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Abstract

This paper presents a graph-based formalism for object-oriented class structure specifications. The
formalism combines labelled graphs with partial orders, to adequately model the (single) inheritance
relation among objects and the overriding relation between methods within derived classes.
The semantics of system extension by inheritance and aggregation is then defined as colimits in a
suitable category of object-oriented system specifications and their morphisms.
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1 Introduction

Object-orientation is perhaps the most popular paradigm of system develop-
ment in use nowadays. The principles behind it — data and code encapsula-
tion, information hiding, inheritance and polymorphism — fit very well into
the needs of modular system development, distributed testing, and reuse of
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software faced by system designers and engineers. The variety of today’s soft-
ware applications, which range from traditional payroll systems to airplane
control, e-mail clients and Internet browsers, also benefits from them.

There is a plethora of formal and semi-formal methods proposed in the
literature for the specification of object-oriented systems, as well as a con-
tinuously growing number of object-oriented programming languages, whose
suitability is usually determined by the application at hand. Our focus is
to build a specification formalism for object-oriented systems which has the
following characteristics: (i) it can be easily understood by both software
developers and final users; (ii) systems’ static and dynamic aspects can be
specified in an integrated way; (iii) it has a semantical basis, allowing the
composition of modular specifications in a consistent and significant manner;
and (iv) high level specifications can be refined into lower ones, or even into
actual programs.

Graphs can convey a significant amount of information in a compact, visual
and, frequently, understandable way. The specification of computational sys-
tems using graphs offers two advantages, which rarely appear together in spe-
cification methods: (i) being formal mathematical structures, they have a well
defined semantics and, (ii) having a diagrammatical layout, graph specifica-
tions can be more easily produced and understood by all participants in the
software development process.

Graphs can provide a model of computation if combined with graph rules,
to form a graph transformation system. The theory of graph grammars (graph
transformation systems with an initial graph) studies a variety of formalisms
which expand the theory of formal languages, to encompass more general
structures specified as graphs [5]. The algebraical approach to graph gram-
mars, presented for the first time in [7] makes use of categorical constructs to
define the relevant aspects of the model of computation provided by graphs
grammars. That approach is currently known as double-pushout approach,
because derivations are based on two pushout constructions in the category
of graphs and total graph morphisms. The single-pushout approach [13], on
the other hand, has derivations characterized as a pushout construction in the
category of graphs and partial graph morphisms. It is a proper extension of
the double-pushout approach [4] capable of dealing with addition and deletion
of items in unknown contexts, which is an important feature for distributed
systems. Graph grammars have been used to specify various kinds of software
systems, where the graphs correspond to the states and the graph productions
to the operations or transformations of such systems [6]. Concepts of parallel
and distributed productions and derivations in the algebraic approach are very
useful to model concurrent access, aspects of synchronization, and distributed
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systems based on local and global graphs (see, for example, [8], [13], [6], [12],
[17], [11], and [14]).

System specifications through graphs often rely on labelled graphs or typed
graphs categories to represent different system entities. But labelling and typ-
ing do not reflect the inheritance relation among objects, and polymorphism
cannot be applied if it is not made explicit. Subclass polymorphism [2] spe-
cifies that an instance of a subclass can appear wherever an instance of a
superclass is required. So a class, if represented by a node or edge in a graph,
should have a multiplicity of labels assigned to it or a typing morphism which
could no longer be a function.

In [9] object-oriented graphs and grammars were first introduced, as graphs
and graph productions typed over type hierarchies, which were graph struc-
tures very similar to the class-model graphs presented in this text. There, it
was shown how graph grammar rules should be structured to reflect code en-
capsulation and information hiding, and how the semantics of object-oriented
computations can be described by object-oriented graph grammars. In [10] it
was shown how the semantics of dynamic binding can be viewed as a pushout
on a suitable category. In this paper we improve our presentation of the fun-
damental typing structure and show how the two most common operations
of object-oriented system extension, namely object extension by inheritance
and object creation by aggregation, can be explained in terms of colimits on
a category of system specifications and their morphisms. Since we want a
specification formalism which can accurately reflect the way object-oriented
systems are designed and programmed, we need their most common features
formally explained into our framework.

This paper is structured as follows: Section 2 presents the order relations
used to express the inheritance relation on objects and overriding relation
between methods. Section 3 shows how those relations can be combined into
a graph structure to represent an object-oriented class structure, and how this
construction gives rise to a category whose objects are object-oriented system
specifications and whose morphisms are relations between them. Section 4
presents how the semantics of common features of object-oriented languages,
namely extension by inheritance, object aggregation and system composition
can be defined in terms of special colimits of the category defined in the
previous section. Most of the proofs of Sections 2, 3 and 4 are omitted because
of space limitations, but they are really straightforward, and the details can
be easily checked. Finally, Section 5 draws some conclusions about the work
developed herein.
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2 Strict relations

Inheritance, in the context of the object-orientation paradigm, is the construc-
tion which permits a class (in the class-based approach [3]) or an object (in
the object-based approach [18]) to be specialized from an already existing one.
This newly created entity carries (or “inherits”) all the data and the actions
belonging to its primitive one, in addition to its own data and actions. If
this particularly class is further extended using inheritance, then all the new
information will also be carried along.

The relation “inherits from” induces a hierarchical relationship among the
defined classes of a system, which can be viewed as a set of trees (single
inheritance) or as an acyclic graph (multiple inheritance). The definition
of a strict relation, given below, formalizes what should be the fundamental
object-oriented hierarchical structure of classes, when only single inheritance
is allowed.

Definition 2.1 [Strict relation] A finite binary relation R ⊆ A × A is said a
strict relation if and only if it has the following properties:

(i) if (a, a′) ∈ R then a �= a′ (R has no reflexive pairs);

(ii) if (a, a1), (a1, a2), . . . , (an−1, an), (an, a′) ∈ R, n ≥ 0, then (a′, a) /∈ R (R
has no cycles);

(iii) for any a, a′, a′′ ∈ A, if (a, a′), (a, a′′) ∈ R then a′ = a′′ (R is a function).

Notice that the requirement concerning the absence of cycles and reflexive
pairs on strict relations is consistent with both the creation of classes and
redefinition of methods (overriding). A class is defined as a specialization of
at most one class (single inheritance), which must exist prior to the creation
of the new one. A method can only redefine another method (with the same
signature) if it exists in an already existing primitive class. Hence, neither a
class can be created nor a method can be redefined in a circular or reflexive
way.

If strict relations represent the hierarchical inheritance and method re-
definition relations, it would be of interest to investigate some of its properties,
which will be important in what follows. It is easy to prove that the reflexive
and transitive closure of a strict relation R is a partial order, so in the rest of
this paper we will assume that result.

Remark 2.2 Some usual notation from order theory is used in the rest of
this paper. More specifically, given a partially ordered set 〈P,�P 〉, a subset
A ⊆ P is an upper set if whenever x ∈ A, y ∈ P and x �P y we have y ∈ A.
The upper set of {x}, with x ∈ P (also called the set of all elements above x)
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is denoted by ↑ x. A lower set and the set of all elements below some element
x ∈ A, denoted by ↓ x, is defined dually. An element x ∈ P is called an upper
bound for a subset A ⊆ P , written A � x, if and only if a � x for all a ∈ A.
The set of all upper bounds of A is denoted by ub(A), and if is has a least
element (i.e., an element which is below all others), that element is denoted
by lub(A) or 
A. Lower bounds, the set of all lower bounds lb(A), and the
greatest lower bound glb(A) or 
A, can be defined dually.

Definition 2.3 [Strict ordered set] A strict ordered set is a pair 〈P,�∗
P 〉 where

P is a set, �P is a strict relation, and �∗
P is its reflexive and transitive closure.

Definition 2.4 [Strict ordered function] Let 〈P,�∗
P 〉 and 〈Q,�∗

Q〉 be two
strict ordered sets. A partial monotone function f : P → Q is a strict ordered
function if and only if for all elements x ∈ dom(f), we have that ↑x ⊆ dom(f)
and f(↑x) = ↑f(x)∩ ↓f(
↑x).

The restrictions imposed to a strict ordered function are related to the
mapping coherence between the strict ordered sets underlying relations. Spe-
cifically, if an element is mapped then all elements from the chain to which it
belongs (respecting the strict relation on its set) must also be mapped accord-
ingly. It can be shown that the upper set of any element is indeed a (finite)
chain, and therefore has both a least and a greatest element. This restriction
is needed to assure that the strict relation structure is maintained when the
sets are combined. Before showing how this combinations can be performed,
however, some properties of strict ordered functions will be shown, together
with the proof that strict ordered sets and strict ordered functions constitute
a category.

Theorem 2.5 (Category SOSet) There is a category SOSet which has
strict ordered sets as objects and strict ordered functions as arrows.

Proof (sketch) Strict ordered sets and strict ordered functions are special
kinds of, respectively, partially ordered sets and monotone functions. It can
be easily shown that strict ordered functions are closed under composition, and
that their composition is associative. Identities are build as in POSET. �

Theorem 2.6 (Colimits in SOSet) The category SOSet is cocomplete.

Proof (sketch) The initial object of SOSet is the empty strict ordered set
〈∅, ∅〉. Coequalizers can be built in the same fashion they are built in SetP,
the category which has sets as objects and partial functions as morphisms,
which is cocomplete. The coequalizer 〈C, c : B → C〉 of two arrows f, g :
A → B in SetP is constructed by copying the elements which are not in the
image of f and g and identifies the others in order to make c ◦ f = c ◦ g,
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and the morphisms going into the object C are total and jointly surjective,
which makes relatively easy to see that being f and g strict ordered functions,
the functions going into the coequalizer’s object must also be strict ordered
functions. Since there exists an initial object and for each pair of arrows in
SOSet there is a coequalizer, then the category has colimits. �

Since so many structures in computer science are usually represented as
graphs, and a number of other structures in the same field are adequately
represented by order relations, the idea of combining the two formalisms is
appealing. However, this combination does not appear often in the literature.
In [1], for instance, “partially ordered graphs” are defined, which consist of or-
dinary labelled graphs together with a tree structure on their nodes. Partially
ordered graph grammars are also defined, which consist of graph productions
and tree productions, which must assure that the rewriting process maintains
the tree structure. They are applied on lowering the complexity of the mem-
bership problem of context sensitive string grammars. Graphs labelled with
alphabets equipped with preorders (i.e., reflexive and transitive binary rela-
tions) appear in [15] to deal with variables within graph productions. Unifica-
tion of terms can be achieved (by the rule morphism) if the terms are related
by the order relation, which means that the ordering is actually a sort of vari-
able typing mechanism. The concluding remarks of this work present some
ideas on using the framework to describe inheritance, but this direction seems
not having been pursuit.

3 Class-model graphs

Object-oriented systems consist of instances of previously defined classes which
have an internal structure defined by attributes and communicate among
themselves solely through message passing. That approach underlies the struc-
ture of the graphs used to model those systems. Each graph node is a class
identifier, hyperarcs departing from it correspond to its internal attributes,
and messages addressed to it consist of the services it provides to the exterior
(i.e., its methods). Notice that the restrictions put to the structure of the
hyperarcs assure, as expected, that messages target and attributes belong to
a single object.

The inheritance hierarchy is also portrayed, by imposing a strict relation
(Definition 2.1) amongst the graph nodes. Hyperarcs also possess an order
structure, which reflects the possibility of a derived object to redefine the
methods inherited from their ancestors. This feature is used to define a formal
semantics for dynamic binding based on graph computations [9], [10].

Such graph structure is called a class-model graph, and its formal definition

A.P.L. Ferreira, L. Ribeiro / Electronic Notes in Theoretical Computer Science 122 (2005) 89–10494



is given next.

Definition 3.1 [Class-model graph] A class-model graph is a tuple 〈V�, E�,
L, src, tar, lab〉 where V� = 〈V,�∗

V 〉 is a finite strict ordered set of vertices,
E� = 〈E,�∗

E〉 is a finite strict ordered set of (hyper)edges, L = {attr, msg}
is an unordered set of two edge labels, src, tar : E → V ∗ are monotone
order-preserving functions, called respectively source and target functions,
lab : E → L is the edge labelling function, such that the following constraints
hold:

Structural constraints: for all e ∈ E, the following holds:
• if lab(e) = attr then src(e) ∈ V and tar(e) ∈ V ∗, and
• if lab(e) = msg then src(e) ∈ V ∗ and tar(e) ∈ V .

Order relations constraints: for all e ∈ E, the following holds:
(i) if e �E e′ then lab(e) = lab(e′) = msg,
(ii) if e �E e′ then src(e) = src(e′),
(iii) if e �E e′ then tar(e)�+

V tar(e′), and
(iv) if e �E e′ and e′′ �E e, with e′ �= e′′, then (tar(e′), tar(e′′)) /∈ �∗

V and
(tar(e′′), tar(e′)) /∈ �∗

V .

The purpose of the relation between nodes, �V , is to establish an inherit-
ance relation between objects. Notice that only single inheritance is allowed,
since �V is required to be a function. The relation between message arcs, �E,
establishes which methods will be redefined within the derived object, by map-
ping them. The restrictions applied to �E ensure that methods are redefined
consistently, i.e., only two message arcs can be mapped (i), their parameters
are the same (ii), the method being redefined is located somewhere (strictly)
above in the class-model graph (under �+

V ) (iii), and only the closest message
with respect to relations �V and �E can be redefined (iv).

A classical example of a class structure for geometric shapes is portrait in
Figure 1. Nodes denote objects (shape, round, circle, ellipse, Figure, Draw-
ing, Color and Integer), while attributes and messages are represented by
hyperarcs. The inheritance relation is represented by dotted arrows and the
redefinition function is represented by solid thin ones.

Since class-model graphs are algebraic structures, morphisms between them
can be defined. A class-model graph morphism formalizes the relationship
between elements used by two different applications.

Definition 3.2 [Class-model graph morphism] Given two class-model graphs,
G1 = 〈V1�, E1�, L, src1, tar1, lab1〉 and G2 = 〈V2�, E2�, L, src2, tar2, lab2〉,
with L = {attr, msg}, the tuple t = 〈tV , tE , idL〉 : G1 → G2 is a class-model
graph morphism if and only if tV : V1 → V2 and tE : E1 → E2 are strict
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Figure 1. Class-model graph for geometric figures

ordered functions and t is a partial labelled hypergraph morphism.

A class-model graph morphism is a restricted labelled hypergraph morph-
ism. The restrictions are related to the mapping coherence regarding the order
relations on nodes and edges. Specifically, if a vertex (or arc) is mapped then
all elements from the chain to which it belongs regarding to the inheritance
(or redefinition) relation in the first graph must also be mapped accordingly.
This restriction is needed to assure that single inheritance is maintained when
the structures are combined. Before showing how this combinations can be
performed, however, the following result must be stated:

Theorem 3.3 (Category CGraph) There is a category CGraph which has
class-model graphs as objects and class-model graph morphisms as arrows. �

Characterizing objects, attributes and methods this way creates a situation
where graphs are no longer defined over sets and functions, but over strict
ordered sets and strict ordered functions. The very abstract way that graphs
and graph morphisms are dealt with within category theory can be maintained
by moving from diagrams into the category SetP of sets and partial functions
to the category SOSet of strict ordered sets and strict ordered functions.

The algebraic approach to graph grammars rely on categorical constructs
to express most of its results. Having graphs expressed in a category other
than Set is useful, in the sense that if the constructs used within the theory
of graph grammars can be proven to exist in the new setting, the conclusions
drawn from the former could be automatically transferred to the latter. We
end this section with the following result:

Theorem 3.4 (Colimits in CGraph) The category CGraph is (finitely)
cocomplete.

Proof (sketch) Given two class-model graphs G1 = 〈V1�, E1�, L, src1, tar1,
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lab1〉 and G2 = 〈V2�, E2�, L, src2, tar2, lab2〉 together with a class-model
graph morphism t = 〈tV , tE , idL〉 : G1 → G2, the composition of G1 and G2

under t, denoted by G1 �t G2, is the structure 〈VC�, EC�, L, srcC , tarC , labC〉
(up to isomorphism) generated accordingly to the following steps:

(i) construct the colimit 〈〈CV ,�CV
〉, v1 : V1 → CV , v2 : V2 → CV 〉 in the

category SOSet of the diagram containing objects V1� = 〈V1,�V1
〉,

V2� = 〈V2,�V2
〉, and arrow tV : V1� → V2�;

(ii) construct the colimit 〈〈CE,�CE
〉, e1 : E1 → CE , e2 : E2 → CE〉 in the

category SOSet of the diagram containing objects E1� = 〈E1,�E1
〉,

E2� = 〈E2,�E2
〉, and arrow tE : E1� → E2�;

(iii) construct the colimit 〈G, g1 : Φ(G1) → G, g2 : Φ(G2) → G〉, with G =
〈VG, EG, LG, srcG, tarG, labG〉, in the category LabHGraphP of the ob-
jects Φ(G1), Φ(G2) and arrow Φ(t), where Φ is the forgetful functor which
sends a class-model graph to a labelled hypergraph by eliminating the
order structure on nodes and edges;

(iv) the colimits built in steps 1, 2 and 3 are constructed as in SetP (by
definition). So, because they are colimits, sets CV and VC are isomorphic;
the same is true for sets CE and EC . So, let iV : CV → VG and iE :
CE → EG be the isomorphisms between those sets and �∗

VG
and �∗

EG

be the partial orders induced by, respectively, functions iV and iE , i.e.,
�∗

VG
= {(iV (v), iV (v′)) | (v, v′) ∈ �∗

CV
} and �∗

EG
= {(iE(e), iE(e′)) |

(e, e′) ∈ �∗
CE

}.
The colimit of G1 and G2 under t, is the class-model graph G = 〈VG�, EG�,

L, srcG, tarG, labG〉, where VG� = 〈VG,�∗
VG
〉 and EG� = 〈EG,�∗

EG
〉, together

with arrows g1 and g2 when interpreted as class-model graph morphisms.

〈VG�, EG�, L, srcG, tarG, labG〉 is indeed a class-model graph, since by
construction the edge and node sets are strict ordered sets, which maintain
the order relation constraints. The structural constraints are guaranteed by
the colimit construction in the category of labelled hypergraphs.

This proof can be completed by showing that, for any other class-model
graph H and morphisms h1 : G1 → H and h2 : G2 → H , such that h1(x) =
(h2 ◦ t)(x) for all x ∈ dom(t), there is a unique class-model graph morphism
u : G → H such that g1 ◦ h = h1 and g2 ◦ h = h2. This part of the proof
will not be done here, but it is easy to see that, since the graph part of the
class-model graph structure as well as the order relation part are generated
from colimits on the respective categories, the uniqueness of u derives from
them. �
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4 System extension

Software systems are generally built from previously constructed subsystems,
which are later combined. The object-oriented paradigm favors that approach:
existent objects can be aggregated or derived to form new ones. Composition
is one of the most fundamental operations over systems, and it must be form-
alized in such a way that its result is compatible with the way systems are in
fact combined. Modularity plays a key role in software development, allowing
a complete specification to be constructed from different pieces of specifica-
tions. The need for integration tools is also a key issue in software development
[16], since that task is considerably demanding in terms of effort if it is not
automatized. Hence, specification formalisms should allow composition which
can be performed systematically, guaranteeing a meaning for the operations in
terms of the composed result. Composition of class-model graphs is described
next.

Definition 4.1 [Class-model graph composition] Given two class-model graphs
G1 and G2 together with a class-model graph morphism t : G1 → G2, the com-
position of G1 and G2 under t is the colimit object of the diagram containing
class-model graphs G1, G2, and arrow t in the category CGraph.

The class-model graph morphism t from Definition 4.1 represents a map-
ping between elements (objects, attributes or methods) which are considered
to be the same in two different subsystems. It is fairly common, when pro-
gramming a class, to make use of methods from objects defined elsewhere. It
is not necessary to have knowledge of the complete specification of a class to
use it as an attribute or to call on some of its methods. However, when the
compiled files are linked together, the whole system must be fully specified.
The morphism used to perform specifications composition plays the role of
identify which elements are shared by both subsystems and which ones belong
to just one of them. Since composition is given by a colimit, it is well defined
and unique up to isomorphism.

Composition of class-model graphs can be used to perform different tasks
other than plain system composition. Namely, specialization through inherit-
ance and object aggregation, which are the most common way of augmenting
a specification can be understood in terms of class-model graphs composition.
This is important for it generates an uniform treatment on the ways systems
are combined and augmented. So, all results applied to system’s composition
(as colimits in the category SOSet) are also applied to object creation by
inheritance or aggregation.

Example 4.2 shows how specialization through inheritance can be defined
as class-model graphs composition. Object construction by aggregation can
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Figure 2. Specialization through inheritance as class-model graph composition

be achieved in a similar manner, as explained in Example 4.4.

Example 4.2 [Specialization through inheritance] The most common way
of code reuse in the object-oriented paradigm is done through inheritance.
This operation can be formalized by class-model graph composition (notice
that the creation of a new object always alters a system specification, so it is
coherent to formalize it by composition). To do so, it is necessary to create
the specification of the new object (all attributes and messages included) and
connect it to a chain of nodes as long as necessary. For instance, suppose
we want to specialize an object of type Drawing from the class-model graph
portrayed in Figure 1 to add to it a background and a foreground color. Besides
these attributes, it should also redefine method Draw, which is defined at the
level of object Figure. The resulting class-model graph, along with the class-
model graph morphism (represented as dashed double arrows) which relates
the corresponding elements on both class-model graphs is shown in Figure 2.

The resulting composite system is shown in Figure 3. Notice how the whole
system structure was maintained, with the exception of the new added class
ColoredDrawing which is derived from the class Drawing, as intended.

Notice that in order to construct a class-model graph to perform specializ-
ation through inheritance, there must be at least one node to which the new
element must be connected (i.e., at least one primitive class). This particu-
lar node must be connected to the primitive object (the one to be derived)
on the existing class-model graph. The number of such objects on the con-
structed hierarchy depends on the methods the derived object is intended to
redefine: there must be as many objects on the node chain as there are ele-
ments between the primitive object and the one to which the method to be
redefined belongs. The coherent mapping is achieved by assuring that it is a
strict ordered function.

The process described in the Example 4.2 can be formally stated as follows.
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Figure 3. Specialization through inheritance as class-model graph composition

Definition 4.3 [Inheritance as class-model graph composition] Let G = 〈V�,
E�, L, src, tar, lab〉 be a class-model graph, p ∈ V the object one wants to
derive and M = {m1, . . . , mn}, n ≥ 0, a collection of messages to be redefined
by the newly created class. Let u = 
{tar(m) | m ∈ M} if M �= ∅ and u = p
otherwise. Now let U be a strict ordered set isomorphic to ↑p ∩ ↓u (with
isomorphism ιU).

Let GO = 〈VO�, EO�, L, srcO, tarO, labO〉 be a class-model graph with the
following characteristics:

• VO = U ∪ {o} ∪ Ao ∪ Am ∪ Ar, where o is called the object-vertex, Ao =
{ta1, . . . , tak} its set of attributes types, Am is the set of the new messages
parameter’s types, Ar is the set of the to be redefined messages parameter’s
types which is isomorphic (with isomorphism ιV ) to the set {src(m) | m ∈
M}; �∗

V = �∗
U ∪ {(o, u) | u ∈ U};

• EO = MN ∪ M ′ ∪ MR ∪ Ka, where M ′ is a set isomorphic to M (with
isomorphism ι′E), MR is also isomorphic to M (with isomorphism ιE) and
contains the messages that will be redefined within the new object, MN is
a set of hyperarcs representing the methods belonging to the new object o,
and Ka = {1a, 2a, . . . , ka} contains the new object attribute arcs; labO(xa) =
attr, srcO(xa) = o and tarO(xa) = tax ∈ Ao for all xa ∈ Ka; labO(x) = msg,
srcO(x) ⊆ A∗

m and tarO(x) = o for all x ∈ MN ; labO(x) = msg, srcO(x) ⊆
A∗

r and tarO(x) = o for all x ∈ MR, with (ιV ◦ srcO)(x) = (src ◦ iE)(x);
�E = {(m, m′) | m ∈ MR ∧ m′ ∈ M ′ ∧ ιE(m) = ι′E(m′)}, relating the
messages which redefine and which are redefined within the new object;

Now, let t be a class-model graph morphism defined as follows:

• dom(tV ) = V \ {o}, where o is the object-vertex of O; tV (u) = ιU (u), for
all u ∈ U , tV (a) = ιV (a), for all a ∈ Ar, and for all vertices v ∈ (Ao ∪ Am),
tV (v) is the mapping which connects the vertex v to its actual type in the
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Figure 4. Aggregation as class-model graph composition

existing class-model graph G;

• dom(tE) = M ′ which coincides with ι′E , i.e., tE(m) = ι′E(m) for all m ∈ M ′.

The object of the colimit given by the diagram containing objects G and
GO, and morphism t = 〈tV , tE , idL〉 as described above, correspond to the
object-oriented system specification defined by G augmented with one object
o which was formed by the derivation (via inheritance) of the existing object
p in the class-model graph G.

Example 4.4 [Aggregation] Aggregation is the operation used to combine
two or more existent objects to construct a new one, allowing the new object
to use all its constituent object functionalities in a transparent way. Given
a class-model graph which contains the objects we want to aggregate, it is
easy to augment it using the composition operation, in such a way that the
resulting class-model graph contains the new object. For example, suppose we
want an object called StretchDrawing, which embraces the functionality of the
object ColoredDrawing (specialized from Drawing in the Example 4.2), plus
two attributes of type Integer, called width and height. The class-model graph
that should be constructed to aggregate existing objects belonging to another
one has as constituents a node along with its attributes and messages, and
which is connected to as many nodes as the objects one wants to aggregate.
The morphisms should then identified the last ones with the actual objects to
be aggregated. Figure 4 presents this new class-model graph, together with
the morphism represented by dashed lines with double hollow triangles at their
ends.

Figure 5 portrays the resulting class-model graph (generated as the colimit
of the diagram presented in Figure 4), which contains a single new object with
the required attributes.
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Figure 5. Aggregation as class-model graph composition

Definition 4.5 [Aggregation as class-model graph composition] Let G = 〈V�,
E�, L, src, tar, lab〉 be an arbitrary class-model graph and GO = 〈VO�, EO�,
L, srcO, tarO, labO〉 be a class-model graph where

• VO = {o}∪Ao∪Am where o is the new object to be created, Ao = {ta1, . . . , tan}
its set of attributes types, Am = {tm1 , . . . , tml } is the set of message para-
meter’s types; �VO

= ∅;
• EO = Na ∪ Mo, where Na = {1a, 2a, . . . , na} and Mo = {m1, . . . , mk} is a

set of k hyperarcs representing the methods belonging to the new object
o; labO(xa) = attr, srcO(xa) = o and tarO(xa) = tax ∈ Ao for all xa ∈ Na;
labO(x) = msg, srcO(x) ⊆ A∗

m and tarO(x) = o for all x ∈ Mo; �EO
= ∅.

Let t : GO → G be the following class-model graph morphism: dom(tV ) =
VO \ {o}, and for all x ∈ (Ao ∪ Am), tV (x) = v for some v ∈ V which reflects
the actual type of the attribute x into G; tE = ∅.

The object of the colimit given by the diagram containing objects G and
GO, and morphism t as described above, correspond to the object-oriented
system specification defined by G aumengted with one object o which was
formed by aggregation of existing objects in G.

Although we have not proven herein that Definitions 4.3 and 4.5 are indeed
correct, we believe that the central has been made clear. The next section
closes the paper by making additional points on the relevance of those results.

5 Conclusions

A graph-based formalism for object-oriented class specification has been presen-
ted. The formalism, called class-model graph, is a labelled hypergraph whose
node and hyperedge sets are equipped with a restricted partial order relation.
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The relation on the nodes is used to make the (single) inheritance relation
among objects explicit. The relation on edges is used to model method redefin-
ition (overriding) within derived classes. Class-model graphs are meant to re-
flect more precisely the underlying structure of the object-oriented paradigm,
and so improve the compactness and understandability of graph specifications.

Our main motivation is to use graphs as a mean of object-oriented system
specification that are easy to produce and maintain, and which can be under-
stood by all participants in the software development process, even if they are
not experts in formal methods. The way classes in an object-oriented system
can be specified with class-model graphs resembles the way they are created
in most programming languages, such as C++ or Java. This is useful, in the
sense that translations from one language to another can be made directly,
and programmers do not need to worry about how a class can be defined in
terms of nodes and edges.

Class-model graphs were built to provide a typing structure for graphs
modelling object-oriented systems and their computations. A first step into
this direction was done in [9]. However, if this typing structure is meant to
reflect the way object-oriented systems are programmed, the most common
features of programming must be also explained within this framework. We
have described how new objects can be created by aggregating already spe-
cified objects as attributes or message parameters, or by extending an already
existing object by inheritance. It was also shown how those constructions can
be explained as colimits on the category CGraph of class-model graphs and
their morphisms. Having the meaning of such constructions defined within
category theory offers two major benefits: the first, and more obvious one, is
that all knowledge available from research in category theory itself and in the
specific categories of partial orders and graphs can be used; the second is that
the results obtained, being colimits, are unique up to isomorphism, and can
be defined without any ambiguity.

Class-model graphs are meant to define formally the static structure of
object-oriented systems. Their dynamics can be described by graph rules,
typed over a system’s specific class-model graph. If different systems are
put together, then their objects and rules (programs) should be meaningfully
combined. This work is a first step towards a semantics of object-oriented
program composition, when they are specified as an object-oriented graph
grammar.
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