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Abstract
This is an attempt to give a systematic survey of properties of the famous Cantor ternary function.
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1. Introduction

The Cantor function G was defined in Cantor’s paper [10] dated November 1883, the first
known appearance of this function. In [10], Georg Cantor was working on extensions of
the Fundamental Theorem of Calculus to the case of discontinuous functions and G serves
as a counterexample to some Harnack’s affirmation about such extensions [33, p. 60]. The
interesting details from the early history of the Cantor set and Cantor function can be found
in Fleron’s note [28]. This function was also used by H. Lebesgue in his famous “Leçons sur
l’intégration et la recherche des fonctions primitives” (Paris, Gauthier-Villars, 1904). For
this reason G is sometimes referred to as the Lebesgue function. Some interesting function
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Fig. 1. The graph of the Cantor function G. This graph is sometimes called “Devil’s staircase”.

classes, motivated by the Cantor function, have been introduced to modern real analysis,
see, for example, [8] or [53, Definition 7.31]. There exist numerous generalizations of G
which are obtained as variations of Cantor’s constructions but we do not consider these in
our work. Since G is a distribution function for the simplest nontrivial self-similar measure,
fractal geometry has shown new interest in the Cantor function (Fig. 1).

We recall the definitions of the ternary Cantor function G and Cantor set C. Let x ∈ [0, 1]
and expand x as

x =
∞∑

n=1

anx

3n
, anx ∈ {0, 1, 2}. (1.1)

Denote by Nx the smallest n with anx = 1 if it exists and put Nx = ∞ if there is no such
anx . Then the Cantor function G : [0, 1] → R can be defined as

G(x) := 1

2Nx
+ 1

2

Nx−1∑
n=1

anx

2n
. (1.2)

Observe that it is independent of the choice of expansion (1.1) if x has two ternary repre-
sentations.

The Cantor set C is the set of all points from [0, 1] which have expansion (1.1) using
only the digits 0 and 2. In the case x ∈ C (anx ∈ {0, 2}) the equality (1.2) takes the form

G(x) = 1

2

∞∑
n=1

anx

2n
. (1.3)

The following classical generative construction for the triadic Cantor set C is more
popular.

Starting with the interval C0 := [0, 1] define closed subsets C1 ⊇ C2 ⊇ · · · ⊇ Ck ⊇ · · ·
in C0 as follows. We obtain the set C1 by the removing the “middle third” interval open
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( 1
2 , 2

3 ) from C0. Then the set C2 is obtained by removing from C1 the open intervals ( 1
9 , 2

9 )

and ( 7
9 , 8

9 ). In general, Ck consists of 2k disjoint closed intervals and, having Ck , Ck+1 is
obtained by removing middle thirds from each of the intervals that make up Ck . Then it is
easy to see that

C =
∞⋂

k=0

Ck . (1.4)

Denote by C1 the set of all endpoints of complementary intervals of C and set

C◦ := C\C1, I ◦ := [0, 1]\C. (1.5)

Let also I be a family of all components of the open set I ◦.

2. Singularity, measurability and representability by absolutely
continuous functions

The well-known properties of the Cantor function are collected in the following.

Proposition 2.1.

2.1.1. G is continuous and increasing but not absolutely continuous.
2.1.2. G is constant on each interval from I ◦.
2.1.3. G is a singular function.
2.1.4. G maps the Cantor set C onto [0, 1].

Proof. It follows directly from (1.2) that G is an increasing function, and moreover (1.2)
implies that G is constant on every interval J ⊆ I ◦. Observe also that if x, y ∈ [0, 1], x �=
y, and x tends to y, then we can take ternary representations (1.1) so that

min{n : |anx − any | �= 0} → ∞.

Thus the continuity of G follows from (1.2) as well. Since the one-dimensional Lebesgue
measure of C is zero,

m1(C) = 0,

the monotonicity of G and constancy of G on each interval J ⊆ I ◦ imply Statement 2.1.3.
One easy way to check the last equality is to use the obvious recurrence relation

m1(Ck) = 2
3 m1(Ck−1)

for closed subset Ck in (1.4). Really, by (1.4)

m1(C) = lim
k→∞ m1(Ck) = lim

k→∞

(
2

3

)k

= 0.

It still remains to note that by (1.3) we have 2.1.4 and that G is not absolutely continuous,
since G is singular and nonconstant. �
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Remark 2.2. Recall that a monotone or bounded variation function f is called singular if
f ′ = 0 a.e.

By the Radon–Nikodym theorem we obtain from 2.1.1 the following.

Proposition 2.3. The function G cannot be represented as

G(x) =
∫ x

0
�(t) dt ,

where � is a Lebesgue integrable function.

In general, a continuous function need not map a measurable set onto a measurable set.
It is a consequence of 2.1.4 that the Cantor function is such a function.

Proposition 2.4. There is a Lebesgue measurable set A ⊆ [0, 1] such that G(A) is not
Lebesgue measurable.

In fact, a continuous function g : [a, b] → R transforms every measurable set onto a
measurable set if and only if g satisfies Lusin’s condition (N):

(m1(E) = 0) ⇒ (m1(g(E)) = 0)

for every E ⊆ [a, b] [48, p. 224].
Let Lf denote the set of points of constancy of a function f, i.e., x ∈ Lf if f is constant

in a neighborhood of x. In the case f = G it is easy to see that LG = I ◦ = [0, 1]\C.

Proposition 2.5. Let f : [a, b] → R be a monotone continuous function. Then the
following statements are equivalent:

2.5.1. The inverse image f −1(A) is a Lebesgue measurable subset of [a, b] for every
A ⊆ R.

2.5.2. The Lebesgue measure of the set [a, b]\Lf is zero,

m1([a, b]\Lf ) = 0. (2.6)

Proof. 2.5.2 ⇒ 2.5.1. Evidently, Lf is open (in the relative topology of [a, b]) and f is
constant on each component of Lf . Let E be a set of endpoints of components of Lf . Let
us denote by f0 and f1 the restrictions of f to Lf ∪ E and to [a, b]\(Lf ∪ E), respectively.

f0 := f |Lf ∪E, f1 := f |[a,b]\(Lf ∪E).

If A is an arbitrary subset of R, then it is easy to see that f −1
0 (A) is a F� subset of [a, b] and

f −1
1 (A) ⊆ [a, b]\Lf .

Since f −1(A) = f −1
0 (A) ∪ f −1

1 (A), the equality m1([a, b]\Lf ) = 0 implies that f −1(A)

is Lebesgue measurable as the union of two measurable sets.
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2.5.1 ⇒ 2.5.2. The monotonicity of f implies that f1 is one-to-one and

(f0(Lf ∪ E)) ∩ (f1([a, b]\(Lf ∪ E))) = ∅. (2.7)

Suppose that (2.6) does not hold. For every B ⊆ R with an outer measure m∗
1(B) > 0 there

exists a nonmeasurable set A ⊆ B. See, for instance, [45, Chapter 5, Theorem 5.5]. Thus,
there is a nonmeasurable set A ⊆ [a, b]\(Lf ∪ E). Since f1 is one-to-one, equality (2.7)
implies that f −1(f (A)) = A, contrary to 2.5.1. �

Corollary 2.8. The inverse image G−1(A) is a Lebesgue measurable subset of [0, 1] for
every A ⊆ R.

Remark 2.9. It is interesting to observe that G(A) is a Borel set for each Borel set A ⊆
[0, 1]. Indeed, if f : [a, b] → R is a monotone function with the set of discontinuity D,
then

f (A) = f (A ∩ D) ∪ f (A ∩ Lf ) ∪ f (A ∩ E) ∪ f (A\(D ∪ Lf ∪ E)), A ⊆ [a, b],
where E is the set of endpoints of components of Lf . The sets f (A ∩ D), f (A ∩ Lf )

and f (A ∩ E) are at most countable for all A ⊆ [0, 1]. If A is a Borel subset of [a, b],
then f (A\(D ∪ Lf ∪ E)) is Borel, because it is the image of the Borel set under the
homeomorphism f |[a,b]\(D∪Lf ∪E).

A function f : [a, b] → R is said to satisfy the Banach condition (T1) if

m1({y ∈ R : card(f −1(y)) = ∞}) = 0.

Since a restriction G|C◦ is one-to-one and G(I ◦) is a countable set, 2.1.2 implies

Proposition 2.10. G satisfies the condition (T1).

Bary and Menchoff [3] showed that a continuous function f : [a, b] → R is a superposi-
tion of two absolutely continuous functions if and only if f satisfies both the conditions (T1)

and (N). Moreover, if f is differentiable at every point of a set which has positive measure
in each interval from [a, b], then f is a sum of two superpositions,

f = f1 ◦ f2 + f3 ◦ f4,

where fi, i = 1, . . . , 4, are absolutely continuous [2]. Thus, we have

Proposition 2.11. There are absolutely continuous functions f1, . . . , f4 such that

G = f1 ◦ f2 + f3 ◦ f4,

but G is not a superposition of any two absolutely continuous functions.

Remark 2.12. A superposition of any finite number of absolutely continuous functions
f1◦f2◦· · ·◦fn is always representable as q1◦q2 with two absolutely continuous q1, q2. Every
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continuous function is the sum of three superpositions of absolutely continuous functions
[2]. An application of Proposition 2.10 to the nondifferentiability set of the Cantor function
will be formulated in Proposition 8.1.

3. Subadditivity, the points of local convexity

An extended Cantor’s ternary function Ĝ is defined as follows

Ĝ(x) =
{0 if x < 0,

G(x) if 0�x�1,

1 if x > 1.

Proposition 3.1. The extended Cantor function Ĝ is subadditive, that is

Ĝ(x + y)�Ĝ(x) + Ĝ(y)

for all x, y ∈ R.

This proposition implies the following corollary.

Proposition 3.2. The Cantor function G is a first modulus of continuity of itself, i.e.,

sup
|x−y| � �
x,y∈[0,1]

|G(x) − G(y)| = G(�)

for every � ∈ [0, 1].

The proof of Propositions 3.1 and 3.2 can be found in Timan’s book [54, Section 3.2.4]
or in the paper of Dobos̆ [18].

It is well-known that a function � : [0, ∞) → [0, ∞) is the first modulus of continuity for
a continuous function f : [a, b] → R if and only if � is increasing, continuous, subadditive
and �(0) = 0 holds.

A particular way to prove the subadditivity for an increasing function � : [0, ∞) →
[0, ∞) with �(0)=0 is to show that the function �−1�(�) is decreasing [54, Section 3.2.3].
The last condition holds true in the case of concave functions. The following propositions
show that this approach is not applicable for the Cantor function.

Let f : [a, b] → R be a continuous function. Let us say that f is locally concave–convex
at point x ∈ [a, b] if there is a neighborhood U of the point x for which f |U is either convex
or concave. Similarly, a continuous function f : (a, b) → R is said to be locally monotone
at x ∈ (a, b) if there is an open neighborhood U of x such that f |U is monotone.

Proposition 3.3. The function x−1G(x) is locally monotone at point x0 if and only if
x0 ∈ I ◦.

Proposition 3.4. G(x) is locally concave–convex at x0 if and only if x0 ∈ I ◦.



O. Dovgoshey et al. / Expo. Math. 24 (2006) 1–37 7

Propositions 3.3 and 3.4 are particular cases of some general statements.

Theorem 3.5. Let f : [a, b] → R be a monotone continuous function. Suppose that Lf is
an everywhere dense subset of [a, b]. Then f is locally concave–convex at x ∈ [a, b] if and
only if x ∈ Lf .

For the proof we use of the following.

Lemma 3.6. Let f : [a, b] → R be a continuous function. Then [a, b]\Lf is a compact
perfect set.

Proof. By definition Lf is relatively open in [a, b]. Hence [a, b]\Lf is a compact subset of
R. If p is an isolated point of [a, b]\Lf , then either it is a common endpoint of two intervals
I, J which are components of Lf or p ∈ {a, b}. In the first case it follows by continuity of
f that I ∪ {p} ∪ J ⊆ Lf . That contradicts to the maximality of the connected components
I, J . The second case is similar. �

Proof of Theorem 3.5. It is obvious that f is locally concave–convex at x for x ∈ Lf .
Suppose now that x ∈ [a, b]\Lf and f is concave–convex in a neighborhood U0 of the
point x. By Lemma 3.6 x is not an isolated point of [a, b]\Lf . Hence, there exist y, z in
[a, b]\Lf and � > 0 such that

z < y, (z − �, y + �) ⊂ U0 ∩ [a, b], (z, y) ⊂ Lf .

Since [a, b]\Lf is perfect, we can find z0, y0 for which

z0 ∈ (z − �, z) ∩ ([a, b]\Lf ), y0 ∈ (y, y + �) ∩ ([a, b]\Lf ).

Denote by lz and ly be the straight lines which pass through the points (z0, f (z0)),
(z + y/2, f (z + y/2)) and (y0, f (y0)), (z + y/2, f (z + y/2)), respectively. Suppose that
f is increasing. Then the point (z, f (z)) lies over lz but (y, f (y)) lies under ly (See Fig. 2).
Hence, the restriction f |(z0,y0) is not concave–convex. This contradiction proves the theorem
since the case of a decreasing function f is similar. �

Theorem 3.7. Let f : (a, b) → [0, ∞) be an increasing continuous function and let
� : (a, b) → [0, ∞) be a strictly decreasing function with finite derivative �′(x) at every
x ∈ (a, b). If

m1(Lf ) = |b − a|, (3.8)

then the product f · � is locally monotone at a point x ∈ (a, b) if and only if x ∈ Lf .

For a function f : (a, b) → R and x ∈ (a, b) set

SDf (x) = lim
�x→0

f (x + �x) − f (x − �x)

2�x

provided that the limit exists, and write

Vf := {x ∈ (a, b) : SD f (x) = +∞}.
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Fig. 2. The set of points of constancy is the same as the set of points of convexity.

Using the techniques of differentiation of Radon measures (see [23, in particular, Section
1.6, Lemma 1]), we can prove the following.

Lemma 3.9. Let f : (a, b) → R be continuous increasing function. If equality (3.8) holds,
then Vf is a dense subset of (a, b)\Lf .

Proof of Theorem 3.7. It is obvious that � ·f is locally monotone at x0 for every x0 ∈ Lf .
Suppose that � · f is monotone on an open interval J ⊂ (a, b) and x0 ∈ ((a, b)\Lf ) ∩ J .
Since Lf is an everywhere dense subset of (a, b), there exists an interval J1 ⊆ J ∩ Lf .
Then � · f |J1 is a decreasing function. Consequently, � · f |J is decreasing too. By Lemma
3.9 we can select a point t0 ∈ Vf ∩ J . Hence, by the definition of Vf

SD �(x)f (x)|x=t0 = �′(t0)f (t0) + �(t0)SD f (t0) = +∞.

This is a contradiction, because � · f |J is decreasing. �

Remark 3.10. Density of Lf is essential in Theorem 3.5. Indeed, if A is a closed subset
of [a, b] with nonempty interior Int A, then it is easy to construct a continuous increasing
function f such that Lf = [a, b]\A and f is linear on each interval which belongs to Int A.
Theorem 3.7 remains valid if the both functions f and � are negative, but if f and � have
different signs, then the product f · � is monotone on (a, b). Functions having a dense set
of constancy have been investigated by Bruckner and Leonard in [8]. See also Section 7 in
the present work.

4. Characterizations by means of functional equations

There are several characterizations of the Cantor function G based on the self-similarity
of the Cantor ternary set. We start with an iterative definition for G.
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Define a sequence of functions �n : [0, 1] → R by the rule

�n+1(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 �n(3x) if 0�x� 1

3 ,

1
2 if 1

3 < x < 2
3 ,

1
2 + 1

2 �n(3x − 2) if 2
3 �x�1,

(4.1)

where �0 : [0, 1] → R is an arbitrary function. Let M[0, 1] be the Banach space of all
uniformly bounded real-valued functions on [0, 1] with the supremum norm.

Proposition 4.2. The Cantor function G is the unique element of M[0, 1] for which

G(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 G(3x) if 0�x� 1

3 ,

1
2 if 1

3 < x < 2
3 ,

1
2 + 1

2 G(3x − 2) if 2
3 �x�1.

(4.3)

If �0 ∈ M[0, 1], then the sequence {�n}∞n=0 converges uniformly to G.

Proof. Define a map F : M[0, 1] → M[0, 1] as

F(f )(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2f (3x), 0�x� 1

3 ,

1
2 , 1

3 < x < 2
3 ,

1
2 + 1

2f (3x − 2), 2
3 �x�1.

Since

‖F(f1) − F(f2)‖� 1
2 ‖f1 − f2‖,

where f1, f2 ∈ M[0, 1] and ‖ · ‖ denotes the norm in M[0, 1], F is a contraction map on
complete space M[0, 1] and, consequently, by the Banach theorem F has an unique fixed
point f0, f0 = F(f0), and that �n → f0 uniformly on [0, 1]. It follows from the definition
of G, that (4.3) holds. Hence, F(G) = G and by uniqueness f0 = G. �

It should be observed here that there exist several iterative definitions for the Cantor
ternary function G. The above method is a simple modification of the corresponding one
from Dobos̆’s article [18]. It is interesting to compare Proposition 4.2 with the self-similarity
property of the Cantor set C.

Let for x ∈ R

�0(x) := 1
3 x, �1(x) := 1

3 x + 2
3 . (4.4)

Proposition 4.5. The Cantor set C is the unique nonempty compact subset of R for
which

C = �0(C) ∪ �1(C) (4.6)
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holds. Further if F is an arbitrary nonempty compact subset of R, then the iterates

�k+1(F ) := �0(�
k(F )) ∪ �1(�

k(F )), �0(F ) := F ,

convergence to the Cantor set C in the Hausdorff metric as k → ∞.

Remark 4.7. This theorem is a particular case of a general result by Hutchinson about
a compact set which is invariant with respect to some finite family contraction maps on
Rn [36].

In the case of a two-ratio Cantor set a system which is similar to (4.3) was found by
Coppel in [12]. The next theorem follows from Coppel’s results.

Proposition 4.8. Every real-valued F ∈ M[0, 1] that satisfies

F
(x

3

)
= F(x)

2
, (4.9)

F
(

1 − x

3

)
= 1 − F(x)

2
, (4.10)

F

(
1

3
+ x

3

)
= 1

2
(4.11)

is the Cantor ternary function.

The following simple characterization of the Cantor function G has been suggested by
Chalice in [11].

Proposition 4.12. Every real-valued increasing function F : [0, 1] → R that satisfying
(4.9) and

F(1 − x) = 1 − F(x) (4.13)

is the Cantor ternary function.

Remark 4.14. Chalice used the additional condition F(0) = 0, but it follows from (4.9).

The functional equations, given above, together with Proposition 4.5 are sometimes use-
ful in applications. As examples, see Proposition 5.5 in Section 5 and Proposition 6.1 in
Section 6.

The system (4.9)+ (4.13) is a particular case of the system that was applied in the earlier
paper of Evans [22] to the calculation of the moments of some Cantor functions. In this
interesting paper Evans noted that (4.9) and (4.13) together with continuity do not determine
G uniquely. However, they imply that

F(x) = 1
2 + F

(
x − 2

3

)
, 2

3 �x�1. (4.15)

Next we show that a variational condition, together with (4.9) and (4.13), determines the
Cantor function G (Fig. 3).
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Fig. 3. The continuous function F which satisfies “the two Cantor function equations” (4.9) and (4.13)

but F(x) = 1
2 (12x − 5)2 on

[
1
3 , 1

2

]
.

Proposition 4.16. Let F : [0, 1] → R be a continuous function satisfying (4.9) and
(4.13). Then for every p ∈ (1, +∞) it holds∫ 1

0
|F(x)|p dx�

∫ 1

0
|G(x)|p dx (4.17)

and if for some p ∈ (1, ∞) an equality∫ 1

0
|F(x)|p dx =

∫ 1

0
|G(x)|p dx (4.18)

holds, then G = F .

Lemma 4.19. Let f : [a, b] → R be a continuous function and let p ∈ (1, ∞). Suppose
that the graph of f is symmetric with respect to the point (a + b/2; f (a + b/2)). Then the
inequality

1

|b − a|
∫ b

a

|f (x)|p dx�
∣∣∣∣f
(

a + b

2

)∣∣∣∣
p

(4.20)

holds with equality only for

f (x) ≡ f

(
a + b

2

)
.

Proof. We may assume without loss of generality that a = −1, b = 1. Now for f (0) = 0
inequality (4.20) is trivial. Hence replacing f with −f , if necessary, we may assume that
f (0) < 0. Write

�(x) = f (x) − f (0).
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Given m > 0, we decompose [−1, 1] as

A+ := {x ∈ [−1, 1] : |�(x)| > m}, A0 := {x ∈ [−1, 1] : |�(x)| = m},
A− := {x ∈ [−1, 1] : |�(x)| < m}.

Set Jm := ∫ b

a
|�(x) − m|p dx. Since � is an odd function, we obtain

Jm =
∫

A+∩[0,1]
[(|�(x)| − m)p + (|�(x)| + m)p] dx +

∫
A0∩[0,1]

(2m)p dx

+
∫

A−∩[0,1]
[(m − |�(x)|)p + (m + |�(x)|)p] dx := J+

m + J 0
m + J−

m .

Elementary calculation shows that the function

g(y) := (B − y)p + (B + y)p

is strictly increasing on (0, B) for p > 1. Hence,

J+
m �2
∫

A+∩[0,1]
|�(x)|p dx =

∫
A+

|�(x)|p dx�
∫

A+
mp dx. (4.21)

If �(x) /≡ 0, then A− is nonempty and open, as �(0) = 0. Thus,

J−
m > 2

∫
A−∩[0,1]

mp dx =
∫

A−
mp dx (4.22)

for �(x) /≡ 0. Moreover, it is obvious that

J 0
m = 2p−1

(
2
∫

A0∩[0,1]
mp dx

)
�
∫

A0
mp dx. (4.23)

Choose m=−f (0). Then, in the case where f (x) /≡ f (0), from (4.21) to (4.23) we obtain
the required inequality

1

2

∫ 1

−1
|f (x)|p > |f (0)|p. �

Remark 4.24. Inequality (4.20) holds also for p = 1, but, as simple examples show, in this
case the equality in (4.20) is also attained by functions different from the constant function.

For every interval J ∈ I (where I is a family of components of the open set I ◦ =
[0, 1]\C) let us denote by xJ the center of J and by GJ the value of the Cantor function G
at xJ .

Lemma 4.25. If F : [0, 1] → R is a continuous function satisfying (4.9) and (4.13), then
the graph of the restriction F |J is symmetric with respect to the point (xJ , GJ ) for each
J ∈ I.
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Proof. It follows from (4.13) that

F
( 1

2

)= G
( 1

2

)= 1
2 ,

thus we can rewrite equation (4.13) as

F
( 1

2

)= 1
2

(
F
( 1

2 + x
)+ F

( 1
2 − x
))

.

Consequently a graph of F |( 1
3 ,

2
3

) is symmetric with respect to the point
( 1

2 , 1
2

)
. If J is

an arbitrary element of I, then there is a finite sequence of contractions �i1, . . . ,�in

such that J is an image of the interval
( 1

3 , 2
3

)
under superposition �i1 ◦ . . . ◦ �in

and each �ik, k = 1, . . . , n belongs to {�0, �1} (see formula (4.4)). Now, the desired
symmetry follows from (4.9) and (4.15) by induction. �

Proof of Proposition 4.16. Let J ∈ I. If F satisfies (4.9) and (4.13), then Lemma 4.25
and Lemma 4.19 imply that∫

J

|F(x)|p dx�
∫

J

|G(x)|p dx (4.26)

for every p ∈ (1, ∞). Thus, we obtain (4.17) from the condition m1(C) = 0. Suppose now
that (4.18) holds. Then we have the equality in (4.26) for every J ∈ I. Thus, by Lemma
4.19

F |J = G|J , J ∈ I.

Since I 0 =⋃J∈I J is a dense subset of [0, 1] and F = G as required. �

In the special case p = 2 we can use an orthogonal projection to prove Proposition 4.16.
Define a subspace L2

C[0, 1] of the Hilbert space L2[0, 1] by the rule: f ∈ L2
C[0, 1] if

f ∈ L2[0, 1] and for every J ∈ I there is a constant CJ such that∫
J

|f (x) − CJ |2 dx = 0.

It is obvious that G ∈ L2
C[0, 1].

Let us denote by PC the operator of the orthogonal projection from L2[0, 1] to L2
C[0, 1].

Proposition 4.27. Let f be an arbitrary function in L2[0, 1] and let J ∈ I be an interval
with endpoints aJ , bJ .

4.27.1. Suppose that f is continuous. Then the image PC(f ) is continuous if and only if

f (aJ ) = f (bJ ) = 1

|bJ − aJ |
∫

J

f (x) dx

for each J ∈ I.
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4.27.2. Function f ∈ L2[0, 1] is a solution of the equation PC(f ) = G if and only if∫
J

f (x) dx =
∫

J

G(x) dx

for each J ∈ I.

We leave the verification of this simple proposition to the reader.
Now, the conclusion of Proposition 4.16 follows directly from Lemma 4.25 by usual

properties of orthogonal projections. See, for example, [5, Chapter VII, 9].

5. The Cantor function as a distribution function

It is well known that there exists an one-to-one correspondence between the set of the
Radon measures � in R and the set of a finite valued, increasing, right continuous functions
F on R with limx→−∞F(x) = 0. Here we study the corresponding measure for the Cantor
function.

Let �0, �1 : R → R be similarity contractions defined by formula (4.4). Write

sc := lg 2

lg 3
. (5.1)

We let Hsc denote the sc-dimensional Hausdorff measure in R. See [24] for properties
of Hausdorff measures.

Proposition 5.2. There is the unique Borel regular probability measure � such that

�(A) = 1
2 �(�−1

0 (A)) + 1
2 �(�−1

1 (A)) (5.3)

for every Borel set A ⊆ R. Furthermore, this measure � coincides with the restriction of
the Hausdorff measure Hsc to C, i.e.,

�(A) = Hsc (A ∩ C) (5.4)

for every Borel set A ⊆ R.

For the proof see [24, Theorem 2.8, Lemma 6.4].

Proposition 5.5. Let m1 be the Lebesgue measure on R. Then

m1(G(A)) = Hsc (A) (5.6)

for every Borel set A ⊆ C.

Proof. Write

�(A) := m1(G(A ∩ C))
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for every Borel set A ⊆ R. If suffices to show that � is a Borel regular probability measure
which fulfils (5.3). Since C1 is countable (see formula (1.5)), m1(G(C1)) = 0. Hence, we
have

�(A) = m1(G(C◦ ∩ A)), A ⊆ R.

The restriction G|C◦ : C◦ → G(C◦) is a homeomorphism and

�(R) = m1(G(C◦)) = 1.

Hence, � is a Borel regular probability measure. (Note that G(A) is a Borel set for each
Borel set A ⊆ C. See Remark 2.9.) To prove (5.3) we will use following functional equations
(see (4.9), (4.15)).

G
(x

3

)
= 1

2
G(x), 0�x�1, (5.7)

G(x) = 1
2 + G

(
x − 2

3

)
, 2

3 �x�1. (5.8)

Let A be a Borel subset of R. Put

A0 := A ∩ [0, 1
3

]
, A1 := A ∩ [ 23 , 1

]
.

Since �−1
0 (x) = 3x and �−1

1 (x) = 3
(
x − 2

3

)
, we have

�(�−1
i (A)) = �(�−1

i (Ai))

for i = 1, 2. It follows from (5.7) that

2G(x) = G(�−1
0 (x))

for x ∈ [0, 1
3

]
. Hence,

1
2�(�−1

0 (A0)) = 1
2 m1(G(�−1

0 (A0))) = 1
2 m1(2G(A0)) = m1(G(A0)).

Similarly, (5.7) implies that

2G
(
x − 2

3

)= G(�−1
1 (x))

for x ∈ [ 23 , 1
]
, and we obtain

1
2 �(�−1

1 (A1)) = 1
2 m1(G(�−1

1 (A1)))

= 1
2 m1
(
2G
(
A1 − 2

3

))= m1
(
G
(
A1 − 2

3

))
.
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Now using (5.8) we get

m1
(
G
(
A1 − 2

3

))= m1
(− 1

2 + G(A1)
)= m(G(A1)).

The set G(A1) ∩ G(A0) is empty or contains only the point 1
2 . Hence we obtain

m1(G(A0)) + m1(G(A1)) = m1(G(A0 ∪ A1)) = �(A).

Therefore �(A) satisfies (5.3). �

Corollary 5.9. The extended Cantor function Ĝ is the cumulative distribution function of
the restriction of the Hausdorff measure Hsc to the Cantor set C.

This description of the Cantor function enables us to suggest a method for the proof of
the following proposition. Write

Ĝh(x) := Ĝ(x + h) − Ĝ(x)

for each h ∈ R. The function Ĝh is of bounded variation, because it equals a difference of
two increasing bounded functions.

Proposition 5.10 (Hille and Tamarkin [34]). Let Var(Ĝh) be a total variation of Ĝh. Then
we have

sup
0�h��

Var(Ĝh) = 2

for every � > 0.

This holds because sets C ∩ (C ± 3−n) have finite numbers of elements for all positive
integer n.

Remark 5.11. If F is an absolutely continuous function of bounded variation and Fh(x) :=
F(x + h) − F(x), then

lim
h→0

Var(Fh) = 0. (5.12)

Really, if F is absolutely continuous on [a, b], then F ′ exists a.e. in [a, b], F ′ ∈ L1[a, b],
and

Var(F ) =
∫ b

a

|F ′(x)| dx.

Approximating of F ′ by continuous functions, for which the property is obvious, we obtain
(5.12).

In fact, Proposition 5.10 remains valid for an arbitrary singular function of bounded
variation.
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Theorem 5.13. Let F : R → R be a function of bounded variation with singular part �.
Then the limit relation

lim sup
h→0

(Var(Fh)) = 2Var(�)

holds.

The theorem is an immediate adaptation of the result that was proved by Wiener and
Young [57].

6. Calculation of moments and the length of the graph

In the article [22], Evans proved the recurrence relations for the moments∫ 1

0
xnG	(x) dx,

where G	 is a “Cantor function” for a 	-middle Cantor set. In the classic middle-third case
Evans’s results can be written in the form.

Proposition 6.1. Let n be a natural number and let Mn be a moment of the form

Mn =
∫ 1

0
xnG(x) dx.

Then the following relations hold:

2Mn = 1

n + 1
+ 1

3n+1 − 1

n−1∑
k=0

(
n

k

)
2n−kMk , (6.2)

(1 + (−1)n)Mn = 1

n + 1
+

n−1∑
k=0

(−1)k+1
(

n

k

)
Mk (6.3)

for all positive integers n where
(

n
k

)
are the binomial coefficients.

It follows immediately from G(x)+G(1 −x)= 1 that M0 = 1
2 . Hence, (6.2) can be used

to compute all moments Mn. Let �C be the restriction of the Hausdorff measure Hsc to the
Cantor set C (see Corollary 5.9). Now set

mn :=
∫ 1

0
xn d�C(x).

Proposition 6.4. The following equality holds:

mn+1 =
∑n

k=0

(
n+1
k

)
2n−kmk

3n+1 − 1
(6.5)
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for every natural n and we have

2mn =
n−1∑
k=0

(−1)k
(

n

k

)
mk , (6.6)

(n + 1)mn =
n−1∑
k=0

(−1)k
(

n + 1
k

)
mk (6.7)

for every odd n.

Proof. First we prove (6.5).
The Cantor set C can be defined as the intersection

⋂∞
k=0 Ck , see (1.4). Each Ck consists

of 2k disjoint closed intervals Ci
k = [ai

k, b
i
k], i = 1, . . . , 2k . The length of Ci

k is 3−k and

�C(Ci
k) = G(bi

k) − G(ai
k) = 2−k .

Let Lk be a set of all left-hand points of intervals Ci
k ⊆ Ck , i.e.,

Lk = {ai
k : i = 1, . . . , 2k}.

It is easy to see that L0 = {0} and

Lk = ( 13 Lk−1
) ∪ ( 23 + ( 13 Lk−1

))
(6.8)

for k�1. Observe that

∫ 1

0
xn d�C(x) =

∫ 1

0
xn dG(x)

because the integrand is continuous. Hence we have

mk = lim
l→∞

l∑
j=1

(
i )
n[G(xj+1) − G(xj )],

where 0 =x1 < · · · < xl < xl+1 = 1 is any subdivision of [0, 1] with maxj (xj+1 −xj ) → 0
as l → ∞ and 
j ∈ [xj , xj+1]. Subdivide [0, 1] into l = 3k equal intervals [xj , xj+1] and
take 
j = xj . Then

mn = lim
k→∞

1

2k

∑
x∈Lk

xn.



O. Dovgoshey et al. / Expo. Math. 24 (2006) 1–37 19

The last relation and (6.8) imply that

mn = lim
k→∞

1

2k

⎛
⎜⎝ ∑

x∈ 1
3 Lk−1

xk +
∑

x∈ 2
3 + 1

3 Lk−1

xn

⎞
⎟⎠

= 1

2
· 1

3n
lim

k→∞

⎛
⎝ 1

2k−1

∑
x∈Lk−1

xn

⎞
⎠+ 1

2
· 1

3n
lim

k→∞

⎛
⎝ 1

2k−1

∑
x∈Lk−1

(x + 2)n

⎞
⎠

= 1

2
· 1

3n
mn + 1

2
· 1

3n

n∑
p=0

(
n

p

)
mp2n−p

and we obtain (6.5).
In order to prove (6.6) we can use (6.3), because

mn+1 =
∫ 1

0
xn+1 dG(x) = xn+1G(x)

∣∣∣∣10 − (n + 1)

∫ 1

0
xnG(x) dx

= 1 − (n + 1)Mn. (6.9)

Suppose that n is even, then it follows from (6.3) and (6.9) that

2(1 − mn+1) = 2(n + 1)Mn = 1 + (n + 1)

n−1∑
k=0

(−1)k+1
(

n

k

)
Mk

= 1 +
n−1∑
k=0

(−1)k+1 n + 1

k + 1

(
n

k

)
(1 − mk+1).

Hence from

n + 1

k + 1

(
n

k

)
=
(

n + 1
k + 1

)
and (1 − m0) = 0

we get

2(1 − mn+1) = 1 +
n−1∑
k=0

(−1)k+1
(

n + 1
k + 1

)
(1 − mk+1)

= 1 +
n∑

k=1

(−1)k
(

n + 1
k

)
(1 − mk) = 1 +

n∑
k=0

(−1)k
(

n + 1
k

)

−
n∑

k=0

(−1)k
(

n + 1
k

)
mk .

Observe that
n∑

k=0

(−1)k
(

n + 1
k

)
= (1 − 1)n+1 −

(
n + 1
n + 1

)
(−1)n+1 = 1
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because n is even. Consequently,

2(1 − mn+1) = 2 −
n∑

k=0

(−1)kmk .

The last formula implies (6.6). The proof of (6.7) is analogous to that of (6.6). �

Remark 6.10. The measure �C is frequently referred to as the Cantor measure. In the proof
of (6.5) we used an idea from Hille and Tamarkin [34]. By (6.5) with �n = mn/n!2n we
obtain

�n+1 = 1

2(3n+1 − 1)

(
�n

1! + �n−1

2! + · · · + �0

(n + 1)!
)

.

The asymptotics of the moments mn was determinated in [31]. Write

�(m) := 1 − 2im

lg 3

for m ∈ Z.

Theorem 6.11. Let mn be the nth moment of the Cantor measure �C , then

mn ∼ 21/2−3sc/2n−sc exp(−2H(n)), n → ∞, (6.12)

where

H(x) := 1

2i

+∞∑
m∈Z
m �=0

′
1

m
2−�(m)(1 − 21−�(m))�(�(m))�((�(m))x1−�(m)

and

sc = lg 2

lg 3
.

Note that H(x) is a real-valued function for x > 0 and periodic in the variable log x. See
also [27] for an example of an absolutely continuous measure with asymptotics of moments
containing oscillatory terms.

The behavior of the integrals

I (�) :=
∫ 1

0
(G(x))� dx, E(�) =

∫ 1

0
exp(�G(x)) dx (6.13)

was described in [32]. It was noted that I extends to a function which is analytic in the
half-plane Re(�) > − sc and E extends to an entire function. The following theorem is a
particular case of the results from [32].
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Theorem 6.14.

6.14.1. For Re(�) > − sc, the function I obeys the formula

(3 · 2� − 1)I (�) = 1 +
∫ 1

0
(1 + G(x))� dx

and for all � ∈ C the function E obeys the formula

3E(2�) = e� + (e� + 1)E(�).

6.14.2. For all natural n�2, we have

I (n) = 1

n + 1
−
∑
k �n

′′ (n

k

)
2k−1 − 1

3 · 2k−1 − 1

B(k)

n − k + 1
,

where the primes mean that summation is over even positive k and B(k) are
Bernoulli numbers

6.14.3. For � → ∞, we have

�sc I (�) = �(log2 �) + O(�−sc−1),

�scE(−�) = �(log2 �) + O(�−sc−1),

where � is the function analytic in the strip |Im(z)| < /(2 lg 2),

�(z) =
+∞∑
−∞

2

3 lg 2
�

(
sc + 2in

lg 2

)
�

(
sc + 2in

lg 2

)
exp(−2inz).

Proposition 6.15. The equality

∫ 1

0
eax dG(x) = exp

(a
2

) ∞∏
k=1

cosh
( a

3k

)
(6.16)

holds for every a ∈ C.

Proof. Write

�(a) :=
∫ 1

0
eax dG(x).

It follows from (4.9) to (4.11) that

G
(x

3

)
= 1

2
G(x), G

(
2

3
+ x

3

)
= 1

2
+ 1

2
G(x).
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Hence

�(a) =
∫ 1/3

0
eax dG(x) +

∫ 1

2/3
eax dG(x) =

∫ 1

0
eax/3 dG

(x
3

)

+
∫ 1

0
e
a
(

2
3 +x/3

)
dG

(
2

3
+ x

3

)
= 1

2

∫ 1

0
eax/3 dG(x)

+ 1

2

∫ 1

0
e
a
(

2
3 +x/3

)
dG(x)

= 1

2
(1 + ea 2

3 )�
(a

3

)
= ea/3 cosh

(a
3

)
�
(a

3

)
.

Consequently, by successive iteration we obtain

�(a) = exp
(a

3
+ a

9
+ · · · + a

3n

)
cosh
(a

3

)
cosh
(a

9

)
. . . cosh

( a

3k

)
�
( a

3k

)
.

Since �(x) → 1 as x → 0, the last formula implies (6.16). �

Observe that the function �, �(a)=∫ 1
0 eax dG(x), is the exponential generating function

of the moment sequence {mn}.
The next result follows from (6.16) and shows that Fourier coefficients �̂n, �̂n :=∫ 1

0 e2inx d�C(x), of �C do not tend to zero as n → ∞.

Proposition 6.17 (Hille and Tamarkin [34]). For all integers n,

�̂n = ein
∞∏

j=1

cos

(
2n

3j

)
.

Corollary 6.18 (Hille and Tamarkin [34]). Let k be a positive integer and let n= 3k . Then

�̂n = −
∞∏

�=1

cos

(
2

3�

)
= const. �= 0.

Remark 6.19. The infinite product
∏∞

�=1 cos
(
2/3�) converges absolutely because∣∣∣∣1 − cos

2

3�

∣∣∣∣ �2 sin2
( 

3�

)
< 2

2

9�

and hence
∏∞

�=1 cos
(
2/3�) �= 0.

In the paper [56], Wiener and Wintner proved the more general result similar to Corollary
6.18. The study of the Fourier asymptotics of Cantor-type measures has been extended in
[50–52,40,35].

Proposition 6.20. The length of the arc of the curve y = G(x) between the points (0, 0)

and (1, 1) is 2.
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Remark 6.21. The detailed proof of this proposition can be found in [13]. In fact, this
follows rather easily from 2.1.4. Probably the length of the curvey=G(x)was first calculated
in [34].

The next theorem is a refinement of Proposition 6.20.

Theorem 6.22. Let F : [0, 1] → R be a continuous, increasing function for which F(0)=0
and F(1) = 1. Then the following two statements are equivalent.

6.22.1. The length of the arc y = F(x), 0�x�1, is 2.
6.22.2. The function F is singular.

This theorem follows from the results of Pelling [46]. See also [19].

7. Some topological properties

There exists a simple characterization of the Cantor function up to a homeomorphism.
If � : X → Y and F : X → Y are continuous functions from topological space X to
topological space Y, then F is said to be (topologically) isomorphic to � if there exist
homeomorphisms � : X → X and � : Y → Y such that F = � ◦ � ◦ � [47, Chapter 4,
Section 1]. If the last equality holds with � equal the identity function, then F and � will
be called the Lebesgue equivalent functions (cf. [30, Definition 2.1]).

Proposition 7.1. The Cantor function G is isomorphic (as a map from [0, 1] into [0, 1]) to
a continuous monotone function q : [0, 1] → [0, 1] if and only if the set of constancy Lg is
everywhere dense in [0, 1] and

g({0, 1}) = {0, 1} ⊆ [0, 1]\Lg . (7.2)

Lemma 7.3. Let A, B be everywhere dense subsets of [0, 1] and let f : A → B be an
increasing bijective map. Then f is a homeomorphism and, moreover, f can be extended to
a self-homeomorphism of the closed interval [0, 1].

Proof. It is easy to see that

0 = lim
x→0
x∈A

f (x) = 1 − lim
x→1
x∈A

f (x)

and

lim
x→t

x∈A∩[0,t]
f (x) = lim

x→t
x∈A∩[t,1]

f (x)

for every t ∈ (0, 1). Thus there exists the limit

f̃ (t) := lim
x→t
x∈A

f (x), t ∈ [0, 1].



24 O. Dovgoshey et al. / Expo. Math. 24 (2006) 1–37

Obviously, f̃ is strictly increasing and f̃ (t) = f (t) for each t ∈ A. Suppose that

f̃ −(x0) := lim
x→x0

x∈[0,x0)

f̃ (x) < lim
x→x0

x∈(x0,1]
f̃ (x) := f̃ +(x0)

for some x0 ∈ (0, 1). Since B is a dense subset of [0, 1], there is b0 ∈ B such that

f (x0) �= b0 ∈ (f̃ −(x0), f̃
+(x0)).

Let b0 = f (a0), where a ∈ A. Now we have the following:

(i) a0 �= x0, because b0 �= f̃ (x0),
(ii) a0 /∈ [0, x0), because b0 > f̃ −(x0),

(iii) a0 /∈ (x0, 1], because b0 < f̃ +(x0)

and this yields to a contradiction. Reasoning similarly, we can prove the continuity of f̃ for
the points 0 and 1. Hence, f̃ is a continuous bijection of the compact set [0, 1] onto itself
and every such bijection is a homeomorphism. �

Proof of Proposition 7.1. It follows directly from the definition of isomorphic functions
that (7.2) holds and

Clo(Lg) = [0, 1], (7.4)

if G is isomorphic to a continuous function g : [0, 1] → [0, 1].
Suppose now that g : [0, 1] → [0, 1] is a continuous monotone function for which (7.2)

and (7.4) hold. We may assume, without loss of generality, that g is increasing. It follows
from Lemma 3.6, that a set [0, 1]\Lg is compact and perfect. Moreover, (7.2) and (7.4)
imply that [0, 1]\Lg is a nonempty nowhere dense subset of [0, 1]. Hence, there exists an
increasing homeomorphism � : [0, 1] → [0, 1] such that

�(C) = [0, 1]\Lg .

In fact, there is an order preserving homeomorphism �0 : C → [0, 1]\Lg [1, Chapter 4,
Section 6, Theorem 25]. It can be extended on each complementary interval J ∈ I as a
linear function. The resulting extension � is strictly increasing and maps [0, 1] onto [0, 1].
Hence, by Lemma 7.3, � is a homeomorphism.

It is easy to see that a set of constancy of g ◦ � coincides with I ◦, the set of constancy of
G. Set

gI ◦ :=
⋃
J∈I

g(J ), GI ◦ :=
⋃
J∈I

G(J ),

(g(J ) and G(J ) are one-point sets for every J ∈ I).
The maps I � J → g(J ) ∈ gI ◦ and I � J → G(J ) ∈ GI ◦ are one-to-one and onto.

Hence the map

�◦ : gI ◦ → GI ◦ , �◦(g(J )) = G(J ), J ∈ I
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is a bijection. It follows from the definition of G and (7.4) that

Clo(gI ◦) = Clo(GI ◦) = [0, 1].
Moreover, since g and G are increasing functions, the function �◦ is strictly increasing.
Hence, by Lemma 7.3, �◦ can be extended to a homeomorphism � : [0, 1] → [0, 1]. It is
easy to see that

G(x) = �(g(�(x)))

for every x ∈ I ◦. Since I ◦ is an everywhere dense subset of [0, 1], the last equality implies
that

G = � ◦ g ◦ �.

Thus g and G are topologically isomorphic. �

Let f : [0, 1] → R be a continuous function whose total variation is finite. Then, by
the theorem of Bruckner and Goffman [7], f is Lebesgue equivalent to some function with
bounded derivative. As a corollary we obtain

Proposition 7.5. There exists a differentiable function f with an uniformly bounded deriva-
tive f ′ such that G and f are Lebesgue equivalent.

We now recall a notion of set of varying monotonicity [30, Definition 3.7].
Let f : [a, b] → R. A point x ∈ (a, b) is called a point of varying monotonicity of

f if there is no neighborhood of x on which f is either strictly monotonic or constant. We
also make the convention that both a and b are points of varying monotonicity for every
f : [a, b] → R.

Let us denote by Kf the set of points of varying monotonicity of f. Then, as was shown
by Bruckner and Goffman in [7], m1(f (Kf )) = 0 if and only if f is Lebesgue equivalent to
some continuously differentiable function. For every homeomorphism � : [0, 1] :→ [0, 1]
we evidently have

K�◦G = C, �(G(C)) = [0, 1].
Thus, we obtain.

Proposition 7.6. If F is topologically isomorphic to the Cantor function G, then F is not
continuously differentiable.

Let GC be the restriction of G to the Cantor set C. As it is easy to see, GC is continuous,
closed but not open. For example we have

GC

([
0, 1

2

) ∩ C
)= G

([
0, 1

2

))= [0,
1

2

]
.

However, GC is weakly open in the following sence.
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Proposition 7.7. Let A be a nonempty subset of C. If the interior of A is nonempty in C,
then the interior of GC(A) is nonempty in [0, 1], or in other words

(IntC A �= ∅) ⇒ (Int[0,1] G(A) �= ∅)
)

. (7.8)

Proof. Suppose that A ⊆ C and IntC A �= ∅. Since C◦ is a dense subset of C, there is an
interval (a, b) such that both a and b are in C◦ and

A ⊇ (a, b) ∩ C.

It is easy to see that

(x < t < y) ⇒ (G(x) < G(t) < G(y)) (7.9)

for all x, y in [0, 1] and every t ∈ C◦. Hence

(G(a), G(b)) = G((a, b) ∩ C) ⊆ G(A) = GC(A). � (7.10)

Recall that a subset B of topological space X is residual in X if X\B is of the first category
in X.

Proposition 7.11. If B is a residual (first category) subset of [0, 1], then G−1
C (B)

is residual (first category) in C.

Proof. Let B be a residual subset of [0, 1]. Write

K1 := [0, 1]\C◦, W := G−1(B).

It is sufficient to show that W ∩ C◦ is residual in C.
Since G is one-to-one on C◦,

K1 ∪ C◦ = [0, 1] = G(K1) ∪ G(C◦), (7.12)

and

C◦ ∩ K1 = ∅ = G(C◦) ∩ G(K1). (7.13)

Moreover, we have

W ∩ C◦ = G−1(G(W) ∩ G(C◦)) = G−1
C (G(W) ∩ G(C◦)). (7.14)

It follows immediately from (7.12) and (7.13) that

G(W) ∩ G(C◦) = G(W) ∩ ([0, 1]\G(K1)).

The set G(K1) is countable. Thus [0, 1]\G(K1) is residual and G(W) ∩ G(C◦) is residual
too, as an intersection of residual sets. Hence, there is a sequence {On}∞n=1 for which

G(W) ∩ G(C◦) ⊇
∞⋃

n=1

On (7.15)
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and each On is a dense open subset of [0, 1]. Since GC is continuous on C◦, (7.14) and
(7.15) imply that

W ∩ C◦ ⊇
∞⋃

n=1

G−1
C (On),

where each G−1
C (On) is open in C. Suppose that we have

IntC(C\G−1
C (On0)) �= ∅

for some positive integer n0. Then by Proposition 7.7 we obtain

Int[0,1] ([0, 1]\On0) �= ∅
contrary to the properties of {On}∞n=1. Consequently G−1

C (On) is dense in C for each positive
integer n. It follows that W ∩C◦ is residual in C. For the case where B is of the first category
in [0, 1] the conclusion can be obtained by passing to the complement. �

Remark 7.16. In a special case this proposition was mentioned without proof in the work
by Eidswick [21].

Proposition 7.17. Let B ⊆ C. Then B is an everywhere dense subset of C if and only if
GC(B) is an everywhere dense subset of [0, 1].

Proof. Since GC is continuous, the image GC(B) is a dense subset of [0, 1] for every dense
B. Suppose that

Clo[0,1](GC(B)) = [0, 1]
but

C\CloC(B) �= ∅.

GC is a closed map, hence

GC(CloC(B)) ⊇ Clo[0,1](GC(B)) = [0, 1]. (7.18)

As in the proof of Proposition 7.7 we can find a two-point set {a, b} ⊆ C◦ such that (7.10)
holds with A = C\CloC(B). Taking into account implication (7.9) we obtain that

G(x) /∈ (G(a), G(b))

for every x ∈ CloC(B), contrary to (7.18). �

Remark 7.19. If (X, �1, �2) is a space with two topological structures �1 and �2, then one
can prove that the condition

(Int�1(A) �= ∅) ⇔ (Int�2(A) �= ∅) ∀A ⊆ X
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is equivalent to

(Clo�1(A) = X) ⇔ (Clo�2(A) = X) ∀A ⊆ X.

The formulations and proofs of Propositions 7.7, 7.10, 7.17 can be easily carried over to
the general case of functions which are topologically isomorphic to G. In the rest of this
section we discuss a new characterization for such functions.

We say that a subset A of R has the Baire property if there is an open set U ⊆ R such
that the symmetric difference A�U, A�U = (A\U) ∪ (U\A), is of first category in R.

Theorem 7.20. The Cantor function G is isomorphic (as a map from [0, 1] into R) to a
continuous monotone function f : [0, 1] → R with {0, 1} ⊆ ([0, 1]\Lf ) if and only if the
inverse image f −1(A) has the Baire property for every A ⊆ R.

Proof. Let f : [0, 1] → R be a function which is topologically isomorphic to G and let
A ⊆ R. Then it follows from Proposition 7.1 that the set of constancy Lf is everywhere
dense in [0, 1]. Reasoning as in the proof of Proposition 2.5 we can prove that f −1(A) is
the union of a F� subset of [0, 1] with some nowhere dense set. Since the collection of all
subsets of [0, 1] having the Baire property forms �-algebra [45, Theorem 4.3] we obtain
the Baire property for f −1(A).

Suppose now that f : [0, 1] → R is a continuous monotone function, {0, 1} ⊆ ([0, 1]\
Lf ), but f is not isomorphic to G. Then using Proposition 7.1 we see that there is an open
interval (a, b) ⊆ ([0, 1]\Lf ). Let B be subset of (a, b) which does not have the Baire
property. It is easy to see that B = f −1(f (B)). Thus, there exists a set A such that f −1(A)

does not have a Baire property. �

Remark 7.21. The existence of subset of the reals not having the Baire property depends
on the axiom of choice. In fact, from the axiom of determinateness it follows that every
A ⊆ R is Lebesgue measurable (cf. Propositions 2.4, 2.5) and has the Baire property. See,
for example, [37,38].

8. Dini’s derivatives

We recall the definition of the Dini derivatives. Let a real-valued function F be defined
on a set A ⊆ R and let x0 be a point of A. Suppose that A contains some half-open interval
[x0, a). The upper right Dini derivative D+F of F at x0 is defined by

D+F(x0) = lim sup
x→x0

x∈(x0,a)

F (x) − F(x0)

x − x0
.

We define the other three extreme unilateral derivatives D+F , D−F and D−F similarly.
(see [6] for the properties of the Dini derivatives).

Let C be the Cantor ternary set and G the Cantor ternary function.
We first note that the upper Dini derivatives D+G and D−G are always +∞ or 0.
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We denote by M the set of points where G fails to have a finite or infinite derivative. It is
clear that M ⊆ C.

Since G satisfies Banach’s (T1) condition (see Proposition 2.10), the following conclusion
holds.

Proposition 8.1. The set G(M) has a (linear Lebesgue) measure zero.

Proof. See Theorem 7.2 in Chapter IX of Saks [48]. �

Corollary 8.2. Let Hsc be a Hausdorff measure with sc = lg 2/ lg 3. Then we have

Hsc (M) = 0.

Proof. This follows from Propositions 8.1 and 5.5. �

Write

W := {x ∈ (0, 1) : D−G(x) = D+G(x) = 0}.
In the next theorem, we have collected some properties of Dini derivatives of G which
follow from [43].

Proposition 8.3.

8.3.1. The set G(W) is residual in [0, 1].
8.3.2. For each ��0 the set {x ∈ [0, 1) : D+G(x) = �} has the power of the continuum.

Remark 8.4. However, the set

{x ∈ [0, 1) : D+G(x) = �}
is void whenever 0 < � < ∞.

Corollary 8.5. The set W ∩ C is residual in C.

Proof. The proof follows from 8.3.1 and Proposition 7.11. �

Remark 8.6. This corollary was formulated without a proof in [21].

Let x be a point of C. Let us denote by zx(n) the position of the nth zero in the ternary
representation of x and by tx(n) the position of the nth digit two in this representation.

The next theorem was proved by Eidswick in [21].

Theorem 8.7. Let x ∈ C◦ and let

�x := lim inf
n→∞

3zx(n)

2zx(n+1)
. (8.8)
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Then

�x �D+G(x)�2�x . (8.9)

Furthermore, if limn→∞ zx(n + 1) − zx(n) = ∞, then D+G(x) = �x .
Similarly, if

�x := lim inf
n→∞

3tx (n)

2tx (n+1)
, (8.10)

then

�x �D−G(x)�2�x , (8.11)

with the equality on the right if limn→∞ tx(n + 1) − tx(n) = ∞.

Corollary 8.12. If x ∈ C◦, then G′(x) = ∞ if and only if �x = �x = ∞.

Remark 8.13. This Corollary implies that the four Dini derivatives of G agree at x0 ∈ (0, 1)

if and only if either x ∈ I ◦ or �x = �x = ∞.

Corollary 8.14. If x ∈ C◦, then D−G(x) = D+G(x) = 0 if and only if

�x = �x = 0.

The following result is an improvement of 8.3.2.

Theorem 8.15 (Eidswick [21]). For each � ∈ [0, ∞] and � ∈ [0, ∞], the set

{z ∈ C : D−G(z) = � and D+G(z) = �}
has the power of the continuum.

Corollary 8.16. For each � ∈ [0, ∞] and � ∈ [0, ∞] there exists a nonempty, compact
perfect subset in {z ∈ C : D−G(z) = � and D+G(z) = �}.

Proof. Since G is continuous on [0, 1], each of the Dini derivatives of G is in a Baire class
two [6, Chapter IV, Theorem 2.2]. Hence, the set {z ∈ C : D−G(z) = � and D+G(z) = �}
is a Borel set. It is well-known that, if A is uncountable Borel set in a complete separable
topological space X, then A has a nonempty compact perfect subset [39, Section 39, I,
Theorem 0]. �

Recall that M is the set of points at which G fails to have a finite or infinite derivative and
sc = lg 2/ lg 3. The next result was proved by Richard Darst in [14].

Theorem 8.17. The Hausdorff dimension of M is s2
c , or in other words

dimH M = s2
c . (8.18)
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Remark 8.19. It is interesting to observe that the packing and box counting dimension are
equal for M and C

dimP M = dimB M = dimP C = dimB C. (8.20)

The proof can be found in [16], see also [25] and [41] for the similar question.
The following proposition was published in [14] with a short sketch of the proof.

Proposition 8.21. The equality

dimH (G(M)) = sc

holds.

An equality which is similar to (8.18) was established in [15] for more general Cantor
sets. Some interesting results about differentiability of the Cantor functions in the case of fat
symmetric Cantor sets can be found in [13,17]. The Hausdorff dimension of M was found
by Morris [42] in the case of nonsymmetric Cantor functions.

9. Lebesgue’s derivative

The so-called Lebesgue’s derivative or first symmetric derivative of a function f is
defined as

SD f (x) = lim
�x→0

f (x + �x) − f (x − �x)

2�x
.

It was noted by J. Uher that the Cantor function G has the following curious property.

Proposition 9.1 (Uher [55]). G has infinite Lebesgue’s derivative, SD G(x)=∞, at every
point x ∈ C\{0, 1}, and SD G(x) = 0 for all x ∈ I ◦.

Remark 9.2. It was shown by Buczolich and Laczkovich [9] that there is no symmetrically
differentiable function whose Lebesgue’s derivative assumes just two finite values. Recall
also that if f is continuous and has a derivative everywhere (finite or infinite), then the range
of f ′ must be a connected set.

From the results in [9] we obtain

Theorem 9.3. For all sufficiently large b the inequality

lim sup
�x→0+

G(x + b�x) − G(x − b�x)

G(x + �x) − G(x − �x)
< b (9.4)

holds for all x ∈ C\{0, 1}.
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Remark 9.5. It was shown in [9] that (9.4) is true for all b�81 and false if b = 4.
Moreover, as it follows from [9] (see, also [53, Theorem 7.32]) that Theorem 9.3 implies
Proposition 9.1.

10. Hölder continuity, distortion of Hausdorff dimension, sc-densities

Proposition 10.1. The function G satisfies a Hölder condition of order sc = lg 2/ lg 3, the
Hölder coefficient being not greater than 1. In other words

|G(x) − G(y)|� |x − y|sc (10.2)

for all x, y ∈ [0, 1]. The constants sc and 1 are the best possible in the sense that the
inequality

|G(x) − G(y)|�a|x − y|�
does not hold for all x, y in [0, 1] if either � > sc or � = sc and a < 1.

Proof. Using lemma from [32] we obtain the inequality(
1

2
t

)sc

�G(t)� t sc (10.3)

for all t ∈ [0, 1]. Since G is its first modulus of continuity (see Proposition 3.2), the last
inequality implies (10.2). Moreover, it follows from (10.3) that sc is a sharp Hölder exponent
in (10.2). By a simple calculation we have from formula (1.2) that

G(3−n) = 3−nsc

for all positive integers n. Thus, the Hölder coefficient 1 is the best possible in (10.2). �

Remark 10.4. It was first proved in [34] that G satisfies the Hölder condition with the
exponent sc and coefficient 2. R.E.Gilman erroneously claimed (without proof and for a
more general case) that both constants sc and 2 are the best possible [29]. In [32], a similar
to (10.3) inequality does not link with the Hölder condition for G. Observe also that 1

2
sc is

the sharp constant for (10.3) as well as the constant 1. See Fig. 4.

Proposition 10.5. Let x be an arbitrary point of C. Then we have

lim inf
y→x
y∈C

lg |G(x) − G(y)|
lg |x − y| = sc.

Proof. It suffices to show that

lim inf
y→x
y∈C

lg |G(x) − G(y)|
lg |x − y| �sc.

Choosing |x − y| = 2
3n for n → ∞ we obtain the result. �
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Fig. 4. The graph of G lies between two curves y1(x) = xsc and y2(x) =
(

1
2 x
)sc

.

Let x be a point of the Cantor ternary set C. Then x has a triadic representation

x =
∞∑

m=1

	m

3m
, (10.6)

where 	m ∈ {0, 2}. Define a sequence {Rx(n)}∞n=1 by the rule

Rx(n) :=
{

inf{m − n : 	m �= 	n, m > n} if ∃m > n : 	m �= 	n,

0 if ∀m > n : 	m = 	n,

i.e., Rx(n) = 1 ⇐⇒ (	n �= 	n+1);

Rx(n) = 2 ⇐⇒ (	n = 	n+1) & (	n+1 �= 	n+2)

and so on.

Theorem 10.7 (Dovgoshey et al. [20]). For x ∈ C we have

lim
y→x
y∈C

lg |G(x) − G(y)|
lg |x − y| = sc

if and only if

lim
n→∞

Rx(n)

n
= 0.

This theorem and a general criterion of constancy of linear distortion of Hausdorff di-
mension (see [20]) imply the following result.
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Theorem 10.8. There exists a set M ⊆ C such that Hsc (M) = 1 and

dimH(G(A)) = 1

sc
dimH(A)

for every A ⊆ M .

Remark 10.9. In the last theorem we can take M as

M = G−1(SN2),

where SN2 is the set of all numbers from [0, 1] which are simply normal to base 2. See, for
example, [44] for the definition and properties of simply normal numbers.

Let �∗sc (t) and �sc∗ (t) denote the upper and lower sc-densities of �C at t ∈ R, i.e.,

�∗sc (t) := lim sup
x→0
x �=0

|Ĝ(t + x) − Ĝ(t − x)|
|2x|sc ,

�sc∗ (t) := lim inf
x→0
x �=0

|Ĝ(t + x) − Ĝ(t − x)|
|2x|sc .

It can be shown that

�∗sc (t) < �sc∗ (t)

for every t ∈ C, i.e., sc-density for measure �C does not exist at any t at the Cantor set C.
However, the logarithmic averages sc-density does exist for many fracfals including C.

Theorem 10.10. For Hsc almost all x ∈ C the logarithmic average density

Asc(x) := lim
T →∞

1

T

∫ T

0

Ĝ(x + e−t ) − Ĝ(x − e−t )

|2e−t |sc dt

exists with

Asc(x) = 1

2sc log 2

∫ ∫
|x−y|� 1

3

|x − y|−sc dG(x) dG(y) = 0, 6234 . . . .

For the proof see [24, Theorem 6.6] and also [4].
The interesting results about upper and lower sc-densities of �C can be found in [26]. For

x with representation (10.6) we define �̂(x) and �(x) as

�̂(x) := lim inf
k→∞

∞∑
m=1

	m+k3−m,

�(x) := min(�̂(x), �̂(1 − x)).

Theorem 10.11 (Feng et al. [26]). 10.11.1. For all x ∈ C,

�sc∗ (x) = (4 − 6�(x))−sc .
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10.11.2. For all x ∈ C,

�∗sc =
{

2−sc if x ∈ C1,( 2
3

)−sc
(2 + �(x))−sc if x ∈ C◦.

10.11.3. For all x ∈ C◦,

9(�∗sc (x))−1/sc + (�sc∗ (x))−1/sc = 16.

10.11.4.

sup{�∗sc (x) − �sc∗ (x) : x ∈ C} = 4−sc ,

where the supremum can be attained at {x ∈ C◦ : �(x) = 0}, and

inf{�∗sc (x) − �sc∗ : x ∈ C} = ( 32 )−sc −
(

5
2

)−sc
,

where the infimum can be attained at
{
x ∈ C◦ : �(x) = 1

4

}
.

10.11.5. For Hsc -almost all x ∈ C,

�sc∗ (x) = 4−sc , �∗sc (x) = 2.4−sc .

Remark 10.12. The general result similar to 10.11.5 can be found in the work Salli [49].
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