term B;. When using equivalence in (12) and results in (14) and
(15), we obtain B; <C272M. Next we consider the term B,. Since the function
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Hy(feH ')oH e H*, due to (14) B, < C272™. Let us consider now the term B;. By
definition we have

Nt I = Y £+ Y Z( )“" )zwf ?
N. A - J k . j.]-f—l Jok

k=0 j=J k=0
N-1 f: P 2
oL 5 )
= = A2
Then applying Lemma A.2
El|Tnf —flll2
J 02 N-1 2, N1 2 y ,
(g B ()
j=J ./ Jj=J k=0
SC/ 2](72 O.2 0

1 o2
oo | ————dy+ A NS |
2N ' oN | (1 Jr}vyzx)z y || NfHH

The theorem is proved observing that the integral which appears in the previous

—1 _
expression is ((42s) and that ||IIyf ||%{ is uniformly bounded independently of N.
Indeed, for any function g€ H*, using (15), the following inequality holds:

1wl <I1Tng = Pugll e + |1Prgll e < C2%|1ng — Pugll + gl

Due to regularity of H, ||[[I1y(f<H ')oH|| ;. < C and applying the previous inequality
to g = Hy(foH ")oH we conclude. [
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