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Introduction 

In this paper we study the higher Quillen-K-groups of algebraically closed fields, 
local fields and real numbers. When k is an algebraically closed field we show that 
&(k) is divisible, its torsion being zero when i is even, and equal to W(n) when 

i = 2n - 1 (the nth Tate twist of the group W of roots of unity in k*). This conjecture 
of Lichtenbaum was proved in [IS] when k has positive characteristic, and we 
showed there that the case of one field of characteristic zero implies it for all fields. 
Here we prove the conjecture for the complex numbers (4.9), thus solving the 
general case. We also get a proof in positive characteristic (3.13) which does not use 

WI* 
A crucial tool is the following result of 0. Gabber [4], which extends the main 

idea of [ 181 and was also proved by H. Gillet and R. Thomason (“The K-theory of 
strict Hensel local rings and a Theorem of Suslin”, these proceedings): when X is 
a smooth variety over a field F, m 1: 1 an integer invertible in F, P: Spec(F)-+X a 
rational point of X, and Xh the henselization of X at P, thz natural morphism 
K*(F; Z/m)+K,(X,h; Z./m) between K-groups with coefficients is bijective. 

When R is a henselian ring with valuation u of height one and residue field F, we 
show that, if rnz 1 is invertible in F, the natural map K,(R; Z/m)-+K*(F; S/m) is 
bijective (Corollary 3.9; for a more general result cf. Theorem 3.6). The case of real 
numbers is studied in Theorem 4.9. 

We work below mostly with K-theory with finite coefficients. We refer the reader 
to [12] for the details concerning homotopy groups with coefficients. Rscal! that for 
any space X one can define ni(X, Z/m) for iz2, and usuaiiy n&Y, Z/n?) is only a 
pointed set. However, if X is an H-space, the H-structure on X induces a group 
structure on x2(X, Urn). In this case one can also define q(X, H/~zz) by the 
formula q(X, Urn) = n,(X)/m. Finally, for any exact category ‘I, li’-groups of y’ 
with coefficients are defined by the formula 
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If 9 is the category .+‘(A) of hxojective modules over the associative ring A, then 
BQ:P coincides with BGL(A)+ (see [S]) and hence &(A, Z/m) also coincides wi,th 

n##GL(A) ‘, Z/m) for i r: 2. 
6 
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I. Auxiliary aesultv 

mma 1. t * S:Uppose that A is u uniquely m-divisible A belian group and P is a trivial 
A-module :Ftxh that, for any p E P, m Np = 0 when N is sufficiently large. Then 
Hl(A,P)==O for izl. 

Proof. Denote by Z, the localization of Z with respect to the multiplicative system 
(1,m,m2, . . . 1. Since homology commutes with direct limits both in A and P we may 
suppose that A is a finitely generated Z,-module and P is a finitely generated Z- 
module. In this case m?=O for N sufficiently large and, replacing m by mN, we 
may supposle in addition that mP=O. Suppose first that A is finite, consisting of 
n elements, then n is prime to m and the groups Hi(A, P) (iz 1) are zero, being kill- 
ed both by m and n. Suppose now that A = E,. Since 

we see that Hi(A, P) = li@ Hi(E, P) is zero for i ZE 2. Furthermore H1 (A, P) = 
HI(A, Z)@ P= A@ P is also zero. If A = Al @A2 and our statement is true both for 
Al and AZ9 then it is also true for A as one sees immediately from the Hochschild- 
Serre svctral sequence Hi(A ], Hj(A2, P)) * Hi+j(A, P). The general case follows 
from these remarks since every finitely generated &-module is a direct sum of a 

nite &-module and a free H,-module. 

orollary 8,2. Suppose that @ : A -+ B is a homomorphism of Abelian groups such 
that both Ker @ an(d Coker # are uniquely m-divisible. Then for any P as above the 
i ted homomorphism H,(A, PI-+ H,(B, P) is bijective. 

ficient to treat separately the cases when $ is surjective and when @ 
c. In each case the statement follows immediately from Lemma 1.1 and 
child-Serre spectral sequence. 
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The following is a version of Ruth Charney’s theorem [3]. 

Proposition 1.3. Supose that I is a two-sided ideal in a ring R and m is an integer 
invertible in R/I. Then the natural action (by conjugation) of the group 6L(R) on 
H,,@L(R, I), Z/m) is trivial. 

Proof. Denote GL,(R, I) by c,, GL(R, I) by r, and denote by ri, r: the following 

groups: 

Consider the Hochschild-Serre spectral sequences corresponding to the group ex- 

tensions: 

~-,P~r;+r,+l, 

Since the Abelian group (R/I)” is uniquely m-divisible we know from Corollary 1.2 

that H,(I”, E/m)qH,(R”, Z/m) and the comparison of these spectral sequences 
shows that the imbedding T,‘C+rn”, is a homology isomorphism with Z/m coeffi- 

cients. The group r: contains elementary matrices ei,n + 1(r) (1 I ic n) and the above 

remark shows that the action of e i,n+l(r) on H,(T,‘,Z/m) is trivial. Since 

rncr,‘crn+ 1 we deduce that the action of e. ,,n + 1(r) on the image of H*(r,, Z/m) 
in H,(T, Z/m) is also trivial. The same argument shows that the action of e,, + ],,(r) 

on this image is also trivial. Since the matrices e;,, ~ ](r) and e,, + 1,i(r) generate the 

subgroup En + 1 (R)CE,(R), we see that the action of E,,(R) on Im(H,(T,,,Z/m)-+ 
H,(f, Urn)) is trivi;ll. Taking the limit over n we deduce that the action of E(R) on 

H,(T,Z/m) is trivial. Finally. for any CYE GL,(R) both 

act trivially on Im(H&n,k/m)-+H,(r,Z/m)) and hence cy also acts trivially on 

this image. Taking once again the limit over n, we get our assertion. 

Lemma 1.4. Suppose that X is a connected H-space and p : X’ --+X is a connected 
covering space of X with Galois group G (which is necessarii& Abelian). Sup- 
pose further that C is uniquely m-{divisible. Then the induced homomorphisms 
H,(X ‘, Z/m) + H,(X, Z /m) and 71 *(X’, Z /m) -+ 15 *(X, Z /m) are boectke. 

Proof. For any covering space X’ --+X the homomorphisms zj(X’, 3rzz)--+ 

ni(X,Z/m) are bijective for iz3. Furthermore we have an exact sequence 

and since G is uniquely nj-divisible we deduce that ,rl~l (X’)z,n~, (X) and 
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nl (X)/m+ n&X)/m. The universal coefficient theorem for homotopy groups 
(see 112)) shows immediately that rrz(X’,H/m)%2(X,Z/m) and rrI(X’,Z/m)l 

It is well known and easy to prove [compare [M, p. 3833) that the action of G 
‘on X’ is trivial up to homotopy (i.e. for any g E G the map g : X” -+X’ is homotopic 
to the identity map). This shows that the action of G on M,(X’, E/m) is trivial. Now 
the spectral sequence Hi(G, Hj(X’, Z/m))=, Hi+j(X, Urn) and Lemma 1.1 together 
prove the assertion concerning homology groups. 

Pmposition 9.5. Suppose that f: X + Y is a rnap of connected H-spaces (we do not 
sup‘gose that f respects the H-structure) and m is an integer such that both the kernel 
and the cokernei of the homomorphism 7c1 (X) -+ 7tl ( Y) are uniquely m-divisible. 
The following conditions ate equivalent: 

(a) .f* : R *(X, Z/m)-+ n*( Y, Urn) is bijective. 
(b) $* : N$(X, Z !m)-+ H,( Y, Z/m) is bijective. 

Proof, Let Y’ -+ Y be the covering space corresponding to the subgroup 
Im(nl(X)-+nr,( Y)). Then, fixing a basepoint in Y’, there exists a unique lifting 
J’ : X -+ Y’ sff f and in view of Lemma 1.4 we may replace Y and f by Y’ and f ‘, 
thus reducing to the case when ~~,(X)-+Z~(Y) is surjective. 

Let Y” and X’ be the universal covering spaces for Y and X and let X’ be the 
covering space of X corresponding to the subgroup Ker(n,(X)--+nl( Y)). Fixing 
basepoints in X’ and Y” we get unique lifings f” : X” -+ Y” and f’ : X’-+ Y” of f. 
Consider t hle commutative diagram: 

Both X7X and YVY are Galois coverings with the same Galois group G = nl( Y) 
and f’ is G-kequivarian t , In view of Lemma 1.4 we have the following equivalences: 
(a)“e (a)‘, (b)‘e (b)‘. Fr.nthermore, since X’ and Y” are simply connected we know 

at (a)“=(b)” [12, $31. Thus it is sufficient to show that (a)++(a)’ and (b)*(b)‘. 
Since n,(X’, B/m) = Tli(l’L, Urn) and ni( Y“, h/m) = ni( Y, Z/m) when i > 3 we have to 
co:nsicier only n1 pnd 7r2. The groups ~I(Y’,Z/m)=;rtl(Y”)/m, z,(X’,Z/m)= 
n,(X’)/m are zero ant’ the rn:~p 

is c~rta~~~~ an isomorphism. Since there is no m-torsion in nl(X’) we know from 
efficient theorem [ 12, 0 l] that n2(X’, Urn) = 7t2(X’)/m = z2(X)/m 

Finally we have exact sequences of pointed sets 
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Since X and Y are H-spaces these sequences are really exact sequences of groups 
and groups homomorphisms. This shows that the natural action of nz( Y) (resp. 
n2(X)) on Q( Y, E/m) (resp. nz(X, Urn)) (see [12, §l]] factors through the action 
of QY)/m (resp. ~(X)/rn) and moreover this action is simply transitive on the 
fibers of the map z2(Y,Z/m)-+,nl(Y) (resp. Izz(X,H/m)-+,n,(X)). From the 
commutative diagram 

0 - x2(X)/m - 712(X, Urn) - ,~l(Xk---+O 

+-----+Ib2(Y)/m - 712( Y, Z/m) -----+,q(Y)~O 

and the previous remarks we see that 712(X,Z/m)-+7z2( Y,Z/m) is an isomorphism 
if and only if x2(X)/m--+n2( Y)/m is. Thus (a)&(a)‘. 

Replacing Y by the mapping cylinder of f we may suppose that f (and hence 
also f ') is an imbedding. Co--;fition (b) (resp. (b)‘) is equivalent to the fact that 
H,( Y, X; h/m) = 0 (resp. H,(Y”, X’; Z/m) = C). The spectral sequence 

Ki(G, Hj(Y”, X’; Z/m))*Hi,j(Y, X; Urn) 

shows immediately that (b)‘*(b). Suppose finally that H,( Y, X; Z/m) = 0 and let 
hj( Y”, X”; Z/m) be the first nontrivial homology group of the pair (Y’, X’). The 
above spectral sequence shows that HO(G,Hj( Y’, X’; Z’.M) = 0. On the other halId 
we have an exact sequence of G-modules 

Hj(Y”,B/m)+Hj(Y”, X’; k/m)-+Hj_I(X’,Z/m) 

and the action of G on the end terms of this sequence is trivial (since Y and .Y are 
H-spaces). This implies that Hj( Y”, A’; Urn) =0, thus finishing the Proof of the 
equivalence (b) * (b)‘. 

Corollav 1 A. Let (R, I) be a henselkn pair and m an integer invertible in R 11. The 
folro wing conditions are equivalent: 

(a) K&Z/m) -+ K,(R/I, Z/m) is an isomorphism. 
(b) H,(GL(R), Z/m) -+ H,@L(R/I), Z/m) is an isomorphism. 
(c) H&L(R, I), Urn) = 0. 

roof. Since KRad(R), the homomorphism K,IR)+.K,(R/1) is injective [ 1, ch. 
IX, 0 11. Since (R, I) is a hens&n pair one sees easily (compare [ 15, ch. XI, $21 that 

the map Idempl,‘M,(R))-,Idemp(M,(R/Z)) is surjective and hence K,(R)+,(R/I) 
is also surjective. Thus K,(R)%QR/I) and condition (a) is equivalent to the fact 
that I~,(BGL(R)+, Z!/m)-+n*(13GL(R/I)f, Urn) is r”.q isomorphism. Consider the 

map 
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q(BGL(R)+)= K,(R)+K,(R/I) = n,(BGL(R/I)+). 

Since IcRad(R), this map is surjective and its kernel coincides with the 
multiplicative group 1 + I. It follows immediately from our assumptions that this 
group is uniquely m-divisible and Proposition 1.5 shows that (a) I. 

Consider now the Hochschild-Serre spectral sequence 

W,IGLWI), H,(GL(R, I), Z/m))-,H,+,(GL(R), Urn). 

Proposition E .3 shows that the action of GL(R/I) on H*(GL(R, I), h/m) is trivial 
and the usual spectral sequence argument shows that (b)e (c). 

karma 1.7. Suppose that I is a nil ideal in a ring R (not necessarily commutative) 
and m is an integer invertible in R/I. Then (for any n) &(GL,(R, I), Z/m) = 0. 

Proof. We may suppose that I is finitely generated and hence nilpotent. We proceed 
by inductiorrP on m, where m is the least integer such that In’ = 0. If m = 1 we have 
nothing to prove. If m = 2 the group GL,(R, I) &M,(I) is a uniquely m-divisible 
Abelian grcrtip and our assertion follows from Lemma 1.1. The general case follows 
from the Hochschild-Serre spectral sequence 

&(GL,(R/r’, 1/r2), H,(GL,(R,I’), Z/nl))-,H~.,(GL,(R,?), Z/m). 

2. The universal homotopy construction 

Throughout this section we fix a ring A an 
pose that A satisfies the following property: 

an integer m invertible in A. We sup- 

Property 2.1. Suppose that X/Spec A is a smooth affine scheme of finite type and 
f : Spec A-+X is a section; Denote by X,h the henselization of X along f (see [ 151). 
Then the natural homomorphism &(A, Z/m)-K,(X,h, Z/m) is bijective. 

Consider the smooth affine scheme Xn,i = GL, x l .* x GL, (i times) over Spec A 
and denote by Xii its henselization along the unit section. This scheme is affine 
and we denotc by Oli its coordinate ring. 0: i is an A-algebra and we have a 
canonical A-homomorphism 0: i +A, the kernel GNli of which lies in Rad(O$). 

For any group 13 we denote by &(G,h/m) its reduced standard complex with 
coefficients Z/m (i.e. we replace CO(G,Z/m) by zero). 

Consider the following morphisms of schemes over Spec A: 

t 

g2X"'Xgi if j=o, 
pj:X,~i4X~,i_,: pj~,X***Xgi)= glX***Xgjgj+IX'**Xg if lsj~i-l, 

gl X l ** Xgi-1 if j=l. 

isms preserve the unit section and hence define morphisms X$ -=+ 
we also denote by pj. We use the notation (p:>* for the induced 
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homomorphisms 0:. i __ 1 -+ Oi, ir GL(O,h,j-l,.//~i_I)~GL(O~j,.//,IIi) and 

C*(GL(O,hi- \ 9 - K:i I), Z/m)-*C&GL(O,$, . //,ki), Z//n). 

We have the evident morphisms of schemes over Spec A: X:,-X,,,, &GL,, 

preserving the unit section and hence canonical matrices ak E GL,(O,$, .h’l i). We 

denote by U,,i E z’,(GL(O,h,i,. h’,$), k/m) the chain [a,, . . . , ai] x (1 mod m.Z) (we take 

42.0 = 0). 

Proposition 2.2. There exist chains c,, i E Ci + 1 (GL(Oi, i, . //l i), Z/m) s!lch that 

Proof. Take cn, o = 0 and suppose that c,,~, . . . , c,,; _ 1 are constructed. Sirice 

d(U,i) = $,(- l)‘(pj)*(~,~,i_ 1) we see that 

d U,,i- i (-l)'(Pj)*(Cn,;_,) = i (-l)‘(pf)* ‘i 
j=O > J=o k=O 

= i ‘i (-l)j+k(p~-l,?J~)*(c,~,,_~)=O. 
Jzo,(=o 

This shows that u,,i - cj~,l-~~j(qj~*(c,,;- I) is a cycle 2nd hence a boundary since 

the group r?,(GL(O!‘i, . A$), Urn) is zero in view of the Property 2.1 and Corollary 

1 A. This gives the possibility to construct c,,,; and thus to complete the inductive 

process. 

Theorem 2.3. Suppc3s4 that (R, I) is a henselian pair and I? is an A-algebra. Then 

Proof. In view of Corollary 1.6 it is sufficient to show that &(GL(R, I), Z/IPI) = G. To 

prove this we shall show that the imbedding &(GL,(R, I), Z’/m)--@*(GL(R, I), Z/m) 

is null-homotopic. The group Ci(GL,(R, I), Z/m) (i ~1) is a free Urrr-module with 

basis [pi, . . . , pi] where b’ E GL,(R, 1). The matrices pi, . . . , /Ii define a morlphisna 

Spec R*Xn,iof schemes over Spec A, which sends the closed subscheme Spec(R/l)-, 

Spec R into the unit section of XI,i l By the definition of the henselization 

this morphism factors uniquely through a morphism Qa : Spec R-+X!‘, (also 
sending Spec(R/I) into the unit section). We define a homotopy operator 

s: &(GL,(R,I),Z/m)-@~(GL(R,I),Z/m) bymeansof the formulas([& . . ...8.1)= 
(#$*(c,,;) and we see immediately from properties of c,,, i that s is the required null- 

homotopy. 

If B is an A-al&*_ bra, then B also satisfies 2.1. 

0r01lary 2.5. If (R, I) is a henselian pair and R is an algebra over a field F, then 
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K+(R,~irrt)~K*(R/I,Z/m) for any m prime to char F. 

This follows from Theorem 2.3 and the theorem of 0. Gabber [4] stating that 
fields satisfy Property 2.1. 

3. K-theory of henselian valuation rings 

Let R be a henselian valuation ring with maximal ideal I, residue field F= R/I and 
quotient field E. If char E=char F, then R is an algebra over a field and we know 
from Corollary 2.5 that K*(R, Z/m)=)K*(F, Urn) for any m prime to char F. In this 
section we consider the case when char E = 0 and char F =p>O. We denote by u the 
valuation of E associated with R and we denote by r the valuation group of o (thus 
r is a totally iOrdered group and o is a map E -+TU 00). For every CJ E r we denote 
by I0 the R >submodule of E given by the formula I0 = {x E E: D(X) > a}. If 0 2 0, 
then /n is an itdeal in R and I coincides with IO. We use the notation E for the com- 
pletion of E in the topology defined by u. 

mma 3.1. If L/E is a finite field ex:ension, then there exists a unique extension 
of ti on the field L. 

Proof. Denote by A the integral closure of R in L. It is known 12, ch. 61 that A is 
a semilocal ring and if . //; are its maximal ide&, then A ((, are the valuation rings 
corresponding to extensions of o. On the other hand, since R is henselian, every 
semilocal intlegral R-algebra is a product of local rings [ 15, 5 11. Since A is a domain 
we deduce that A is local, i.e. there is only one extension of v on L. 

Corollary 3,2. E is algebraically closed in l?. 

Proof. Let L/E be a finite field extension. The well known formula [2, ch. 61 
E EL = n,,. x L, together with Lemma 3.1 shows that &&L is a domain. Thus 
the extension l?/E is regular [9] anId hence E is algebraically closed in E. 

mma 3.3. Consider the polynomial p = T” -t c:ld qTi E E[ YO, . . . , Yn _ 1, T] and 
suppose that y = ( y,, . . . , y,, _ I) E E” and t E E are such that t is a simple root of 

y, T). Then there exists at7 open neighborhood (for the topclogy defined by the 
luation) V( y)c E” and a continuous function u : V( y)-+E such that u(y) = t and, 

for any 2 E V, p(z, u(z)) = 0. 

omplete this follows immediately from the implicit function theorem 
e general case we first construct P(y) cI? and ii : P( y)-+k? 

then take V(y) = p( y)ll En, t3 = u) vtyl. The values of u lie 



One deduces immediately from the previous result (see [ 15, ch. 6, $41) the 
following. 

Corollary 3.4. Let X be a topological space and x E X. Then the local ring of germs 
of continuous E-valued functions defined in a neighborhood of x is henselian. 

Consider the set GL,,(E) x - XGL,,(E) (i times) as a topological space with the 
topology defined by the valuation u (the basis of neighborhoods of the unit in this 

topology consists of the sets GL,(R, IO) x l -- x GL,(R, I,), where 05 CI E f ). Denote 
by O;,?’ the local ring of germs of continuous E-valued functions defined in a 

neighborhood of the unity eE GL,(E) x l . . x GLJE) and denote by . fli,c;nt the 
maximal ideal of O,Cyr. Every chain c E Ci+ r(GL,(O,$“‘, #~,~“‘), Z//m) defines a 

map of some neighborhood of ee GLJE) x l ** x GL,,(E) to Ci+ l (GLJE), Z/IV) 

which is continuous in the sense that for any a20 there exists ~20 such that c’ is 

defined in GL,(R, I,) x l x GLJR, I,) and takes it to Ci+ r(GL,(R, I,), Z/m). We 

use the same letter c to denote the natural U/m-linear extension of the previous map 
to a homomorphism C;(GL,(R,I,),Um)-+Ci+ ,(GL,(R,I,),Um). 

Proposition 3.5. Let N and n be positive integers and 0 5 T E f. Then there e.Cst r or II 
(independent of T) and ct~ such that the imbedding GL,,(R, I,)&GL,(R, I,) irl- 
duces the trivial zero homomorphism on Hi<-, Z/m) with 0 I i 5 N. 

Proof. Consider the algebraic variety GL, x 0.. x GL,, = X,*; over E. The ring 
0 Co? being henselian, we deduce that the evident morphism of schemes (over 
SLZC E) Spec O,Cy( +X, i factors through Spec Oh,yt -+Xl, =Spec O,$, thus 
giving a local homomorphism 0: ; -+ Oiy’. Denote by c;,,~ the image of c,, , E 

ci+ ItGL(O~i9 *k’!#‘i), Urn) in Ci+ t(GL(Oi‘J”, . t+$“‘), Urn). We can find r 2 n such 

that all the chains c;, i with 0~kN lie Ci+ l(GL,(O~,~‘, , //~,~“‘),Z/m) and then find 

ozz such that the c,; (OS ir N) are defined in GL,,(R, I,) x m-0 x GLJR, IJ and 

sent to Ci+ t(GL,(R, I,), Urn). This gives us a null homotopy (defined in 
degrees IN) for the natural imbedding C,(GL,(R, I,), Z/m)~C,(GLr(R, rr), Z/VI) 
and proves the proposition. 

Theorem 3.6. For every i 2 0 there exists 0 5 CT E r such that the canonical hotw- 
morphism Hi(GL(R), Z/m)* H;(CL(R/I,), Urn) k injective. Furthermore, 
for every a~ 0 therrz exists tr ci such that the image of H,(GL(R), ,” 1 tv)-+ 

Hi(GL(R/Ig), Z/M?) coincides with the image of 

H;(GL(R/I,), Z/m)*H;(GL(R/I,), .Z/PN). 

roof. For every n and (T we have a Hochschild-Serre spectral sequence 

&(n,o): E_&= H,(GL,,(R/I,), H,(GL,,(R, I,-,,, 2 /m)) j I$, + JGL,,(R), : h). 

This spectral sequence defines a filtration on H,(GL,,(R), Z/m): 
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= Hk(GL,(R), Z/m) 

.weh that H~(GL,(R),Z/m)ps,/Hk(GL,(R),Z/m),,_ I,a= E,i&, and the kernel of 
/@-+Hk(GL,(R/&), z/m) coincides with H&CL,(R), ~/m)&._ l,O. If 

and r~ n, then we have a homomorphism of group extensions 

f -- GL,(R, I,) - GL,(R) - GL,(R/I,) - 1 

p-=---=--4 GWC 4,) - GL,(R) - GL,(R/I,) - o 

hence the induced homomorphism of spectral sequences &(n, r) -+ &(r, a). In par- 
ticukir the canonical homomorphism H&(GL,(R), z/m)-+Hk(GL,[R), H/m) takes 

(GLJR), z/m), I to &(GL,(R), Z/m& 6w 9 * 

&6J 4 FW @VW,); TS and rvery j< k there exists u ~0 such that the image of 
L,,(R), if! /m)j,. in Hk(GL(R), Z/m) is zero. 

We proceed by induction on j. The statement is evident for j = - 1, so we 
may suppose that j ~0. Find r L: IZ as in Proposition 3.5 (taking N= k) and then 
dp ~0, corresponding to r and j- I. By the choice of r there exists r~ 0 such that 
the homomorphism HJGLJR, IT), Z/m)-+H,(GL,(R, IO), Urn) is zero when 
1~ (~5 k This shows that the homomorphisms Eiq(n, r)+E&Jr, a) are zero for 
I Q gh k and hence the homomorphisms Epq)&, r)+E&&r, a) (1 sqs k) are also 
zero. Thus the image of &(GL,(R), Z/m)j,, in H&(GL,(R), Z/m) is contained in 

L,(R),E/m)j_ l,o and hence its image in H,(GL(R), Z/m) is zero. 

3.6.2. Since the riugs R and R/I are local one knows (1181 5 [ 171) that 

f&(GL,(--),H/m)=Hk(GL(-),B/m) if nz2k+ 1. 

This fact and 3.6.1 show that if n 12k + 1 and o is sufficiently large, then 
Hk{GL,(R)J%n)k_ l,o=O and hence 

Nk(cUR), z/m) = Hk(cL,(R), z/m)QHk(GL,(R/I,), H/m) 

= Hk(GL(R/I,), H/m). 

3A5.3. The same spectral sequence defines a descending filtration on 
L,(R/P,), U/m): I-$(GL,,(R/I,), Urn); = EL,@, 0) (i r. 2) and 

L,(R), z/m)-+Hk(GL,(R/i,), Z/m)) coincides with Hk(GL,(R/&,), E/m), = 
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3.6.4. For every n, j and every a~ 0 there exist r L n (independent of p) and 
t 2: o such that Im(H&GL,(R/I,), E/m)+ H&X,(R/I,), Z/m)) is contained in 
Hk(GE,(R/dI,), h/m)j. 

Proof. Once again we use induction on j. The. statement is evident for j = 2, so we 
may suppose that 2 < jl k. First find r’ I n which works for j- 1, next find r r: r’ 
as in Proposition 3.5 (for the data r’, j). By the choice of r there exists r’1cr such 
that the homomorphism 

H’- *(GL,~(R,I,,),Z/m)-,Hj_ t(GL,(R, I,), Z/m) 

is zero. This implies that the homomorphism Ei_j,j_ l(r’, r’)+Ei_j,j_ ,(r, a) (and 
hence also E~_~,j_ I(r’, r’)+EiIj, j_ 1 (r,o)) is zero. From the commutative diagram 
with exact rows 

O------+ EJ k, 0 (r/,7’) -E~,‘(r’,7’)~E~~~ j_l(r’,T’) 9 , 

I I d.i-1 I 

0 - E~,,O=, 0) ------+ E&‘(r,cr) - , E{Ijj_,(r,o) 9 

we deduce that 

Lm(&(GL,J(R/I,), Z /m)j _ 1 -+Hk(GL,(R/Io), i?//m)) C Hk(GL,(R/&), H/in),. 

Finally we can find 7 2 7’ such that 

Lm(Hk(GL,(R/&), z/m)-+Hk(GL,J(R/&l), z/m)) C k?k(GLrl(R/rrs), Z/m)j __ l. 

3.6.5. Taking n = 2k+ 1, j= k in 3.6.4 and using once more the homology stability 
theorem we see that for any a~0 there exists 710 such that 

Im(Hk(GL(R/IT), z/m)-)Hk(GL(R/&,), z/m)) 

= Lm(Hk(GL,(R/I,),Z/m)-+Hk(GL(R/I,), z/m)) 

C Hk(GL(R/I,), if!/?n)k = Lm(Hk(GL(R), ~/m)--+HkI:G~(R/I,), H/m)). 

@OrOby 3.7. The inverse system { Hk(GL(R/I,), Z/m)) 

Hk(GL(R), z/m) = ljm :I,(GL(R/&.,), z/m). 

is Mittag-Leffler and 

Corollary 3.8. If R is a ring of integers in a non-Archimedean local field of 
characteristic zero, then the groups Hk(GL(R), Z/m) are finite for any k, m. 

orollary 3.9. Suppose that the height of the valuation u is equal to one and m is 
prime to p, then &JR, .Z/m)-V&(F, Urn). 
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Proof. Since the height of o is equal to one we see immedia;ehy that for any o 2 0, 
r/J0 is a nil-ideal in R/I, and hence (see Lemma 1.7), H+(GL(R/I,), E/m)-3 
W*(GL(F), Z/nr). This together with Corollary 3.7 shows that H,(GL(R), Z/m)3 
H,(GL(F),Z//ptt) and we finish the proof using Proposition 1.5. 

. Using induction on the height of o one can easily generalize the 
previous resuh to the case of a valuation of arbit.rary finite height. 

Corollas 3.11. Suppose that E is a henselian discretely valuated field with residue 
field F of characteristic p. For any i> 0 and any m prime to p we have a split exact 

uence 

Pmsf. In view of Corollary 3.9 and the localization sequence we have only to show 
that (derukng by I? the valuation ring of E) Ki(F, Z/m) = Ki(R, Z/m)+Ki(E, Z/m) 
is split injective. Choose a prime element II of E and denote by I(n) the correspond- 

element in K,(E) = E*, then the homomorphism 

m 
Ki(Eg Z/m)------+ Ki+ ,(E,Z/m)zKi(F,Z/m) 

ivcs us the required splitting. 

Proposition 3.12. Suppose that F is an algebraically closed field of positive char- 
acteristic p and let E denote the algebraic closure of the quotient field E. of the 
ring RO = W(F) of Witt vectors over F. For any m prime to p we have a canonical 
isomorphism K+(F, Z/m) = K,(E, Z/m). 

Proof. If L\EO is a finite subextension of E/E,, then L is a complete discretely 
valuated field with residue field F and we have an exact sequence 

If L’X is another finite subextension of E/EO, then we have a commutative 
diagram : 

o- K#=J/rn) - Ki(L, Z/m) - Ki_ I(F,Z/m) -0 

o- Ki(F, h/m) - Ki(L’,Z/m)- Ki_1(F,Z/m)-----)O 

r any L there exist finite extensions L’/L of arbitrary degree we deduce that 
irect limit of the right hand side terms is zero and hence 
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Crrrollary 3.13, For any algebraically closed field F and any m prime to char F the 
group Ki(F% Z/In) is either zero (ij’ i is odd) or isomorphic to Z/m (if i is even). 

Proof. It was shown in [18] that the group Ki(F,Hlm) (for F algebraically closed) 
can depend only on char F, and it follows from Proposition 3.12 that really it does 
not even depend on char F. Since by the work of Quillen [ 131 our sta~emer~t is true 
for the algebraic closure of a finite field, we deduce that it is true for any al- 
gebraically closed field F’. 

Remark 3.14. We can avolid the use of Quillen’s theorem since we compute the K- 
theory of comp1ex numbers in the next section. 

4. K-theory of Atchimedan fields 

If G is a topological group, then we use the notation BGLoD to denote the classi- 
fying space of G considered as a topo1ogica1 group [7], reserving the notation BG 
for the classifying space of G considered as a discrete group. 

Recal that for any discrete group G we have the fo1lowing canonical model for 
BG. Denote by EG the geometric realization of the simpficial set whose p-simplice.; 
are (p + I)-tuples (go, . . . , gp> of elements of G and face (req. degeneracy.1 
operators are given by omitting (resp. repeating) the corresponding element. This 
space is contractible and the evident action of G on EG is tree, thus the space EGA3 
is a classifying space for G. In what follows, when speaking about BG we shall 
usually mean this canonical model. From the above description we see that BG is 
the geometric realization of the simplicial set whose p-simplices are p-tuples 

k 1,..=,g,l=(e,g~,glg2,..e,g~g2=~=gp)mOdG 

of elements of G and face and degeneracy operators are given by the formulae: 

Suppose now that G is a Lie group with finitely many connected components. Fix 
a left invariant Riemann metric on G and denote by G, the e-ball with center at the 
unity of G. We denote by BG, the geometric reafization of the sjmplicial set whose 
p-simplises are p-tuples [gt , . . . , gp] of elements of G such that G,fl gl Gcn l a* 
ng, l . . gpG, st0 and the face and degeneracy operators are the same as above. 



314 A.A. Suslin 

Proposition 4.1. If c: is small enoiergk, then the sequence BG, -+ BG + BG lop is a 
fibration up to homotopy. 

Pro&. Consider the universal principal GtoP-fibration Gtop *EGtop + BG top. For 
any topological space X we denote by Sin X its singular simplicial set [lo]. Since 
functors Sin and geometric realization preserve fibrations we get a commutative 
diagram of fibrations: 

ISin GtopI - ISin EG”PI - ISin BGtoPI 

GtOP + EGtop * BGtoP 

and the vertical arrows in this diagram are homotopy equivalences [lo]. The evident 
berwise action of the discrete group G on 1 Sin EGtoP 1 is free and factoring this 

action out we get a new fibration: 

(Sin G’OPI/G+ ]Sin EG’OPI/G-+ ISin BGtoP). 

The space E~toP (and hence also (Sin EG’OPI) is contractible and hence ISin EG topl /G 
y equivalent to BG. Thus we have the fibration up to homotopy 

-BG -)BGtoP (compare [l l]), where the first arrow corresponds to 
the principa! G-fibration I Sin G top I -+ I Sin G top I /G. 

Suppose now that E is small enough. Then G, is geodesically convex [6,§5.2] and 
hence every nonempty intersection goG, n .4gPGC is contractible. Denote by X. 
the simplicia] topological space 

by Y.. the bisimplicial set YPq =Sin,(X,), by (Sin G’OP), the subobject of the 
simplicial set Sin Gtop consisting of singular simplices lying in some gG, and by EE 
the simplicia’, set whose p-simplices are (p + I)-tuples (go, . . . , g,,) such that 
goGE n ..a ngPG, + 0. We have the evident maps of bisimplicial sets 

where we consider (Sin Gfop& (resp. E,) as a bisimplicial set trivial in the q (resp. 
p) -direct ion. 

is Q homotopy equivalence. 

is it is sufficient to show that for every p, YP. -+ (Sin G’op)C,P is a 
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homotopy equivalence. Denote (Sin Gt(pp)E,p by T. By the very definition 

T= U Ts, where Tg = Sin,(gG,) and YPs = u T&n -4 TR4. 
gcG So....*R, 

For every TV T, put G, = {gE G: Ts3 t}; then the fiber of YP. -+ T over t may be 
identified with the simplicial set whose p-simplices are (p + I)-tuples of elements of 
G,. Thus all the fibers of YP. + Tare contractible and hence this map is a homotopy 
equivalence. 

4.1.2. ry is a homotopy equivalence. 

This time it is sufficient to show that for every q, Y., --+(E& is a homotopy 
equivalence. For any (go, . . . ,g,> E (E&, the fiber of Y. 4 -+(EE& over (go, *a l , g,> 
coincides with Sin(g,G, n l ** ng,G,). It is contractible since g,G, n ... ng,G, is con- 
tractible. 

4.1.3. The imbedding (Sin GtoP),&Sin Gfop is a homotopy equivalence. 

This is well known - compare [16, ch. 4, 641. 

4.1.4. Thus we have homotopy equivalences ) Sin G top 1 c 1 Y.. 1% 1 EE ) . The dis- 
crete group G acts freely on all these spaces and the maps above are G-equi- 
variant. Factoring out this action of G we get a homotopy equivalence BG, = 
1 EC 1 /G + 1 Sin G topl /G and it is clear from the construction that the triangle 

BG, L 1 Sin G top 1 /G 

is commutative up to homotopy. 

Remark 4.2. In the above proof we have constructed (for small E) a homotopy 
equivalence BG, -2i I Sin G “PI/G. It is clear that for 6<e the diagram 

BGB r BG, 

\; / 
ISin G’“PI/G 

is commutative up to homotopy and hence BG,c+BG, is also a homotopy 
equivalence. 

reposition 4.3. Let k denote either the field R of rea! numbers or the field C of 
complex numbers. If E is small enough, then the imbedding BGL,(k),c;BGL,(k)6 
BGL(k) induces the zero homomorphism on I?,( --) Z/m). 
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Proof. Denote by O$“” the ring of germs of continuous functions GL,(k) x l x 

GL,(k)+k defined in some neighborhood of the unity. The group GL,(O$“) may 
be identified with tfte group of germs of continuous maps GL,(k) x - x GL,,(k)+ 
GL,(k) defined in some neighborhood of the unity and hence every chain 
CE CJGL,(Oiflyt), Z/m) defines a continuous map of some neighborhood of the 
unity Q E GL,&k) x ‘0. x GL,(k) to C,(GL,(k),Z/m). Denote as usual by O,$ the 
henselization of the variety GL, x l x GLJk at the unity. The ring Ok,?’ being 
henseiian IlS], we get a canonical homomorphism O/‘i+Ozyt and we denote by 
cr,F’ E Ci+ ,(GL(O~~“),§/m) the image under this homomorphism of the chain 
d;t.i constructed in (,i’ection 2. For given IV>0 we can find c>O such that the czpint 
are defined in GL,tk), x l -0 xGL,(k), (01i=N). Thus for OsisN we get homo- 
morphisms 

S, : Ci(BGL,(k)c, h/m)-+Ci+ 1 (GL(k), Z/m) = Ci+ 1 (BGL(k), Z/m) 

and it is cienr from the properties of c,,~ that s is a null homotopy (defined in 
degrees s N) for the canonical imbedding 

c+(BGL,(k),, Z/m&&(BGL(k), h/m) = C,(GL(k), Z/m). 

d’orollary 44. With the same notations as above, 
BSL,(k)c;BSL(k) induces the zero homomorphism 
enough E. 

the imbedding BSL,,,(k),cp 
on lT,( -, E/m) for small 

This follows immediately from Proposition 4.3 and the following. 

4.4.1. For any field k the homomorphism H*(SL(k))+H*(GL(k)) is split injective. 
he sp’litting is induced by the homomorphism GL(k)-+SL(k) given by the formula 

Corollary 0.5. If E is smal’l enough, then Pi(BSL,(k)~,Z/m)=OforOIi~(n- 1)/Z. 

roof. Consider the Serre spectral sequence of the fibration 

BSL,(k), + BSL,(k)-+BSL,(k)‘OP. 

his spectral sequence together with the fact (see 111 J) that 

l&(BSL,(k), Z/m)--+H*(BSL,(k)top, Z/m) 

nto shows that if i0 is the least positive integer for which HiO(BSL,(k),, Urn) + 

~~~S~~(k)~, Z/m)QN,,(l;rSL,(k), E/m). 

- a)h/ e homology stability theorem ([ 181, [ 17)) shows that 
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Hi(BSL,(k),Z/m)=Hi(BSL(k),Z/m) 

and we deduce from Corollary 4.4 that 

is the zero 

Hi(BSL,(k>,, z/m)~‘Hi(BSL,(k),h/m) 

homomorphism. Thus i0 > (n - 1)/2. 

Corollary 4.6. BSL(k)+ +BSL(k)‘OP induces isomorphisms of homology and 
homotopy groups with finite coefficients. 

Proof. The statement concerning homology follows from 4.5. Since both spaces are 
simply connected this implies the homotopy statement [ 12, $31. 

Corollary 4.7. BGL(k) ’ --) BGL(k)‘OP induces isomorphisms of homology and 
homotopy groups with finite coefficients. 

Proof. We have a commutative diagram of fibrations 

BSL(k)+ - BGL(k)+ - Bk’ 

BSL(k) top .-b BGL(k)‘W’ - Bk JItoP 

The edge vertical arrows induce isomorphisms of homology and homotopy groups 
with finite coefficients, hence the same is true for the middle arrow. 

Remark 4.7.1. The above fibrations are in fact trivial. 

Corollary 4.8. BGL,(k)+ BGL,(k)‘OP induces isomorphisms on Hi( -3 Z/m) for 
i5n. 

This follows from Corollary 4.6 since H,(GL,(k)) = H,(GL(k))’ for 05 is n and 
any infinite field k 1191. 

Theorem 4.9. Module uniquely divisible groups the K-theory of the fields R and C 
are as displayed in Table 1 (i > 0). 

Table I 

i mod 8 0 1 2 3 4 5 6 7 

Ki(R 0 z/2 H/2 Q/Z 0 0 0 Q /‘L 

1 0 inclusion 0 mult. by 2 G 0 0 iso. 
Ki(C) 0 Q/Z 0 iQ ,q 0 Q3”Z 0 Q/Y 
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Proof. Denote by Fk (k = ii? or C) the homotopy fiber of the rational localization 
map BGL(k)“@” -+ BGL(k)‘Qp@Q. It is clear that Fk-+BGL(k)‘OP induces isomor- 
phisms of homotopy groups with finite coefficients. Weibel [20] has proved that Fk 

a retract of BGL(k)+ in such a way that the composition Fk*BGL(k)+-+ 
IGLOOS coincides with the natural map. This implies that Fk-+BGL(k)+ induces 
isomorphisms of the homotopy groups with finite coefficients. Since Fk is a retract 
of BGL(k)’ we deduce that 

Ki(k) ==: 7t@GL(k)+) = ni(Fk)@(uniquely divisible group). 
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