
NORTH - It(KLAND

GUEST EDITORS' INTRODUCTION:
HIGH-PERFORMANCE IMPLEMENTATIONS
OF LOGIC PROGRAMMING SYSTEMS

GOPAL GUPTA AND MATS CARLSSON

This special issue of JLP is devoted to high-performance implementations of logic
programming systems. The idea of having a special issue was born during a
conversation with the editor-in-chief of the Journal of Logic Programming,
Maurice Bruynooghe, at the International Logic Programming Symposium in
Ithaca, NY, in 1994. Maurice discussed the idea with Manuel Hermenegildo, the
area editor for implementation and architecture, and gave us a go-ahead in
December 1994. We were motivated to have a special issue on high-performance
implementations, because if one looks at the conference proceedings of ILPSs and
ICLPs and at journals such as JLP, one finds very few articles on implementation
aspects of LP. Surely, this is not because no interesting work is being done in the
area of LP implementation. Thus, our objective in compiling this special issue is to
bring the research work being done on logic programming implementation to the
foreground.

A call for papers was issued in early January 1995. Abstracts were to be
submitted first by February 15th, followed by full papers by February 28th. To our
surprise we received a large number of abstracts, about 35. However, only 28 of
them materialized into papers. The papers came from 15 different countries spread
across four different continents. For one abstract we did not receive a full paper
because one of its co-authors was from Kobe University. Between the deadlines for
submission of the abstract and the full paper, Kobe, Japan, was hit by a devastating
earthquake. Therefore, we dedicate this special issue to the survivors and victims of
the Kobe earthquake.

Each paper was sent to three referees for reviewing. After the first round of
reviewing, ten papers were tentatively selected. Most papers were of very high
quality, and we could not include many good papers due to lack of space. Of the
ten papers selected, nine had been submitted as extended papers and one as a
short paper. The authors of the selected papers were asked to revise their papers.
The revised papers went through another round of reviewing, and those that

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1996
655 Avenue of the Americas, New York, NY i0010

0743-1066/96/$15.00
PII S0743-1066(96)00066-0

2 G. G U P T A A N D M. C A R L S S O N

needed further revision were asked to be revised again. The revised papers were
finally checked by us to make sure that all of the concerns raised by the reviewers
had been met. Nine of the ten papers appear in this special issue. One paper
(Automatic Compile-time Parallelization of Logic Programs for Restricted, Goal
Level Independent And-Parallelism by K. Muthukumar, F. Bueno, Maria Joss
Garcfa de la Banda, and M. Hermenegildo) could not make this issue due to
various delays, and will appear later.

The ten papers selected represent a wide array of topics in sequential and
parallel implementation technology. Most papers report results from long-running
research projects. Topics covered range from hardware support for efficient execu-
tion, compilation to novel abstract instruction sets, static analysis for execution-
speed enhancement, to models and implementations for exploiting parallelism
from Prolog. These papers provide a glimpse into today's state-of-the-art of logic
programming implementation technology. Having compiled this special issue, we
can say with confidence that the area of LP implementation is alive and vibrant.

The first paper in this issue, by Andrew Taylor, reports experience with the
PARMA project. Using abstract interpretation and global analysis techniques, and
by compiling Prolog to MIPS instruction set, the author was able to match (or
surpass) the speed of equivalent C code. This paper is the only short paper in the
special issue.

The second paper, titles "The Execution Algorithm of Mercury, An Efficient
Purely Declarative Logic Programming Language," by Zoltan Somogyi, Fergus
Henderson, and Thomas Conway, reports on the design and implementation of the
Mercury language. Mercury is designed to enable writing of large programs by
groups of programmers. It has a sophisticated compiler that catches many more
errors than standard Prolog compilers. The paper outlines the techniques used in
the design of the compiler and the authors' experience in programming this
compiler in Mercury.

The third paper, by Paul Tarau, Koen De Bosschere, and Bart Demoen, titled
"Partial Translation: Towards a Portable and Efficient Prolog Implementation
Technology," presents a new language translation framework in which selected
abstract machine instruction sequences are compiled into C code. Translation to C
has become a popular technique for implementing logic programming systems. This
paper provides insights into this new implementation technique.

The fourth paper, by Andreas Krall, presents the design of the Vienna Abstract
Machine. The Vienna Abstract Machine is a modification of the WAM to make it
more efficient. Three versions of the Vienna Abstract Machine are described--for
native code compilation, for interpretation, and for abstract execution.

The fifth paper, by Bruce Holmer et al., presents minimal extensions needed to
a standard microprocessor architecture in order to execute Prolog programs
efficiently. An extended chip with support for Prolog-specific operations has been
fabricated and tested, and the results reported in this paper.

The sixth paper, by Evan Tick, Bart Massey, and James Larson, describes the
design of an optimizing compiler for a parallel implementation of a fiat committed
choice language. The authors describe the salient features of this optimizing
compiler along with their experience in building it.

The seventh paper, by Saumya Debray, David Gudeman, and Peter Bigot,
presents a datafiow analysis for recognizing suspension-free logic programs. Several

GUEST EDITORS' INTRODUCTION 3

optimizations that rely on this analysis are developed and incorporated into the
authors' j c system and the resulting Performance improvement reported in the
paper.

The eighth paper, by Donald Smith, presents the MultiLog system that can be
used for executing Prolog programs in data-parallel. Data-parallel execution of
Prolog programs, when possible, leads to considerable efficiency, as Smith's results
show.

The ninth paper, by Kish Shen, presents issues in designing and implementing a
parallel Prolog system that exploits dependent and-parallelism. The paper presents
an abstract execution model called DDAS for exploiting dependent and-parallelism
as well as its concrete implementation in the DASWAM system.

We hope you will enjoy this special issue.

We were helped by approximately 70 reviewers in the reviewing process, who graciously agreed to help
us. The help of these reviewers is gratefully acknowledged. Special thanks go to Maurice Bruynooghe,
the editor-in-chief of the JLP, and Manuel Hermenegildo, area editor for implementation and
architecture, for not only accepting the idea of a special issue, but also providing a tremendous amount
of help. Maurice also helped us in making many of the difficult decisions during the whole process and
answered many of our questions related to logistics of publication. Thanks also to Federico Bassetti and
Enrico PonteUi for help in distributing the papers to reviewers. Finally, we would like to acknowledge
the support provided by our respective institutions.

Gopal Gupta
Las Cruces, New Mexico

Mats Carlsson
Uppsala, Sweden

