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Abstract

We show that a nonparametric estimator of a regression function, obtained as solution of a

specific regularization problem is the best linear unbiased predictor in some nonparametric

mixed effect model. Since this estimator is intractable from a numerical point of view, we

propose a tight approximation of it easy and fast to implement. This second estimator achieves

the usual optimal rate of convergence of the mean integrated squared error over a Sobolev

class both for equispaced and nonequispaced design. Numerical experiments are presented

both on simulated and ERP real data.
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1. Introduction and problem statement

In this work we consider the classical nonparametric regression problem with
additive noise:

ðti;YiÞ; i ¼ 1;y; n; Yi ¼ f ðtiÞ þ sei; where Eei ¼ 0; Ee2i ¼ 1; ð1Þ
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the ei’s are uncorrelated random variables and the ðtiÞ is a deterministic
(nonnecessarily regular) design. The value of s may be known or unknown. We
wish to estimate the unknown function f in a nonparametric framework. Hence f

will be supposed to belong to some smoothness classF: Problem (1) is studied under
two different sets of assumptions on the unknown function f : Either f is considered
as a deterministic function and the classF is a ball in a Sobolev space of regularity s

or f has the form

f ðtÞ ¼ mðtÞ þ b1=2zðtÞ; ð2Þ

where m is a deterministic function and z is a stochastic process which will be

specified later. In the first case, the data
%
Y ¼ ðY1;y;YnÞT are independent

observations. In the second case,
%
Y are correlated variables since they are noisy

observations of discretisation points of the process f : Moreover, according to the
specific structure of covariance considered for the stochastic process z; f lies in a
larger space than the Sobolev space considered under the deterministic hypothesis
for f :
It is a classical and well-known result that when estimating a deterministic f ; the

minimax rate obtained over some class F of Sobolev regularity s is of order

n�2s=ð2sþ1Þ if the mean integrated squared error (MISE) is considered (see for example
[19] or [30]).
Many different linear estimation procedures already exist to reach this rate. Some

kernel methods, orthogonal projection, local polynomial, wavelet or spline
estimators can be found for example in [2,5,6,14,15,17,34]. All these nonparametric
estimators depend on an unknown smoothing parameter. Hence, objective methods
were developed by a number of authors for selecting an optimal value of the
smoothing parameter (see for example [11,20,22,24]). Among these criteria we will
use the generalized cross-validation method.
The aim of this paper is twofold. Assuming that f is deterministic we propose a

linear estimator of f as a solution of a minimization problem defined in the wavelet
domain. We prove that this estimator is the best linear unbiased predictor for a
specific mixed effect regression function f given by (2). The computational

complexity of the algorithm to determine this estimator of f is of the order Oðn2Þ
and does not really take advantage of the fast wavelet discrete transform. Hence, we
propose a second estimator which is easy and fast to implement. This new estimator
is a tight approximation of the first one. Indeed, we prove that it achieves the same
rate of convergence for the MISE as the first one up to a constant.
WhenF is the classical Sobolev space Hs

2½0; 1�; where s is a strictly positive integer,

it can be defined as a reproducing kernel Hilbert spaceH (r.k.h.s.) with some specific
reproducing kernel (r.k.). In this framework precisely described in [34], the so called
s-th order smoothing spline is the minimizer of the functional

1

n

Xn

i¼1
ðYi � f ðtiÞÞ2 þ l

Z 1

0

½f ðsÞðxÞ�2 dx ð3Þ
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over the set H ¼ Hs
2½0; 1�: It is known that the s-th order smoothing spline achieves

the minimax rate of convergence of the MISE when the design is deterministic (see
[22]).
Herein we mimic the usual spline approach to generalize the estimation problem

over a Sobolev space with noninteger index. When s is a real number larger than 1=2
(hence including values of s less than one) we state that Hs

2½0; 1� is still a r.k.h.s

H ¼ H0"H1 with a reproducing kernel constructed with a wavelet basis. Next we

estimate f with the solution f̂l of the following penalized minimization problem:

min
fAH

1

n

Xn

i¼1
ðYi � f ðtiÞÞ2 þ ljjP1f jj2H; ð4Þ

where P1 denotes the orthogonal projector (with respect to the scalar product over
H) over the subspace H1:
For such an optimization problem, when taking l ¼ 0; the solution will

interpolate the points ðti;YiÞ by a function of Hs with a huge norm in the Sobolev
space. Conversely, taking l ¼ N leads to a solution with a small norm in Hs but

approximating badly the unknown function f : Hence the term ljjP1f jj2H which

penalizes the details in the wavelet expansion of f (equivalent to l
R 1
0 ½f ðsÞðxÞ�2dx

which penalizes wild oscillations of f in the spline approach) permits to make a
compromise between good approximation and smoothness of the investigated
solution. It remains to balance the bias and the variance of the resulting
nonparametric estimator.

As for the case of the spline regularization problem (3), we show that f̂l is also
solution of a connected problem. We make the assumption that f is the trajectory of
the process given by (2) where zðtÞ is a Gaussian process whose covariance function

is defined by the reproducing kernel K1 associated with H1 and b ¼ ln=s2: We then

prove that for this particular choice of the parameter b the estimator f̂l is the
minimum variance unbiased predictor for the unknown trajectory f : Under
assumption (2), f is the sum of a deterministic part and a random one which
describes, respectively, the fixed and the random effects with the specific covariance
structure described above, we show that it lies almost surely in a Besov space larger
than Hs: This phenomenon is intimately linked with the paradox already noticed by
many authors (see for example [34,16]) when interpreting a spline estimator in a

Bayesian setting. Indeed, in our case f̂l has also a Bayesian interpretation under the
same prior assumption than the one that are considered in mixed models (see [4]).
It is interesting and relevant to examine Bayesian analogs of corresponding

wavelet smoothing frequentist models and procedures. The connection between
smoothing methods based on penalized likelihood and mixed effect models and their
Bayesian interpretation has been often made implicitly in the literature, but to our
knowledge a notable exception on a formal use of such connections is Wahba’s 1983
paper (see [33]) exploiting the Bayesian interpretation to construct confidence
intervals about splines estimates. It is in the same spirit that we have developed our
method since the frequentist properties of confidence intervals for wavelet estimates
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are problematical. To keep the length of this paper reasonable we focus here on the
connection between wavelet smoother and BLUP. Our results about Bayesian
interpretation and construction of confidence intervals will be the subject of another
paper.

Since f̂lðtÞ is the solution of the regularization problem (4), due to a general result
of Li [21] it is the minimax linear estimator over a suitable Sobolev ball.
To conclude, this first part of the work generalizes the situation described in [34]

for Sobolev space Hs; to the case of s real number larger than 1/2. While achieving
the revised version of this paper we noticed that independently from us a similar
problem was studied in [18].

Practical formulas for the explicit solution f̂l are computer intensive and would
require a specific numerical treatment as it has been done for the smoothing spline,
where some special decompositions have been introduced. In fact for the splines case,
the Reinsch algorithm (see [16] and references therein) endowed with the GCV
criterion (see [11]) reduces the computational cost to the order OðnÞ: The same idea
cannot be directly applied for evaluating f̂l since the Reinsch algorithm is directly
related to the structure of the splines basis. We therefore propose an alternative

estimator, f̃lðtÞ; which is easier and faster to compute than f̂l: Indeed, f̃l requires
OðnÞ operations to be computed, using fast wavelet transform; moreover, compared
with smoothing spline algorithm, it does not suffer of instability and it can be
extended to noninteger s:

The approximated estimator f̃l was already studied in [2,6] for an equispaced

design. We show that f̃l is good enough to assure that it reaches the optimal rate

Oðn�2s=ð2sþ1ÞÞ also in the nonequispaced case.
To finish we present some numerical simulations and real data applications. We

furnish comparisons with other nonparametric estimators.
The paper is organized as follows: In Section 2, we recall the main definitions and

tools about wavelets and Besov spaces. Moreover, we prove that the Sobolev space
of regularity s with nonnecessarily integer index is a reproducing kernel Hilbert

space. Next, in Section 3 we define f̂l as the solution of a regularization problem and
we give its formal expression. In Section 4 we state the Gauss–Markov property

of f̂l; in the mixed effect model. Finally, Section 5 is devoted to the approximated

solution of f̂l; denoted f̃l; for both equispaced and nonequispaced designs. In
Section 6, numerical results on simulated and real data are discussed.

2. Wavelets and Besov spaces

2.1. Orthogonal wavelets on ½0; 1�

We start this section by briefly reviewing some useful facts from basic wavelet
theory, that will be used to derive our estimators. A general introduction to the
theory of wavelets can be found in [9,12,25,32,35]. The construction of orthonormal
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wavelet bases for L2ðRÞ is now well understood. There are many families of wavelets.
Throughout this paper we will consider compactly supported wavelets such as
Daubechies’ orthogonal wavelets. For the construction of orthonormal bases of

compactly supported wavelets for L2ðRÞ; one starts with a couple of special,
compactly supported functions known as the scaling function j and the wavelet c:
The collection of functions cj;kðxÞ ¼ 2j=2cð2jx � kÞ; j; kAZ; then constitutes an

orthonormal basis for L2ðRÞ: For fixed jAZ; the jj;kðxÞ ¼ 2j=2jð2jx � kÞ; kAZ are

an orthonormal basis for a subspace VjCL2ðRÞ: The spaces Vj constitute a

multiresolution analysis.
We denote Pjf ¼

P
kAZ /f ;jj;kSjj;k the orthogonal projection of f on the

approximation space Vj : The multiresolution analysis is said to be r-regular if j is

Cr; and if both j and its derivatives, up to the order r; have a fast decay. One can
prove that if a multiresolution analysis is r-regular, the wavelet c is also Cr and has
vanishing moments up to the order r (see [12, Corollary 5.2]). Moreover, we suppose
that the moments of j are equal to zero up to the order r except the zeroth one which
is equal to one. Such wavelets were constructed by Daubechies in 1990 and are called
coiflets (see [12]).

The smoother wavelets provide not only orthonormal bases for L2ðRÞ; but also
unconditional bases for several function spaces including Besov spaces (see [31]).
Let us consider now orthogonal wavelets on the interval ½0; 1�: Adapting wavelets

to a finite interval requires some modifications as described in [10]. To summarize,

for J such that 2J
X2r; the construction in [10] furnishes a finite set of 2J scaling

functions jJ;k; and for each jXJ; 2j functions cj;k; such that the collection of these

functions forms a complete orthonormal system of L2½0; 1�: With this notation, the
L2½0; 1� reconstruction formula is

f ðtÞ ¼
X2J�1

k¼0
aJ;kjJ;kðtÞ þ

X
jXJ

X2j�1

k¼0
bj;kcj;kðtÞ; ð5Þ

where aJ;k ¼
R
½0;1� f ðtÞjJ;kðtÞ dt; bj;k ¼

R
½0;1� f ðtÞcj;kðtÞ dt and we denote jjf jj2 ¼R

½0;1� f 2ðtÞ dt:

2.2. Besov spaces

In the following, we will use Besov spaces on ½0; 1�; Bs
p;q which are rather general

and very well described in terms of sequences of wavelet coefficients. In particular for
a suitable choice of the three parameters ðs; p; qÞ we can get Sobolev spaces or Hölder
spaces. For the definition of Besov spaces, properties and functional inclusions we
refer to [31]. Here we just give the following characterization of the Besov space Bs

p;q

in terms of wavelet coefficients of its elements.

Lemma 2.1. Let 0op; qpN and s4maxfð1=p � 1Þ; 0g: If the scaling function j and

the wavelet function c correspond to a multiresolution analysis of L2½0; 1� that is
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ð½s� þ 1Þ-regular (here ½�� stands for the integer part), then a function f in Lp½0; 1�
belongs to the Besov space Bs

p;q if and only if it admits the decomposition (5) such that

jjf jjBs
p;q

� jjðaJ;kÞkjjlp þ
X
jXJ

2jqðsþ1=2�1=pÞjjðbj;kÞkjj
q
lp

 !1=q

oþN

for JAN: The jjf jjBs
p;q

is equivalent to the Besov space norm.

For a proof see [13].
Let Hs denote the Sobolev space of functions of L2½0; 1� with noninteger s: By

classical embedding relations (see for example [31]) we have Hs ¼ Bs
2;2: Using

Lemma 2.1, we can consider the following inner product over Hs for any fAHs and
gAHs:

f ¼
X2J�1

k¼0
af

J;kjJ;k þ
X
jXJ

X2j�1

k¼0
bf

j;kcj;k;

g ¼
X2J�1

k¼0
ag

J;kjJ;k þ
X
jXJ

X2j�1

k¼0
bg

j;kcj;k;

/f ; gSHs ¼ /ðaf
J;kÞk; ða

g
J;kÞkSl2 þ

X
jXJ

22js/ðbf
j;kÞk; ðb

g
j;kÞkSl2 : ð6Þ

The set of functions fjJ;k; k ¼ 0;y; 2J � 1;cj;k; jXJ; k ¼ 0;y; 2j � 1g is an

orthogonal (but not orthonormal) basis of Hs: Indeed, we have

Lemma 2.2. Let J be an integer. For any jXJ; j0XJ; k; k0AZ;

(i) /jJ;k;jJ;k0SHs ¼ dk;k0 ;

(ii) /jJ;k;cj;k0SHs ¼ 0;

(iii) /cj;k;cj0;k0SHs ¼ dj;j0dk;k022js:

The proof of this result is straightforward so it is omitted.

2.3. Wavelet reproducing kernel Hilbert space

For a complete review on r.k.h.s. we refer to [7]. Put J a fixed integer and

introduce the two following symmetric real valued functions defined on ½0; 1�2:

K0ðs; tÞ ¼
X2J�1

k¼0
jJ;kðsÞjJ;kðtÞ and K1ðs; tÞ ¼

X
jXJ

X2j�1

k¼0
ljcj;kðsÞcj;kðtÞ;

where 8jXJ; ljARþ such that
P

jXJ 2
jljoþN:

Note that, since c is bounded and compactly supported, for any fixed tA½0; 1�;P
k jc

n
j;kðtÞj is bounded by Oð2nj=2Þ for any n40: Thus

P
j lj2

joþN guarantees that
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K1ðs; tÞ is bounded for any ðs; tÞA½0; 1�2: Moreover, K0 and K1 are obviously
positive-definite functions. Hence we can define two unique reproducing kernel

Hilbert spaces H0 andH1 with K0 and K1 as their reproducing kernels. We observe

that H0 ¼ VJ ¼ spanfjJ;k; k ¼ 0;y; 2J � 1g: SinceZ
½0;1�2

½K0ðs; tÞ�2 ds dt ¼ 2JoN and

Z
½0;1�2

½K1ðs; tÞ�2 ds dtoN;

from the general theory of r.k.h.s. (see [34, Lemma 1.1.1.]), we have that fAH0 and
fAH1 if and only if

jjf jj2H0
¼def :

X2J�1

k¼0
a2J;koN and jjf jj2H1

¼def :
X
jXJ

X2j�1

k¼0

b2j;k
lj

oN:

We define the direct sum, H; of the two spaces H0 and H1 as: H ¼ H0"H1

where H is endowed with the norm jjf jj2H ¼ jjf jj2H0
þ jjf jj2H1

: Due to [7] H is a

r.k.h.s. Since H0 and H1 are orthogonal in L2 by construction and the H-norm is
defined through the H0-norm andH1-norm, we keep orthogonality (in H) between
H0 and H1: The associated scalar product will be denoted /:; :SH and its
reproducing kernel is given by

Kðs; tÞ ¼
X2J�1

k¼0
jJ;kðsÞjJ;kðtÞ þ

X
jXJ

X2j�1

k¼0
ljcj;kðsÞcj;kðtÞ;

so for any fAH:

jjf jj2H ¼ jjP0f jj2H0
þ jjP1f jj2H1

¼
X2J�1

k¼0
a2J;k þ

X
jXJ

X2j�1

k¼0

b2j;k
lj

; ð7Þ

where Pi denotes the projection over Hi; i ¼ 0; 1: Moreover, setting Ktð�Þ ¼
Kðt; �Þ ¼ Kð�; tÞ (resp. Kl

t ð�Þ ¼ Klðt; �Þ ¼ Klð�; tÞ; for l ¼ 0; 1), Kt (resp. Kl
t ) is the

representer of the evaluation functional at t in H (resp. in Hl), i.e.,

8fAH; /f ;KtSH ¼ f ðtÞ and 8fAHl ; /f ;Kl
tSHl

¼ f ðtÞ:

Next, for some particular choices of lj we state that the r.k.h.s.H coincides with the

Sobolev space Hs; for any real s41=2:

Proposition 2.1. Let s41=2; put lj ¼ 2�2js and suppose that ðj;cÞ defines a

multiresolution analysis of L2½0; 1� that is ð½s� þ 1Þ-regular, then

Hs ¼ H:

The proof of this result is deferred to Section A.1.
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3. Regularization approach

In this section we solve a regularization problem (following the spline

regularization approach developed in [34]) over a reproducing kernel Hilbert space
(r.k.h.s.) which will coincide with a Sobolev space endowed with a wavelet
orthogonal basis. The solution of (4) is given by the following theorem.

Theorem 3.1. Let F be the n � 2J matrix defined by Fi;k ¼ jJ;kðtiÞ for any i ¼ 1;y; n

and k ¼ 0;y; 2J � 1 and Ft the 1� 2J row matrix defined by F1;k ¼ jJ;kðtÞ for any

k ¼ 0;y; 2J � 1 and for any tA½0; 1�: Moreover, let S be the n � n matrix defined by

Si;j ¼ K1ðti; tjÞ for any i ¼ 1;y; n and j ¼ 1;y; n and St the 1� n matrix defined by

St;j ¼ K1ðt; tjÞ for any j ¼ 1;y; n and for any tA½0; 1�:
The minimizer of problem (4) is given by

f̂lðtÞ ¼
X2J�1

k¼0
#aJ;kjJ;kðtÞ þ

Xn

i¼1
d̂iK

1
ti
ðtÞ

¼Ft #aþ Std̂; ð8Þ

where

#a ¼ ð#aJ;0;y; #aJ;2J�1ÞT ¼ ðFT *S�1FÞ�1FT *S�1
%
Y;

d̂ ¼ ðd̂1;y; d̂nÞT ¼ *S�1ðIn � FðFT *S�1FÞ�1FT *S�1Þ
%
Y;

*S ¼ Sþ nlIn and
%
Y ¼ ðY1;y;YnÞT : ð9Þ

The proof of this result is deferred to Section A.1.

Note that f̂lðtÞ can be written in terms of a wavelet expansion as follows:

f̂lðtÞ ¼
X2J�1

k¼0
#aJ;kjJ;kðtÞ þ

X
jXJ

X2j�1

k¼0
bj;kcj;kðtÞ where bj;k ¼

Xn

i¼1
lj d̂icj;kðtiÞ:

4. Mixed model approach

Linear predictors of unknown mixed effects, relying on noisy observations
%
Y ¼

ðY1;y;YnÞT of f at the design points t1;y; tn; are often considered in a large
number of applications for their simplicity and their power. In [28] a rather complete
survey is presented for parametric estimation in mixed models. Moreover, some
examples are studied under mixed model hypothesis and classical regression model.
The comparison of these approaches shows clearly why ‘‘mixed model is a good

thing’’ in certain situations.
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We will study (1) in a mixed model framework. Recall that the observed data,
%
Y;

are discretized observations (at fixed points t1;y; tn) of the trajectory of a stochastic
process YðtÞ given by

Y ðtÞ ¼ f ðtÞ þ seðtÞ; tA½0; 1�;

where f has the form (2) and feðtÞ; tA½0; 1�g is a zero mean Gaussian process with

CovðeðsÞ; eðtÞÞ ¼ dst: Moreover, we assume that mðtÞ ¼
P2J�1

k¼0 aJ;kjJ;kðtÞ and

f
ffiffiffi
b

p
zðtÞ; tA½0; 1�g is a centered Gaussian process with covariance function

EðzðsÞzðtÞÞ ¼ K1ðs; tÞ: Since
R R

½0;1�2 K1ðt; sÞ ds dtoþN; K1 admits the Karhunen–

Loëve expansion and hence the following representation in quadratic mean holds:

ffiffiffi
b

p
zðtÞ ¼

X
jXJ

X2j�1

k¼0
bjkcjkðtÞ; ð10Þ

where bjk are independent and bjkBNð0; ljÞ; (see [26] for the proof). Under the

assumptions described by (2) and (10), the trajectories of the processes zðtÞ and f ðtÞ
belong to a space of regular functions. We state that the regularity of this space
depends on the choice of the sequence lj: We have:

Theorem 4.1. Let s41=2 and suppose that the wavelet system fcjkgj;k is fixed and is

½s� þ 1-regular. Consider the stochastic series,

SðtÞ ¼
X
jXJ

X2j�1

k¼0
bjkcjkðtÞ;

where bjk are centered independent normal random variables such that VarðbjkÞ ¼ lj ;

then the following properties are equivalent:

(i) each sample of the stochastic series SðtÞ belongs to B
s�1=2
2;N ½0; 1�; almost surely

ða:s:Þ:
(ii) lj ¼ Oð2�2jsÞ:

The proof of this result is deferred to Section A.2. A more general result has been
proved in [1].

As for the regularization approach we assume that lj ¼ 2�2js; hence f lies in B
s�1=2
2;N

by Theorem 4.1.

Remark 4.1. We observe that in the regularization approach we assumed that, for

the choice of lj ¼ 2�2js; the unknown function f belongs to the Sobolev space Hs: In

the mixed model approach the unknown f is assumed to be a sample path that

belongs a.s. to a larger space, B
s�1=2
2;N : This is the well-known paradox described in

[16] for the spline case. However, we have proved in [4] that the Bayesian predictor is

exactly f̂lðtÞ; the solution of the regularization approach and lies in the smaller space
Hs (indeed, using classical injections, we have Hs ¼ Bs

2;2DB
s�1=2
2;2 DB

s�1=2
2;N ).
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Herein we present the BLUP (best linear unbiased predictor), f̂ðtÞ; for f ðtÞ; using
only the observed data

%
Y: The following definition of BLUP for a function f is a

natural extension of the parametric case (see [28]).

Definition 4.1. A predictor f̂ðtÞ; relying on the noised observation (data)
%
Y

given in (1), is the BLUP for f ðtÞ in model (2) if and only if the following properties
hold:

(i) 8t (Lt ¼ ðl1ðtÞ;y; lnðtÞÞ such that f̂ðtÞ ¼ Lt
%
Y:

(ii) 8t Ef̂ðtÞ ¼ Ef ðtÞ ¼ mðtÞ:
(iii) 8t and 8 *g such that *gðtÞ ¼ L̃t

%
Y and E *gðtÞ ¼ Ef ðtÞ; E½f̂ðtÞ � f ðtÞ�2pE½ *gðtÞ �

f ðtÞ�2:

The following theorem gives us the explicit form of the BLUP for predicting f ðtÞ:
Moreover, we state that the solution of the exact regularization problem is the BLUP
for a suitable choice of l:

Theorem 4.2. The BLUP for the prediction of f ðtÞ in model (2), relying on the data
%
Y;

is given by

f̂ðtÞ ¼ Ln

t
%
Y; ð11Þ

where the vector 1� n; Ln
t ; takes the form

Ln

t ¼ FtðFT M�1FÞ�1FT M�1 þ StM
�1ðIn � FðFT M�1FÞ�1FT M�1Þ;

F; Ft; S and St are defined in Theorem 3.1 and M ¼ ðSþ ðs2=bÞInÞ: Moreover, with

the position nl ¼ s2=b the following identity holds:

8tA½0; 1� f̂ðtÞ ¼ f̂lðtÞ where f̂lðtÞ is given by Theorem 3:1:

The proof of this result is deferred to Section A.2.

The predictor in (11) can be expressed in the equivalent form f̂ðtÞ ¼ Ft #aþ b1=2ẑðtÞ;
where #

%
a ¼ ðFT M�1FÞ�1FT M�1

%
Y is the least square weighted predictor for the

model YðtÞ ¼ Ft
%
aþ e0ðtÞ with e0ðtÞ ¼ b1=2zðtÞ þ seðtÞ; and b1=2ẑðtÞ ¼ StM

�1ðI �
FðFT M�1FÞ�1FT M�1Þ

%
Y is the predictor of the centered Gaussian effect.

Remark 4.2. Since f̂lðtÞ is solution of the variational problem (4) which is connected

with that discussed in [21], by Theorems 2.1 and 2.2 of [21] we conclude that f̂lðtÞ is
the linear minimax estimator of f ðtÞ in the class ffAHs: jjP1f jj2H1

ps2
l g:
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5. Wavelet approximated solution

To develop the approximated estimator f̃l; we assume that f belongs to Hs and

without loss of generality n ¼ 2N : Moreover, we assume that there exists a function

hðtÞAHs�1 and two positive constants h1 and h2 such that 0oh1phðtÞph2oN andR tiþ1
ti

hðtÞ dt ¼ 1=n for any i: We introduce the function

HðtÞ ¼def :
Z t

0

hðuÞ du:

Note that Hð0Þ ¼ 0; Hð1Þ ¼ 1; HðtiÞ ¼ i=n and in the equispaced case HðtÞ ¼ t:
Moreover, since h is strictly positive, then H is invertible. With this assumption,

when fAHs we have that f 3H�1 belongs to Hs (where 3 denotes the composition of
two functions). Note that, since hðtÞ is bounded from below and from above, we
have the following equivalence:

jjf jjL2
Ejjf 3HjjL2

: ð12Þ

For any fAL2½0; 1� the orthogonal projector in VN denoted PNf is

PNf ¼
X2N�1

k¼0
aN;kjN;k ¼

X2J�1

k¼0
aJ;kjJ;k þ

XN�1

j¼J

X2j�1

k¼0
bj;kcj;k:

The empirical orthogonal projector in VN ; denoted by %PNf ; is defined for a function
f known on a general design, 0pt1o?otnp1; as

%PNf ¼
X2N�1

i¼0

X2N�1

k¼0

f ðtkþ1Þffiffiffi
n

p /jN;k3H;jN;iS

 !
jN;i;

¼def :
X2N�1

i¼0
af

N;ijN;i ¼
X2J�1

k¼0
af

J;kjJ;k þ
XN�1

j¼J

X2j�1

k¼0
bf

j;kcj;k: ð13Þ

Expression of %PN simplifies when it is applied to a function f known on an
equispaced design. In this particular case we denote it PN and we have

PNf ¼
X2N�1

i¼0

f ðiþ1
n
Þffiffiffi

n
p jN;i:

With this notations we have %PNf ¼ PNðPNðf 3H�1Þ3HÞ:
Under the assumptions on the multiresolution analysis, the following approxima-

tion results hold, for any fAHs:

jjf � PNf jj2L2
pCjjf jjHs2�2sN ; ð14Þ

jjPNf � PNf jj2L2
pC2�2sN ; ð15Þ

jj %PNf � PNf jj2L2
pC2�2sN ; ð16Þ
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where C is any constant independent of f ; see [6] for the proof of results (14) and
(15); while, (16) comes from the following inequalities:

jjPNf � %PNf jj2L2
p jjPN jj2L2

jjf �PNðf 3H�1Þ3Hjj2L2

ECjjf 3H�1 �PNðf 3H�1Þjj2L2
pC2�2Ns;

where the constant C does not depend on N: According to definition (13) we use the

projector %PN over the process, Y ; known on the design t1;y; tn; in the following
sense:

%PNY ¼
X2N�1

i¼0
%cN;ijN;i ¼

X2J�1

k¼0
%cJ;kjJ;k þ

XN�1

j¼J

X2j�1

k¼0

%dj;kcj;k ð17Þ

and similarly over the noise e as

%PNe ¼
X2N�1

i¼0
aeN;ijN;i ¼

X2J�1

k¼0
aeJ;kjJ;k þ

XN�1

j¼J

X2j�1

k¼0
bej;kcj;k: ð18Þ

Due to the linearity of the operator %PN ; we have

%cN;k ¼ af
N;k þ aeN;k; hence %cJ;k ¼ af

J;k þ aeJ;k and %dj;k ¼ bf
j;k þ bej;k:

Since %PNY (resp. PNf ) belongs to VN ; the coefficients f%cJ;k; k ¼ 0;y; 2J �
1; %dj;k; j ¼ J;y;N � 1; k ¼ 0;y; 2j � 1g (resp. aJ;k and bj;k) are obtained using

the FWT (Mallat’s algorithm) from the coefficients %cN;k (resp. aN;k).

In a general design setting, we suppose the function H known or easily estimated
and we define the n � n matrix

PH ¼ ð/jN;k3H;jN;iSÞi¼0;y;2N�1; k¼0;y;2N�1;

then the empirical coefficients in (17) are evaluated by %cN;� ¼ PH
%
Y=

ffiffiffi
n

p
: Note that for

the equispaced design we have PH ¼ In; moreover in the general case PH is a sparse
matrix and it can be easily computed using the cascade algorithm.
Due to the orthonormality of the wavelet system, using the expression ofH-norm

in terms of wavelet coefficients given in (7) and approximation results given in (14)–
(16), the exact minimization problem (4) can be approximated up to a term of order

Oð2�2sNÞ by the following one:

jj %PNY � PNf jj2L2½0;1� þ l
X
j;k

b2j;k
lj

: ð19Þ

Next, using the expansion of PNf and %PNY in terms of wavelet coefficients,
minimizing expression (19) with respect to fAH is equivalent to minimize the
following expression with respect to the coefficients ðaJ;kÞk and ðbj;kÞj;k:X2J�1

k¼0
ðaJ;k � %cJ;kÞ2 þ

XN�1

j¼J

X2j�1

k¼0
ðbj;k � %dj;kÞ2 þ l

b2j;k
lj

" #
þ l

XN
j¼N

X2j�1

k¼0

b2j;k
lj

:
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Such an expression is minimum for the coefficients ð*aJ;kÞk and ð *bj;kÞ defined by

*aJ;k ¼ %cJ;k; k ¼ 0;y; 2J � 1;

*bj;k ¼ lj

lj þ l
%dj;k; JpjpN � 1; k ¼ 0;y; 2j � 1;

*bj;k ¼ 0; jXN; k ¼ 0;y; 2j � 1

8>>><
>>>:

and the approximated solution denoted f̃l is given by

f̃l ¼
X2J�1

k¼0
*aJ;kjJ;k þ

XN�1

j¼J

X2j�1

k¼0

*bj;kcj;k:

Remark 5.3. Note that the expression of f̃l coincides with the one obtained for the
equispaced design in [2,6].

In [2,6] it is already proved that the approximated estimator f̃l; in the equispaced
design case and for a particular choice of the parameter l; converges to the unknown

function f with the optimal rate Oðn� 2s
2sþ1Þ when mean integrated squared error is

concerned. The rate of f̃l is given up to a constant whereas the rate of f̂l is minimax.

The following theorem states that the same property for estimator f̃l holds in the
nonequispaced design case.

Theorem 5.1. Under the regularity assumption on the wavelet bases, for fAHs with

s41=2; we have

MISEðf̃lÞ ¼ Ejjf̃l � f jj2pOð2�2Ns þ lþ 2J�N þ 2�Nl�
1
2sÞ;

moreover, when taking l ¼ Oðn� 2s
2sþ1Þ we have

MISEðf̃lÞ ¼ Oðn� 2s
2sþ1Þ:

The proof of this result is deferred to Section A.3.

6. Numerical results

In this section we show some results obtained by applying the ‘‘approximated’’

wavelet estimator f̃l to simulated and real data. It is known that the choice of the
smoothing parameter l can deeply affect the optimal rate of convergence of the
estimator. In order to preserve the optimal rate property we need to select it in a
‘good’ way. In the following experiments, the choice of l has been done according to
the GCV criterion (see [34]).

In [2,3] is proved that f̃l endowed with GCV reaches the optimal rate of
convergence.
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6.1. Simulated data

To show the behavior of the estimator f̃l; both for the equispaced
and nonequispaced design, some numerical experiments have been worked out.
Data have been generated according to model (1) with signal-to-noise ratio

(SNR) equal to 3. In order to measure the performance of f̃l we consider index Rn;
defined as

Rn ¼ 1

n

Xn

k¼1
ðf̃lðtkÞ � f ðtkÞÞ2;

and we evaluate it, for each test function, over different realizations of noise.

Moreover, we compare f̃l with the local and global spline estimators recently studied
in [8] and with the local polynomial estimator proposed in [29]. Indeed, the local
spline estimator for univariate models have a roughness penalty that adapts to
spatial heterogeneity of the regression function. The estimates are p-th degree
piecewise polynomials with p � 1 continuous derivatives. A large and fixed number
of knots are used and smoothing is achieved by adding a quadratic penalty on the
jumps of the pth derivative in the knots. To be spatially adaptive, the penalty
is itself a linear spline but with relatively few knots and values in the knots
chosen to minimize GCV. For our comparisons we consider the p-spline with p ¼ 2
which was recognized to be the most efficient in [8]. The global spline estimator is
almost equivalent to the classical smoothing spline estimator. The local polynomial
estimator is a classical and well suited method to treat the boundary effects which are
well recognized drawbacks when using periodic wavelets. Spatial adaptivity of the
local polynomial estimator described in [29] is achieved by using a data-dependent
bandwidth selection. We have explored many functions (not showed here for the
sake of brevity) and as it has been pointed out in [8], the local spline estimator has a
really good performance over heterogeneous functions and sometimes outperforms

the other estimators. In such cases f̃l; the global spline and the local polynomial
estimators are comparable. However the computational cost of the local spline

estimator is often much larger than the one of f̃l: From our intensive simulations we

have found that in many cases the behavior of the four estimators is similar and f̃l
can also outperform global, local spline and local polynomial estimators, especially
for functions which exhibit some singularities. In any case we stress that the
advantage of using the ‘‘approximated’’ wavelet estimator is mainly due to its lower
computational cost.
We consider three different kinds of test functions defined for tA½0; 1�:

* An infinitely times differentiable function:

f1ðtÞ ¼ 0:5þ 0:2 cosð4ptÞ þ 0:1 cosð24pxÞ:

* A function that has a discontinuity in the first derivative:

f2ðtÞ ¼ expð�jt � 1=2jÞ:

C. Angelini et al. / Journal of Multivariate Analysis 85 (2003) 267–291280



* A well-known discontinuous function, Heavysine, that does not satisfy the
assumptions of Theorem 5.1, but represents a typical 1-D signal.

In Figs. 1 and 2 we show, for a particular realization of noise and for the test
functions f1ðtÞ and Heavysine, respectively, the noisy observations and the true
function, the estimates obtained using the wavelet estimator, the local spline
estimator, the global spline estimator and the local polynomial estimator, for a

sample size n ¼ 29 in the case of equispaced data. Moreover, in the lower right part
of Figs. 1 and 2 we show the boxplots of Rn using the four methods over 500
simulated samples for the same test functions and grid design. They reveal a better
performance of the wavelet estimator when applied to test functions f1: Indeed, the

wavelet estimator f̃l is able to keep the second cosine component often regarded as
noise (in several samples) when using the other methods. When Heavysine is
considered the wavelet estimator reconstructs better the main singularity.
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Fig. 1. Plot true and noisy functions (upper left) and the regularized solution obtained using the wavelet

estimator endowed with GCV (upper middle), the local spline estimator (upper right), the global spline

estimator (lower left), and the local polynomial estimator (lower middle). In the lower right panel the

boxplots of Rn computed over 500 simulated samples are showed for the four methods: (1) Wavelet

estimator, (2) Local spline estimator, (3) Global spline estimator and (4) Local polynomial estimator. The

test function is f1; n ¼ 29; SNR ¼ 3 and the design is regular.

C. Angelini et al. / Journal of Multivariate Analysis 85 (2003) 267–291 281



Next, to present the previous estimators in the nonequispaced case, we use the test
function f2ðtÞ and the following grid design:

ti ¼
ei=n � 1

e � 1
; i ¼ 1;y; n: ð20Þ

The computational results, in this situation are presented in Fig. 3. For the

considered sample size n ¼ 29 the mean behaviors of the four estimators are similar,
but when n increases the performance of the wavelet estimator improves.

6.2. A real data application

The estimator f̃l has been applied to a real data example concerning with human
event-related potentials (ERPs) records described in [23]. Ten subjects were
presented five squares, one of which was randomly green colored; then a circle
randomly appears inside one of the boxes. If the circle fills the attended green box,
then the subject is required to press a thumb button as soon as possible. ERP records
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Fig. 2. Plot true and noisy functions (upper left) and the regularized solution obtained using the wavelet

estimator endowed with GCV (upper middle), the local spline estimator (upper right), the global spline

estimator (lower left), and the local polynomial estimator (lower middle). In the lower right panel the

boxplots of Rn computed over 500 simulated samples are showed for the four methods: (1) Wavelet

estimator, (2) Local spline estimator, (3) Global spline estimator and (4) Local polynomial estimator. The

test function is HeavySine, n ¼ 29; SNR ¼ 3 and the design is regular.
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are sampled at 512 Hz for 1000 ms (i.e. each record consists of 512 equispaced noisy
observations). The original experiment arises in a different context, here we would like
to describe the mean behavior of the observed measurements. In fact, smoothed data
are used for classification or other purposes. In Figs. 4 and 5 we show the noisy

observations and the estimates obtained applying f̃l; the local and global spline and the
local polynomial estimates, for two different records. Analysis of figures shows a
comparable mean behavior of the four estimators. Since a periodic wavelet basis is used
in the computation, some boundary effects are visible for the wavelet estimate. This
drawback could be reduced by using boundary corrected wavelets. For many
applications of interest for this particular data set, the boundary effects are not crucial.

7. Conclusions

In this paper the BLUP is obtained using an orthogonal wavelet basis. A wavelet

estimator, f̃l; fast and easy to compute is proposed. We prove that f̃l achieves the
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Fig. 3. Plot true and noisy functions (upper left) and the regularized solution obtained using the wavelet

estimator endowed with GCV (upper middle), the local spline estimator (upper right), the global spline

estimator (lower left), and the local polynomial estimator (lower middle). In the lower right panel the

boxplots of Rn computed over 500 simulated samples are showed for the four methods: (1) Wavelet

estimator, (2) Local spline estimator, (3) Global spline estimator and (4) Local polynomial estimator. The

test function is f2; n ¼ 29; SNR ¼ 3 and the design is given in (20).
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usual optimal rate of convergence in the MISE sense over a Sobolev class. Numerical
experiments on simulated and real data are presented and comparisons with local
and global spline and local polynomial estimators are carried out. As a general
conclusion, we suggest to use wavelet estimator when the size of the sample is large.
The wavelet estimator should be also used when the regression function presents
some singularities, global spline estimator when the function is smooth and local
spline or local polynomial estimators when heterogeneous smooth functions are
considered.
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Appendix A

In this section we give the proofs of all main results we have obtained. In

the proofs we use the notations
%
m ¼ ðmðt1Þ;y; mðtnÞÞT ;

%
z ¼ ðzðt1Þ;y; zðtnÞÞT and

%
e ¼ ðe1;y; enÞT :

A.1. Proofs of the results in Section 3

Proof of Proposition 2.1. To prove the result we have to check the following
properties:
(i) 8tA½0; 1�; KtAHs:
(ii) 8fAHs; /Kt; fSHs ¼ f ðtÞ:
We have the following wavelet expansion for Kt:

Ktð�Þ ¼
X2J�1

k¼0
jJ;kðtÞjJ;kð�Þ þ

X
jXJ

X2j�1

k¼0
ljcj;kðtÞcj;kð�Þ:
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with GCV (continuous line), local and spline estimator (dash-dotted and dashed lines respectively) and the

local polynomial estimator (dotted line) for record 2.
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Next, using the inner product in Hs defined in (6) we have

jjKtjj2Hs ¼
X2J�1

k¼0
j2

J;kðtÞ þ
X
jXJ

22js
X2j�1

k¼0
l2j c

2
j;kðtÞ:

The first term in the right-hand side of the previous expression is obviously finite,
because J is finite and jJ;k is bounded. Moreover, due to the compact support

property of c;
P2j�1

k¼0 c2
j;kðtÞ is bounded by Oð2jÞ: Then the choice lj ¼ 2�2js implies

that
P

jXJ 2
ð2sþ1Þjl2j oN as soon as s41=2: Hence the second term being also

bounded (i) holds.
When using the wavelet expansion of Kt; bilinearity of the inner product and

properties given in Lemma 2.2, by straightforward calculations, the choice lj ¼ 2�2js

implies (ii). &

Proof of Theorem 3.1. In this proof we omit the subscript H in the inner product

/�; �SH (or in the norm jj � jjH). By a property of Hilbert space, the minimizer f̂l of

(4) admits the representation

f̂l ¼
X2J�1

k¼0
#aJ;kjJ;k|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
P0f

þ
Xn

i¼1
d̂iK

1
ti
þ r|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

P1f

; ðA:1Þ

where r is some element in H1 (hence perpendicular to H0) perpendicular to

K1
t1
;y;K1

tn
: Before going further on in the proof we remark that since rAH1 is

perpendicular to K1
ti
and P1 is a self-adjoint operator, for any i ¼ 1;y; n; the

following equalities hold:

/r;Kti
S ¼ /P1r;Kti

S ¼ /r;P1Kti
S ¼ /r;K1

ti
S ¼ 0;

/K1
ti
;K1

tj
S ¼ /Kti

;K1
tj
S ¼ K1ðti; tjÞ:

Now we compute the two terms which constitute (4) using expression (A.1) and the
previous remark. Since these calculations mimic the proof given in page 12 of
Wahba’s book (see [34]) we outline the end of the proof.
The first term in (4) can be written as

1

n
jj
%
Y � ðF#aþ Sd̂Þjj2l2 ¼

1

n
ð
%
Y � ðF#aþ Sd̂ÞÞTð

%
Y � ðF#aþ Sd̂ÞÞ ðA:2Þ

and the second term in (4) is given by ljjP1f jj2H ¼ ld̂
T
Sd̂ þ ljjrjj2:

Solving problem (4) with respect to f is equivalent to minimize the sum

of (A.2) and of ljjP1f jj2H multiplied by n with respect to the function r and the

vectors d̂ and #a: The solution is given by r ¼ 0 and d̂ and #a are as given in the
theorem. &

C. Angelini et al. / Journal of Multivariate Analysis 85 (2003) 267–291286



A.2. Proofs of the results in Section 4

Proof of Theorem 4.1. Put Aj ¼ 22jðs�1=2ÞP2j�1
k¼0 ðb2j;k � ljÞ: Since bj;k; k ¼ 0;y;

2j � 1; are centered Gaussian independent variables with Varðbj;kÞ ¼ lj; we have

EAj ¼ 0 and VarðAjÞ ¼ 2 24jðs�1=4Þl2j :

Applying Markov inequality for any E40 to the r.v.s Aj for all j and summing up the

inequalities we obtainX
jXJ

PðjAjj4EÞp2

E2
X
jXJ

24jðs�1=4Þl2j :

Suppose now that (ii) is true. Then the right-hand side of the previous inequality is
finite, hence the series of the general term PðjAjj4EÞ converges, which implies a.s.,

convergence of Aj to zero, by Borel Cantelli Lemma. Due to definition of Aj

this convergence implies that
P2j�1

k¼0 2
2jðs�1=2Þb2j;k admits a finite limit, thus

supjXJ 2
2jðs�1=2ÞP2j�1

k¼0 b2j;koþN (a.s.), which is equivalent to SðtÞAB
s�1=2
2;N ½0; 1� by

Lemma 2.1.

Conversely, suppose (i) holds; hence 22jðs�1=2ÞP2j�1
k¼0 b2j;kpc (a.s.) for some constant

c independent of j: Next, taking the expectation of both sides of this inequality we

obtain 22jðs�1=2ÞP2j�1
k¼0 ljpc which is equivalent to (ii). &

Lemma A.1. Let A be a positive definite matrix of order m; B a m � k matrix

and
%
u a k-dimensional vector. Denote by S� any generalized inverse of BT A�1B:

Then

inf
f
%
xARm s:t: BT

%
x¼

%
ug %

xT A
%
x ¼

%
uT S�

%
u

and the infimum is a minimum obtained at
%
xn ¼ A�1BS�

%
u:

Proof. See [27]. &

Proof of Theorem 4.2. From properties (i) and (iii) of Definition 4.1, finding the

BLUP, f̂ðtÞ; is equivalent to solve the following constrained minimization problem:

inf
fLt s:t: LtAVtg

E½Lt
%
Y � f ðtÞ�2; ðA:3Þ

where the constraint on Lt ¼ ðl1ylnÞ is given in order to satisfy property (ii) of
BLUP’s definition. Such a condition can be explicitly written as

LtAVt 3 Lt
%
m ¼ mðtÞ: ðA:4Þ
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Using the expression of
%
Y and f ðtÞ given in (1) and (2), taking in account constraint

(A.4) and the independence between
%
z and

%
e; we obtain

E½Lt
%
Y � f ðtÞ�2 ¼ E½Ltð

%
mþ b1=2

%
z þ s

%
eÞ � mðtÞ � b1=2zðtÞ�2

¼Lt Varðb1=2
%
z þ s

%
eÞLT

t þ b VarðzðtÞÞ � 2bLtEð
%
zzðtÞÞ:

It can be easily verified that Varðb1=2
%
z þ s

%
eÞ ¼ ðbSþ s2IÞ; VarðzðtÞÞ ¼ K1ðt; tÞ and

Eð
%
zzðtÞÞ ¼ ST

t : Substituting these values, we have

E½Lt
%
Y � f ðtÞ�2 ¼ bfLtMLT

t þ K1ðt; tÞ � LtST
t � StL

T
t g;

where M ¼ ðSþ ðs2=bÞInÞ: By standard calculation, the latter expression can be
rearranged as

E½Lt
%
Y � f ðtÞ�2 ¼ bfðLt � StM

�1ÞMðLt � StM
�1ÞT þ Rg;

where R ¼ K1ðt; tÞ � StM
�1ST

t : Since R is independent of Lt in the optimization

problem (A.3), it can be neglected. Hence, solving (A.3) is equivalent to solve the
constrained minimization problem

inf
fLt s:t: LtAVtg

½ðLt � StM
�1ÞMðLt � StM

�1ÞT �:

By Lemma A.1, for
%
x ¼ ðLt � StM

�1ÞT ; A ¼ M; B ¼ F and
%
u ¼ FT

t � FT M�1ST
t ;

we immediately obtain the minimizer in (11). The last part of the theorem is
trivial. &

A.3. Proofs of the results in Section 5

Lemma A.2. Under the regularity assumption on the wavelet system and on the

function H and setting JAN; for any jXJ and k ¼ 0;y; j we have:

EðaeJ;kÞ
2pC

s2

2N
and Eðbej;kÞ

2pC
s2

2N
; JpjpN � 1;

where C is a constant independent on N; aeJ;k and bej;k are defined in (18).

Proof. By definition we have the following expression for aeJ;k:

X2N�1

i¼0

X2N�1

l¼0

elþ1ffiffiffi
n

p /jN;l3H;jN;iSjN;i;jJ;k

* +
¼ 1ffiffiffi

n
p

X2N�1

l¼0
elþ1s

J;k
l ;

where we define sJ;k
l ¼

P
i al;i/jN;i;jJ;kS with al;i ¼ /jN;l3H;jN;iS:

From the independence of the components of
%
e; we obtain

EðaeJ;kÞ
2 ¼ E

1

n

X2N�1

l¼0

X2N�1

l0¼0
elþ1el0þ1s

J;k
l s

J;k
l0

 !
¼ s2

n

X2N�1

l¼0
ðsJ;k

l Þ2:
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To end the proof of the first part of the lemma we will show that
P

lðs
J;k
l Þ2 is

uniformly bounded with respect to N: Note that for fixed l; jN;l3H and jN;i have

compact supports with a nonempty intersection for a finite number of indices i only.
Furthermore, for any l and N this number is bounded by a constant K : Put ml

and Ml the minimum and the maximum index i such that al;i has a nonzero

value. Moreover, there is a constant a such that for any i and l;
al;ipjjjN;lðHÞjj

N
jjjN;iðxÞjjNjSupp jN;iðxÞjpa: Thus we have

s
J;k
l ¼

XMl

i¼ml

al;i/jN;i;jJ;kSpa
XMl

i¼ml

/jN;i;jJ;kS

and

ðsJ;k
l Þ2pa22Ml�ml�1

XMl

i¼ml

/jN;i;jJ;kS
2pC

XMl

i¼ml

/jN;i;jJ;kS
2:

Finally, by direct substitution

X2N�1

l¼0
ðsJ;k

l Þ2pC
X2N�1

l¼0

XMl

i¼ml

/jN;i;jJ;kS
2 ¼ C

X2N�1

i¼0

XMn

i

l¼mn

i

/jN;i;jJ;kS
2

pC max
i

jMn

i � mn

i j
X2N�1

i¼0
/jN;i;jJ;kS

2pC1jjjJ;kjj
2
L2
pC1:

In the previous step we have used the fact that if both ml and Ml are strictly

increasing sequences such that maxl jMl � ml jpK then we have maxi jMn
i � mn

i jpK :
For the second part of the lemma we put

bej;k ¼ 1ffiffiffi
n

p
X2N�1

l¼0
elþ1

X2N�1

i¼0
/jN;l3H;jN;iS/jN;i;cj;kS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

r
j;k

l

:

As in the previous case, we state
P

lðr
j;k
l Þ2pC2: &

Proof of Theorem 5.1.

Ejjf̃l � f jj2p 22jjf �PNðf 3H�1Þ3Hjj2 þ jjPNðf 3H�1Þ3H � %PNf jj2

þ Ejj %PNf � f̃ljj2 ¼def : 22ðB1 þ B2 þ B3Þ:

Let us consider the term B1: When using equivalence in (12) and results in (14) and

(15), we obtain B1pC2�2Ns: Next we consider the term B2: Since the function
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PNðf 3H�1Þ3HAHs; due to (14) B2pC2�2Ns: Let us consider now the term B3: By
definition we have

Ejj %PNf � f̃ljj2 ¼
X2J�1

k¼0
EðaEJ;kÞ

2 þ
XN�1

j¼J

X2j�1

k¼0

lj

lj þ l

� �2

EðbEj;kÞ
2

þ
XN�1

j¼J

X2j

k¼0

l
lþ lj

bf
j;k

� �2

:

Then applying Lemma A.2

Ejj %PNf � f̃ljj2

pC 2J s
2

2N
þ s2

2N

XN�1

j¼J

2j lj

lj þ l

� �2

þl
2

XN�1

j¼J

X2j�1

k¼0
22jsðbf

j;kÞ
2

 !

pC0 2J s
2

2N
þ s2

2N

Z
N

1

1

ð1þ ly2sÞ2
dy þ ljj %PNf jj2Hs

 !
:

The theorem is proved observing that the integral which appears in the previous

expression is Oðl
�1
2s Þ and that jj %PNf jj2Hs is uniformly bounded independently of N:

Indeed, for any function gAHs; using (15), the following inequality holds:

jjPNgjjHspjjPNg � PNgjjHs þ jjPNgjjHspC2NsjjPNg � PNgjj þ jjgjjHs :

Due to regularity of H; jjPNðf 3H�1Þ3HjjHspC and applying the previous inequality

to g ¼ PNðf 3H�1Þ3H we conclude. &
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