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Introduction

In this paper we study the higher Quillen-K-groups of algebraically closed fields,
local fields and real numbers. When & is an algebraically closed field we show that
K;(k) is divisible, its torsion being zero when / is even, and equal to W(n) when
i=2n-1 (the nth Tate twist of the group W of roots ot unity in £ *). This conjecture
of Lichtenbaum was proved in [18] when k has positive characteristic, and we
showed there that the case of one field of characteristic zero implies it for all fields.
Here we prove the conjecture for the complex numbers (4.9), thus solving the
general case. We also get a proof in positive characteristic (3.13) which does not use
[13].

A crucial tool is the following result of O. Gabber [4], which extends the main
idea of [18] and was also proved by H. Gillzt and R. Thomasor (‘‘The K-theory of
strict Hensel local rings and a Theorem of Suslin’’, these proceedings): when X is
a smooth variety over a field F,m=1 an integer invertible in F, P:Spec(f)— X a
rational point of X, and X,',‘ the henselization of X at P, the natural morphism
K«(F; Z/m)—»K*(X,',‘; Z /m) between K-groups with coefficients is bijective.

When R is a henselian ring with valuation v of height one and residue field F, we
show that, if m=1 is invertible in F, the natural map K.«(R; Z/m)—K«(F; Z/m) is
bijective (Corollary 3.9; for a more general result ¢f. Theorem 3.6). The case of real
numbers is studied in Theorem 4.9.

We work below mostly with K-theory with finite coefficients. We refer the reader
to [12] for the details concerning homotopy groups with coefficients. Recal! that for
any space X one can define n;(X,Z/m) for i =22, and usuaily m2(X, Z/m) is only a
pointed set. However, if X is an H-space, the H-structure on X induces a group
structure on m,(X,Z/m). In this case one can also define m(X,Z/m) by the
formula 7,(X,Z/m)=m,(X)/m. Finally, for any exact category », K-groups of .»
with coefficients are defined by the formula
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K{.#Z/my=n,;,,(BQ#1/m).

If # is the category .#(A) of projective modules over the associative ring A, then
QBQ:? coincides with BGL(A)* (see [5]) and hence K;(A, Z/m) also coincides with
n(BGL(A)*,Z/m) for i=2.
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1. Auxiliary results

Lemma 1.1. Suppose that A is o uniquely m-divisible Abelian group and P is a trivial
A-module such that, for any pe P, m"p=0 when N is sufficiently large. Then
H(A,P)=0 fori=1.

Proof. Denote by Z,, the localization of Z with respect to the multiplicative system
(1,m,m?,...). Since homology commutes with direct limits both in 4 and P we may
suppose that A is a finitely generated Z,,-module and P is a finitely generated Z-
module. In this case m”P=0 for N sufficiently large and, replacing m by m”", we
may suppose in addition that mP=0. Suppose first that A4 is finite, consisting of
n elements, then n is prime to m and the groups H;(A, P) (i=1) are zero, being kill-
ed both by m and n. Suppose now that A =7,,. Since

zmzlg’n(z—'ﬁzizﬂ...)

we see that H(A, P)=li_lp H;(Z,P) is zero for i=2. Furthermore H;(A4,P)=
H((A,ZY®P=AQP is also zero. If A=A,@ A, and our statement is true both for
A, and A,, then it is also true for A as one sees immediately from the Hochschild-
Serre spectral sequence H;(A,, Hi(A,, P))=H;, j(A, P). The general case follows
from these remarks since every finitely generated Z,,-module is a direct sum of a
finite Z,.-module and a free Z,,-module.

Corollary 1.2. Suppose that ¢ : A— B is a homomorphism of Abelian groups such
that both Ker ¢ and Coker ¢ are uniquely m-divisible. Then for any P as above the
induced homomorphism H.(A, P)— H.(B, P) is bijective.

Proof. It is sufficient to treat separately the cases when ¢ is surjective and when ¢

is injective. In each case the statement follows immediately from Lemma 1.1 and
the Hochschild-Serre spectral sequence.
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The following is a version of Ruth Charney’s theorem [3].

Proposition 1.3. Supose that I is a two-sided ideal in a ring R and m is an integer
invertible in R/I. Then the natural action (by conjugation) of the group GL(R) on
HW(GL(R, I),Z/m) is trivial.

Proof. Denote GL,(R, I) by I,, GL(R, I) by I', and denote by I}, I the following

groups:
r, 1" Ir, R"
r1= n , 1—-II= n .
" (0 1 ) " (o 1 >

3

Consider the Hochschild-Serre spectral sequences corresponding to the group ex-
tensions:
\=[">T, T, 1,

1> R" I =T, 1.

Since the Abelian group (R/I)" is uniquely m-divisible we know from Corollary 1.2
that Hy(I",Z/m)>H+(R",Z/m) and the comparison of these spectral sequences
shows that the imbedding I, <7} is a homology isomorphism with Z/m coeffi-
cients. The group I, contains clementary matrices e; ., ;(r) (1 <i<n) and the above
remark shows that the action of e;,.;(r) on Hu(l,,Z/m) is trivial. Since
I,CrI,CrI,,, we deduce that the action of € n+1(r) on the image of H(l,,,Z/m)
in H.(I', Z/m) is also trivial. The same argument shows that the action of e, , 1i(n
on this image is also trivial. Since the matrices e; ., ,(r) and e, ;(r) generate the
subgroup E, , (R)CE,(R), we see that the action of E,(R) cn Im(H(T,,Z/m)—
H (I, Z/m)) is triviel. Taking the limit over n we deduce that the action of E(R) on
H (I, Z/m) is trivial. Finally for any a € GL,(R) both

(1 0) and <“ (31>GE(R)
0 a 0 «a

act trivially on Im(H«(T,,,Z/m)—H(I,Z/m)) and hence ¢ also acts trivially on
this image. Taking once again the limit over n, we get our assertion.

Lemma 1.4. Suppose that X is a connected H-space and p: X’ — X is a connected
covering space of X with Galois group G (which is necessarily Abelian). Sup-
pose further that G is uniquely m-divisible. Then the induced homomorphisms
H( X'\ Z/m)=H(X,Z/m) and n«( X', Z/m)—n(X,Z/m) are bijective.

Proof. For any covering space X’'—X the homomorphisms n(X,Z/m)—
m;(X,Z/m) are bijective for i=3. Furthermore we have an exact sequence
0-mX")>n(X)>G—0

and since G is uniquely m-divisible we deduce that ,,7,(X)>,,71,(X) and



304 A.A. Suslin

n(X')/m>n,(X)/m. The universal coefficient theorem for homotopy groups
(see |12)) shows immediately that n,(X',Z/m)=ny(X,Z/m) and ny(X',Z/m)>
ny(X,Z/m).

It is well known and easy to prove [compare [16, p. 383]) that the action of G
‘on X'is trivial up to homotopy (i.e. for any g€ G the map g: X' — X" is homotopic
to the identity map). This shows that the action of G on Hy(X',Z/m) is trivial. Now
the spectral sequence H;(G, H(X',Z/m))= H,, ;(X,Z/m) and Lemma 1.1 together
prove the assertion concerning homology groups.

Proposition 1.5. Suppose that f: X — Y is a map of connected H-spaces (we do not
suppose that f respects the H-structure) and m is an integer such that both the kernel
and the cokernei of the homomorphism n,(X)—n,(Y) are uniquely m-divisible.
Tke following conditions are equivalent:

@) fo:ndX,Z/m)—>n(Y,Z/m) is bijective.

(b) fo: HX,Z/m)—HY,Z/m) is bijective.

Proof. Let Y'—Y be the covering space corresponding to the subgroup
Im(n(X)—n,(Y)). Then, fixing a basepoint in Y’, there exists a unique lifting
S : X—Y of fand in view of Lemma 1.4 we may replace Y and f by Y’ and f/,
thus reducing to the case when n(X)—n,(Y) is surjective.

Let Y” and X” be the universal covering spaces for Y and X and let X’ be the
covering space of X corresponding to the subgroup Ker(n;(X)—n,(Y)). Fixing
basepoints in X" and Y” we get unique lifings f”: X”"—>Y”and f': X'=Y" of f.
Consider the commutative diagram:

X" - X’ X

N S f

N
Y” Y

Both X’/X and Y"/Y are Galois coverings with the same Galois group G =,(Y)
and f”is G-equivariant. In view of Lemma 1.4 we have the following equivalences:
(a)”«(a)’, (b)" & (b)". Furthermore, since X” and Y" are simply connected we know
that (a)”e(b)” [12, §3]. Thus it is sufficient to show that (a)e(a)’ and (b) e (b)'.
Since n (X", Z/my=n,(X,Z/m) and n;(Y",Z/m)=n,(Y,Z/m) when i =3 we have to
consider only m; 2nd m,. The groups n,(Y",Z/m)=n,(Y")/m, n,(X',Z/m)=
n(X')/m are zero anc the map

(X, Z/m)=n(X)/m—>n,(Y,Z/m)y=n,(Y)/m

is certainly an isomorphism. Since there is no m-torsion in m,(X") we know from
the universal coefficient theorem [12, §1] that (X', Z/m)=m,(X")/m=ny(X)/m
and n,(¥",Z/m)=ny(y }/m. Finally we have exact sequences of pointed sets
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0"’71'2(},)/"1"’7[2( Y, Z/m)-*,,,m(Y)-*O,
00— (X)/ m— (X, Z/m)—,,n(X)—0.

Since X and Y are H-spaces these sequences are really exact sequences of groups
and groups homomorphisms. This shows that the natural action of 7,(Y) (resp.
n,(X)) on n,(Y,Z/m) (resp. my(X,Z/m)) (see [12, §1]] factors through the action
of n,(Y')/m (resp. m,(X)/m) and moreover this action is simply transitive on the
fibers of the map my(Y,Z/m)—,,n,(Y) (resp. ny(X,Z/m)—,n(X)). From the
commutative diagram

00— n(X)/m (X, Z/m)

mnl(X)

0

Jf* f* f#

9

m(Y)/m——— (Y, Z/m) —— ,m(Y) ——0

and the previous remarks we see that my(X,Z/m)—n,(Y,Z/m) is an isomorphism
if and only if 7,(X)/m—-n,(V)/m is. Thus (a)« (a)".

Replacing Y by the mapping cylinder of f we may suppose that f (and hence
also f”) is an imbedding. Co~dition (b) (resp. (b)’) is equivalent to the fact that
H(Y,X;Z/m)=0 (resp. H{Y", X', Z/m)=C). The spectral sequence

H(G H;(Y", X", Z/m))=H,; (Y, X; Z/m)

shows immediately that (b)'=(b). Suppose finally that H.«(Y, X; Z/m)=0 and let
hi(Y", X", Z/m) be the first nontrivial homology group of the pair (Y", X’). The
above spectral sequence shows that Hy(G, H;(Y", X'; Z/m)=0. On the other hand
we have an exact seqquence of G-modules

H((Y"Z/m)-H,(Y", X", Z/m)~H;_(X',Z/m)

and the action of G on the end terms of this sequence is trivial (since Y and .X are
H-spaces). This implies that H;(Y", X'; Z/m)=0, thus finishing the proof cf the
equivalence (b)=(b)".

Corollary 1.6. Let (R, I) be a henselian pair and m an integer invertible in R/1. The
following conditions are equivalent:

@) K«(R,Z/my—=K(R/I,Z/m) is an isomorphism.

(b) H«(GL(R),Z/m)— H, (GL(R/I),Z/m) is an isomorphism.

(¢) H«GL(R,I),Z/m)=0.

Proof. Since /C Rad(R), the homomorphism K,(R)— K,(R/I) is injective [1, ch.
IX, §1]. Since (R, 1) is a henselian pair one sees easily (compare [15, ch. XI, §2] that
the map 1demp(M,,(R})— Idemp(M,,(R/I)) is surjective and hence K,(R)—Ky(R/I)
is also surjective. Thus Ky(R)~Ky(R/I) and condition (a) is equivalent to the fact
that n«(BGL(R)*,Z/m)—n«(BGL{(R/I)*,Z/m) is an isomorphism. Consider the
map
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7,(BGL(R)*) = K,(R)~ K\(R/I) = m(BGL(R/I)*).

Since /CRad(R), this map is surjective and its kernel coincides with the
multiplicative group 1+ I. It follows immediately from our assumptions that this
group is uniquely m-divisible and Proposition 1.5 shows that (a) ¢ (b).

Consider now the Hochschild-Serre spectral sequence

H(GL(R/I), H(GL(R, I),Z/m))~H), , ((GL(R), Z/m).

Proposition 1.3 shows that the action of GL(R/I) on Hx«(GL(R, I),Z/m) is trivial
and the usual spectral sequence argument shows that (b) @ (c).

Lemma 1.7. Suppose that I is a nil ideal in a ring R (not necessarily commutative)
and m is an integer invertible in R/I. Then (for any n) H«(GL,(R,I),Z/m)=0.

Proof. We may suppose that I is finitely generated and hence nilpotent. We proceed
by induction on m, where m is the least integer such that I =0. If m=1 we have
nothing to prove. If m=2 the group GL,(R,I)=M,(I) is a uniquely m-divisible
Abelian group and our assertion follows from Lemma 1.1. The general case follows
from the Hochschild-Serre spectral sequence

H,(GL,(R/I* I/I*), H(GL,(R,I*), Z/m))~ H,, , (GL,(R, I), Z/m).

2. The universal homotopy construction

Throughout this section we fix a ring 4 an an integer m invertible in A. We sup-
pose that A satisfies the following property:

Property 2.1. Suppose that X/Spec A is a smooth affine scheme of finite type and
f:Spec A— X is a section. Denote by X }‘ the henselization of X along f (see [15]).
Then the natural homomorphism K4(A,Z/m)— K (X", Z/m) is bijective.

Consider the smooth affine scheme X, ;=GL, X --- XGL,, (i times) over Spec A
and denote by X,',‘, ; its henselization along the unit section. This scheme is affine
and we denotc by O}, its coordinate ring. O}, is an A-algebra and we have a
canonical A-homomorphism O, — A, the kernel .4"; of which lies in Rad(O}})).

For any zroup G we denote by C4(G,Z/m) its reduced standard complex with
coefficients Z/m (i.e. we replace Cy(G, Z/m) by zero).

Consider the following morphisms of schemes over Spec A:

‘ ' g2X - Xg if j=0,
P Xy imXnio1r Pig1X - Xg)= 18 X Xgg. X Xxg if 1gj<i-1,
81X Xgi_y if j=1.

These morphisms preserve the unit section and hence define morphisms X,?,-—*
h . i . i . ’
X, .. which we also denote by pj’.. We use the notation (pj'.)* for the induced
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homomorphisms O, ;—~O},, GL(O},_\,.4};_)~GLO}, . «}) and

n, i

CHGL(O};_\, 4} ), Z/m)~>CGL(O},,. 41 ), Z/m).

n i

We have the evident morphisms of schemes over Spec A: X,’,“,~+X,,‘,-~BLGL,,
preserving the unit section and hence canonical matrices akeGL,,(O,’,“ ,-,.//,E} ). We
denote by u, ;€ C;(GL(O}},. 4 )), Z/m) the chain [a,, ..., &;] X (1 mod mZ) (we take
u,,‘0=0).

Proposition 2.2. There exist chains c, ;€ C;, 1(GL(O,',{,, MW ),Z/m) such that

dic)=uuni= % (= D (P)*(Cniz)-
_I:.
Proof. Take c,,,0=0_ and suppose that ¢, o,...,c,; | are constructed. Since
du, ) =Y, _o(=1)(pj)*(u, ;) we see that

i ) . i . -1 ) \
d(“n,i" ) (_l)j(p})*(cn,i—1)>= ) ("1)/(1’;")*< ) (-l)k(Pi_l)*(Cn,lez))
j=0 j=0 k=0

i1 ‘ ' _
=Y ¥ D p o), ) =0.
J=0k=0
This shows that u, ;— ¥\ _,(=1)/(p))*(c, ;) is a cycle and hence a boundary since
the group I-Ti(GL(O,*,",-, .ﬁ’,ff;), Z/m) is zero in view of the Property 2.1 and Corollary
1.6. This gives the possibility to construct ¢, ; and thus to complete the inductive
process.

Theorem 2.3. Suppose that (R,I) is a henselian pair and R is an A-algebra. Then
K«(R,Z/m)>K(R/I,Z/m).

Proof. In view of Corollary 1.6 it is sufficient to show that H«(GL(R, ), Z/m)=0. To
prove this we shall show that the imbedding C.{(GL, (R, I), Z/m)— C(GL(R, ), Z /m)
is null-homotopic. The group C;(GL,(R,I),Z/m) (i=1) is a free Z/m-module with
basis [f,..., ;] where B;€ GL,(R,I). The matrices f, ..., 8; define a morphism
Spec R— X, ; of schemes over Spec A, which sends the closed subscheme Spec(R/1)~
Spec R into the unit section of X, ,. By the definition of the henselization
this morphism factors uniquely through a morphism ¢;:Spec R—+X,‘L (also
sending Spec(R/I) into the unit section). We define a homotopy operator
s: C‘*(GL,,(R, I),Z/m)—C«(GL(R, I), Z /m) by means of the formula s([8,,.... 8D =
(@p)*(cy,;) and we see immediately from properties of ¢, ; that s is the required null-
homotopy.

Corollary 2.4. If B is an A-alg.bra, then B also satisfies 2.1.

Corollary 2.5. If (R, I) is a henselian pair and R is an algebra over a field F, then
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K«(R,7/m)>KR/1,Z/m) for any m prime to char F.

This follows from Theorem 2.3 and the theorem of O. Gabber [4] stating that
fields satisfy Property 2.1.

3. K-theory of henselian valuation rings

Let R be a henselian valuation ring with maximal ideal /, residue field F=R/I and
quotient field E. If char E=char F, then R is an algebra over a field and we know
from Corollary 2.5 that K (R, Z/m)= K (F,Z/m) for any m prime to char F. In this
section we consider the case when char E=0 and char F=p>0. We denote by v the
valuation of E associated with R and we denotc by I the valuation group of v (thus
I is a totally ordered group and v is a map E—I"U ). For every o €I” we denote
by I, the R -submodule of E given by the formula I, = {x€E: v(x)>ao}. If 620,
then /, is an ideal in R and / coincides with I,. We use the notation E for the com-
pletion of E in the topology defined by v.

Lemma 3.1. If L/E is a finite field extension, then there exists a unique extension
of v on the field L.

Proof. Denote by A the integral closure of R in L. It is known [2, ch. 6] that A is
a semilocal ring and if . #; are its maximal ideals, then 4 , are the valuation rings
corresponding to extensions of v. On the other nand, since R is henselian, every
semilocal integral R-algebra is a product of local rings [15, §1]. Since A is a domain
we deduce that A is local, i.e. there is only one extension of v on L.

Corollary 3.2. E is algebraically closed in E.

ltroof. Let L/E be a finite field extension. The well known formula [2, ch. 6]
E®gL=1],., L, together with Lemma 3.1 shows that E®gL is a domain. Thus
the extension E/E is regular [9] and hence E is algebraically closed in E.

Lemma 3.3. Consider the polynomial p=T"+ ¥, Y,T'€ElY,,...,Y,_,,T] and
suppose that y=(¥g,..., ¥,.1)€EE" and teE are such that t is a simple root of
p(y, T). Then there exists an open neighborhood (for the topclogy defined by the
valuation) V(y)C E" and a continuous function u : V(y)— E such that u(y)=t and,
Jor any ze 'V, p(z,u(z))=0.

Proof. If E is complete this follows immediately from the implicit function theorem
(see [15, ch. §4]). In the general case we first construct V(y)CE" and ii: V(y)—E

corresponding to E and then take V(y)=V(»)N\E", i=uly,,. The values of u lie
in £ in view of Corollary 3.2.
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One deduces immediately from the previous result (see [15, ch. 6, §4]) the
following.

Corollary 3.4. Let X be a topological space and x € X. Then the local ring of germs
of continuous E-valued functions defined in a neighborhood of x is henselian.

Consider the set GL,(E) XX GL,(E) (i times) as a topological space with the
topology defined by the valuation v (the basis of neighborhoods of the unit in this
topology consists of the sets GL, (R, I,) X -+ XGL (R, I,), where 0= o e I"). Denote
by O™ the local ring of germs of continuous E-valued functions defined in a
neighborhood of the unity ee GL,(E)x---XGL,(E) and denote by .# %" the
maximal ideal of O,%". Every chain ceC;, (GL, (O, #:5™),Z/m) defines a
map of some neighborhood of ee GL,(E)X - XGL,(E) to C;, (GL,(E),Z/m)
which is continuous in the sense that for any o= 0 there exists =0 such that ¢ is
defined in GL,(R,I;)x---XGL,(R,I,) and takes it to C;, (GL,(R,1,),Z/m). We
use the same letter ¢ to denote the natural Z /m-linear extension of the previous map
to a homomorphism C,(GL,(R,I,),Z/m)—C;, (GL.(R,1,),Z/m).

Proposition 3.5. Let N and n be positive integers and 0<te I". Then there exist r=n
(independent of 1) and o =1 such that the imbedding GL,(R,1,)SGL(R, 1) in-
duces the trivial zero homomorphism on H.(—,Z/m) with 0<i<N.

Proof. Consider the algebraic variety GL,x--xXGL, =X, ; over E. The ring
O;5™ being henselian, we deduce that the evident morphism of schemes (over
Spec E) Spec O5™ - X, ; factors through Spec O:%"— X! =Spec OF,, thus
giving a local homomorphism O}, —~OS™. Denote by c;,, the image of ¢, €
Ci ((GLO} , 42, Z/m) in C;, ((GL(OS™, . #5™),Z /m). We can find r=n such
that all the chains ¢, ; with 0<i=<N lie C;, (GL,(O:%",. #:5™), Z/m) and then find
o=1 such that the ¢, ; (0<i=<N) are defined in GL,(R,/,)x---XGL,(R,1,) and
sent to C;,(GL,.(R,I,),Z/m). This gives us a null homotopy (defined in
degrees < N) for the natural imbedding C4(GL,(R, I,), Z/m)<sC«(GL,(R, "), Z/m)

and proves the proposition.

Theorem 3.5. For every i =0 there exists 0<ag el such that the canonical homo-
morphism H;(GL(R),Z/m)—>H{GL(R/I,),Z/m) is injective. Furthermore,
Jor every =0 there exists t=0 such that the image of H,(GL(R), 7 m)—
H,(GL(R/1,),Z /m) ccincides with the image of

H,(GL(R/I),Z/m)—> H(GL(R/1,), Z/m).
Proof. For every n and ¢ we have a Hochschild-Serre spectral sequence
4(n,o0): E,f‘q =H,(GL,(R/1,), H,(GL,(R,1,),Z/m))=H,,, ,(GL,(R), /m).

This spectral sequence defines a filtration on H, (GL,(R),Z/m):
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0= Hk(GLn(R)y Z/m)- I.ac HR(GLn(R)i Z/"")().('JC e CHk(GLn(R)’ Z/mlk.a’
= Hk(GL,,(R), Z/m)

such that H(GL,(R),Z/m), ,/H(GL,(R),Z/m),_, ,=Eg_, and the kernel of
H(GL,(R),Z/mn)— H(GL,(R/1,),Z/m) coincides with Hy(GL,(R),Z/m);_, 5. If
=0 and r=n, then we have a homomorphism of group extensions

1 ——— GL,(R,I,) GL,(R) — GL,(R/I,) —— 1

]

{ ———— GL,(R,1,) GL,(R) — GL,(R/L,) —— 0

and hence the induced homomorphism of spectral sequences &(n, 1) &(r, ). In par-
ticular the canonical homomorphism H;(GL,(R),Z/m)— H(GL,(R),Z/m) takes
H,(GL,(R),Z/m), , to H(GL,(R),Z/m),,.

3.6.1. For every n and cvery j<Kk there exists =0 such that the image of
H(GL,(R), Z/myj; , in H(GL(R), Z/m) is zero.

Proof. We proceed by induction ¢n j. The statement is evident for j=—1, so we
may suppose that j=0. Find r=n as in Proposition 3.5 (taking N=k) and then
6 20, corresponding to r and j— 1. By the choice of r there exists =0 such that
the homomorphism H,(GL,(R,1,),7/m)~>H,(GL,(R,1,),Z/m) is zero when
1=g=<k. This shows that the homomorphisms E,f, 4 t)-*E,i 4, @) are zero for
I =g<k and hence the homomorphisms E;’ (n, 1)~ E;  (r,0) (1=g=<k) are also
zero. Thus the image of H(GL,(R),Z/m); . in H,(GL,(R),Z/m) is contained in
H,GL,(R),Z/m);_, , and hence its image in H,(GL(R),Z/m) is zero.

3.6.2. Since the rings R and R/I are local one knows ([18].[17]) that

H(GL,(-),Z/m)=H(GL(-),Z/m) if n=2k+]1.

This fact and 3.6.1 show that if n=2k+1 and o is suificiently large, then
H.(GL,(R),Z/m);_, ;=0 and hence
H,(GL(R),Z/m)= H,(GL,(R),Z/m)sH,(GL,(R/1,),Z/m)

= H(GL(R/I1,), Z/m).

3.6.3. The same spectral sequence defines a descending filtration on
HGL.(R/I,).Z/m). H,(GL,(R/I,),Z/m);=E} o(n,6) (i=2) and

Im(H(GL,(R), Z/m)— H(GL,(R/1,),Z/m)) coincides with H,(GL(R/L,),Z/m), =
H.(GL(R/1,),Z/m)...



On the K-theory of local fields 311

3.6.4. For every n,j and every =0 there exist r=n (independent of ¢) and
120 such that Im(H,(GL,(R/I,),Z/m)—H(GL,(R/1,),Z/m)) is contained in
H(GL,(R/1,), Z/m);.

Proof. Once again we use induction on j. The statement is evident for j=2, so we
may suppose that 2<j=<k. First find r'=n which works for j—1, next find r=r’
as in Proposition 3.5 (for the data r, j). By the choice of r there exists "= ¢ such
that the homomorphism

H;_(GL,(R,I),Z/m)—~H;_,(GL,(R,I,), Z/m)
is zero. This implies that the homomorphism E}. - (r T~ EE jj-1(r,o) (and

hence also E,’(:J' j_l(r’,r’)—ﬂvE,’(:j'. j-1(r @) is zero. From the commutative diagram

with exact rows

-1

0 Efo(r't) ———E[5' (", T)———E{7;; ,("\7)
) _ i1 A
0 E, ,(r,0) El,'(no) E/Z} . \(ro)

we deduce that
Im(H(GL,(R/I,)),Z/m);_,— H(GL,(R/1,), Z/m)) CH(GL,(R/I;), Z/m),.
Finally we can find t=1’ such that
Im(H,(GL,(R/I,),Z/m)~ H(GL,(R/I,),Z/m))C H(GL(R/I,"), Z/m); _,.
3.6.5. Taking n=2k+1, j=k in 3.6.4 and using once more the homology stability
theorem we see that for any 6=0 there exists t=0 such that
Im(H (GL(R/I,),Z/m)— H,(GL(R/1,), Z/m))
= Im(H,(GL,(R/I,),Z/m)— H(GL(R/1,), Z/m))
C H(GL(R/I,), Z/m); =Im(H,(GL(R), Z/m)—> H,(GL(R/I,),Z/m)).

Corollary 3.7. The inverse system {H.(GL(R/I,),Z/m)} is Mittag-Leffler and
H(GL(R), Z/m)=lim H(GL(R/1,), Z/m).

Corollary 3.8. If R is a ring of integers in a non-Archimedean local field of
characteristic zero, then the groups H,(GL(R),Z/m) are finite for any k,m.

Corollary 3.9. Suppose that the height of the valuation v is equal to one and m is
prime to p, then K (R.Z/m)>K(F,Z/m).
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Proof. Since the height of v is equal to one we see immedia:ely that for any ¢ =0,
171, is a nil-ideal in R/I, and hence (see Lemma 1.7), HW(GL(R/I,),Z/m)—
H(GL(F), Z/m). This together with Corollary 3.7 shows that H«(GL(R),Z/m)=
H(GL(F),Z/m) and we finish the proof using Proposition 1.5.

Remark 3.10. Using induction on the height of v one can easily generalize the
previous result to the case of a valuation of arbitrary finite height.

Corollary 3.11. Suppose that E is a henselian discretely valuated field with residue
field F of characteristic p. For any i>0 and any m prime to p we have a split exact
sequence

d
0~ K,(F,Z/m)~K(E,Z/m)y—K,_,(F,Z/m)~O.

Proof. In view of Corollary 3.9 and the localization sequence we have only to show
that (dencting by R the valuation ring of E) K;(F,Z/m)=K;(R,Z/m)—K,(E,Z/m)
is split injective. Chioose a prime element 7 of E and denote by /() the correspond-
ing element in K,(£)=E*, then the homomorphism

J{
KAE, 7 /m) —2

d
Ki . \(E,Z/m)— K(F,Z/m)
gives us the required splitting.
Proposition 3.12. Suppose that F is an algebraically closed field of positive char-
acteristic p and let E denote the algebraic closure of the quotient field E, of the

ring Ry= W(F) of Witt vectors over F. For any m prime to p we have a canonical
isomorphism K (F,Z/m)=K(E,Z/m).

Proof. If L/E, is a finite subextension of E/E,, then L is a complete discretely
valuated field with residue field F and we have an exact sequence

d
0—K,(F,Z/m)~ KAL,Z/m)~— F,_,(F,Z/m)—O0.

if L'DL is another finite subextension of E/E,, then we have a commutative
diagram:

O0——K(F,Z/m)—— K;(L,Z/m) —— K;_((F,Z/m)—0
= [L:L]

0—— K{(F,Z/m)—— K, (L', Z/m)—— K;_(F,Z/m)——0

Since for any L there exist finite extensions L'/L of arbitrary degree we deduce that
the direct limit of the right hand side terms is zero and hence
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K{E,Z/m)y=\im K{(L,Z/m)=K(F,Z/m).

Corollary 3.13. For any algebraically closed field F and any m prime to char F the
group K,(F,Z/m} is either zero (if i is odd) or isomorphic to Z/m (if i is even).

Proof. It was shown in [18] that the group K;(F,Z/m) (for F algebraically closed)
can depend only on char F, and it follows from Proposition 3.12 that really it does
not even depend on char F. Since by the work of Quillen [13] our statemerit is true
for the algebraic closure of a finite field, we deduce that it is true for any al-
gebraically closed field F.

Remark 3.14. We can avolid the use of Quillen’s theorem since we compute the K-
theory of complex numbers in the next section.

4. K-theory of Archimedan fields

If G is a topological group, then we use the notation BG'? to denote the classi-
fying space of G considered as a topological group [7], reserving the notation BG
for the classifying space of G considered as a discrete group.

Recall that for any discrete group G we have the following canonical model for
BG. Denote by EG the geometric realization of the simplicial set whose p-simplices
are (p+1)-tuples {gop,...,g,> of elements of G and face (resp. degeneracy)
operators are given by omitting (resp. repeating) the corresponding element. This
space is contractible and the evident action of G on EG is tree, thus the space EG/G
is a classifying space for G. In what follows, when speaking about BG we shall
usually mean this canonical model. From the above description we see that BG is
the geometric realization of the simplicial set whose p-simplices are p-tuples

(81 8,] =(€,21, 81820 -0, 8182+ gy MOd G

of elements of G and face and degeneracy operators are given by the formulae:

(g2, .-, 8] if i=0,
di(lgys 8D = § &1, -, &i&is1, - 8] i ISi=p-1,
[gh"'ygpm}] lfI:p,

Si([gl; ---5gp]):[gls-"1giseagi+h'“»gp]~

Suppose now that G is a Lie group with finitely many connected components. Fix
a left invariant Riemann metric on G and denote by G, the e-ball with center at the
unity of G. We denote by BG, the geometric realization of the simplicial set whose
p-simplices are p-tuples [gy,...,g,] of elements of G such that G.Ng G.N--
Ng, - g,G,#9 and the face and degeneracy operators are the same as above.
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Proposition 4.1. If ¢ is small enough, then the sequence BG,—BG —BG'” is a
fibration up to homotopy.

Proof. Consider the universal principal G'°P-fibration G'°°—EG'°?—BG'®. For
any topological space X we denotc by Sin X its singular simplicial set [10]. Since
functors Sin and geometric realization preserve fibrations we get a commutative
diagram of fibrations:

Sin G'°P|

|Sin EG'°P| ——— |Sin BG'*P|

G top EG top BG top

and the vertical arrows in this diagram are homotopy equivalences {10]. The evident
fiberwise action of the discrete group G on |Sin EG'P| is free and factoring this
action out we get a new fibration:

|Sin G'°?| /G — |Sin EG'°?| /G — |Sin BG'°?|.

The space EG'°P (and hence also |Sin EG™P)) is contractible and hence |Sin EG'°?|/G
is homotopy equivalent to BG. Thus we have the fibration up to homotopy
ISin G'°?|/G - BG — BG'*? (compare [11]), where the first arrow corresponds to
the principal G-fibration |Sin G'°P|—|Sin G'?|/G.

Suppose now that ¢ is small enough. Then G, is geodesically convex [6,§5.2] and
hence every nonempty intersection g,G.N---Ng,G, is contractible. Denote by X.
the simplicial topological space

Xp= u gOGsn"'nngc»
8or---+8p

by Y.. the bisimplicial set Y,,=Sin,(X,), by (Sin G'P), the subobject of the
simplicial set Sin G'°P consisting of singular simplices lying in some gG, and by E,
the simplicia: set whose p-simplices are (p+ I)-tuples (g,... »&p> such that
80G.N---Ng,G.#0. We have the evident maps of bisimplicial sets

Y.
/ N
(Sin G'?),

€

where we consider (Sin G'°P), (resp. E;) as a bisimplicial set trivial in the g (resp.
p) -direction.

4.1.1. ¢ is a homotopy equivalence.

To prove this it is sufficient to show that for every p, Y, —(Sin G'®), , is a
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homotopy equivalence. Denote (Sin G'°P), p by T. By the very definition

T= U T,, where T,=Sin,(¢G,) and Y,,= || T,,N--NT,.
geG Bo o By

For every teT, put G,={geG: T,3t}; then the fiber of Y, =T over t may be

identified with the simplicial set whose p-simplices are (p+ 1)-tuples of elements of

G,. Thus all the fibers of Y, — Tare contractible and hence this map is a homotopy

equivalence.

4.1.2. v is a homotopy equivalence.

This time it is sufficient to show that for every g, Y., —(E,), is a homotopy
equivalence. For any (g, ...,8,) € (E,),, the fiber of Y., —(E,), over (g, ..., g,
coincides with Sin(gyG,N---Ng,G,). It is contractible since goG.N---Ng.G, is con-
tractible.

4.1.3. The imbedding (Sin G'°?),%Sin G'°P is a homotopy equivalence.
This is well known — compare [16, ch. 4, §4].

4.1.4. Thus we have homotopy equivalences |Sin G'°?|<|Y..|>|E,|. The dis-
crete group G acts freely on all these spaces and the maps above are G-equi-
variant. Factoring out this action of G we get a homotopy equivalence BG, =
|E;|/G = |Sin G'°P| /G and it is clear from the construction that the triangle

BG,—— |Sin G'°?|/G
BG/

is ccmmutative up to homotopy.

Remark 4.2. In the above proof we have constructed (for small ¢) a homotopy
equivalence BG, = |Sin G'°P|/G. It is clear that for d<e the diagram

BGs——  BG,
|Sin G'°P|/G

is commutative up to homotopy and hence BG;<BG, is also a homotopy
equivalence.

Proposition 4.3. Let k dencte either the field R of rea! numbers or the field C of
complex numbers. If ¢ is small enough, then the imbedding BGL,(k),<BGL, (k)&
BGL(k) induces the zero homomorphism on H(-,Z/m).
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Proof. Denote by O;5" the ring of germs of continuous functions GL,(k) X -++ X
GL,(k)—k defined in some neighborhood of the unity. The group GL,(O;5") may
be identified with the group of germs of continuous maps GL, (k)X :-- X GL,(k)—
GL,(k) defined in some neighborhood of the unity and hence every chain
ceC,,(GL,(O‘,ﬁf,—“‘), Z/m) defines a contiruous map of some neighborhood of the
unity ee GL, (k)X - XGL,(k) to C,(GL,(k),Z/m). Denote as usual by O}, the
henselization of the variety GL, X% - XGL,/k at the unity. The ring O;%" being
henselian [15], we get a canonical homomorphism O} i~ O and we denote by
e Ci, (GL(O5°™), Z/m) the image under this homomorphism of the chain
C,.; constructed in $ection 2. For given N>0 we can find £>0 such that the c;™"
are defined in GL,{k). X - XGL,(k), (0<i<N). Thus for 0<i<N we get homo-
morphisms

si : Ci(BGL,(k),, 2/m)—~ C; , (GL(k), Z/m) = C; . (BGL(k), Z/m)

and it is clear from the properties of c,; that s is a null homotopy (defined in
degrees < N) for the canonical imbedding

Co(BGL,(k);, Z/m)< C(BGL(k), Z /m) = C&(GL(K), Z/m).
Corollary 4.4. With the same notations as above, the imbedding BSL, (k).

BSL (kY& BSL(k) induces the zero homomorphism on H.(-,Z/m) for small
enough ¢.

This follows immediately from Proposition 4.3 and the following.
4.4.1. For any field & the homomorphism H(SL(k))— H.(GL(k)) is split injective.
The spiitting is induced by the homomorphism GL(k)—SL(k) given by the formula

_,(det@™ 0\
a( o o)

Corollary 4.5. If ¢ is small enough, then H;(BSL,(k).,Z/m)=0 for0<i<(n-1)/2.

Proof. Consider the Serre spectral sequence of the fibration
BSL, (k). = BSL,(k)— BSL, (k)'°".

This spectral sequence together with the fact (see [11]) that
H(BSL, (k),Z/m)— H«BSL,(k)"°P,Z/m)

is onto shows that if i; is the least positive integer for which H; (BSL,(k).,Z/m)+
0, then

H, (BSL,(k), Z/m)<s H, (BSL,(k), Z/m).

if i=(n-1}/2, then the hornology stability theorem ([18],[17]) shows that
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H(BSL, (k),Z/m)= H;(BSL(k),Z/m)
and we deduce from Corollary 4.4 that
H(BSL, (k)¢ Z/m)—~H;(BSL, (k),Z/m)

is the zero homomorphisin. Thus iy>(n— 1)/2.

Corollary 4.6. BSL(k)*—BSL(k)'°? induces isomorphisms of homology and
homotopy groups with finite coefficients.

Proof. The statement concerning homology follows from 4.5. Since both spaces are
simply connected this implies the homotopy statement [12, §3].

Corollary 4.7. BGL(k)* = BGL(k)'°? induces isomorphisms of homology and
homotopy groups with finite coefficients.

Proof. We have a commutative diagram of fibrations

BSL(k)* BGL(k)* —— Bk*

BSL(k)'°?

BGL(k)'®P ——— Bk*°P

The edge vertical arrows induce isomorphisms of homology and homotopy groups
with finite coefficients, hence the same is true for the middle arrow.

Remark 4.7.1. The above fibrations are in fact trivial.

Corollary 4.8. BGL, (k)= BGL,(k)'°® induces isomorphisms on H;(—,Z/m) for

i<sn.

This follows from Corollary 4.6 since H;(GL,(k)) = H;(GL(k)) for O0<i<n and
any infinite field & [19].

Theorem 4.9. Modulo uniquely divisible groups the K-theory of the fields R and C
are as displayed in Table 1 (i>0).

Table 1
i mod 8 0 1 2 3 4 5 6 7
Ki(R) 0 Z/2 Z/72 Q/Z 0 0 0 Q/7Z
! 0 inclusion 0 mult. by 2 v 0 0 i50.

K(C) 0 Q/Z 0 Q/Z 0 QZ 0 Q/7
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Proof. Denote by Fk (k=R or C) the homotopy fiber of the rational localization
map BGL(k)"P =»BGL(k)'°°’®Q. It is clear that Fk—BGL(k)'? induces isomor-
phisms of homotopy groups with firite coefficients. Weibel [20] has proved that Fk
is a retract of BGL(k)* in such a way that the composition Fk—BGL(k)*—
BGL(k)"°? coincides with the natural map. This implies that Fk—BGL(k)* induces
isomorphisms of the homotopy groups with finite coefficients. Since Fk is a retract
of BGL(k)* we deduce that

K(k) = n;(BGL(k)*) = m;(Fk)® (uniquely divisible group).
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