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We discuss a supersymmetric version of DBI (Dirac–Born–Infeld) inflation, which is a typical inflation
model in string cosmology. The supersymmetric DBI action together with a superpotential always
leads to correction terms associated with the potential into the kinetic term, which drastically change
the dynamics of DBI inflation. We find two significant features of supersymmetric DBI inflation. The first
one is that ultra-relativistic motion is prohibited to cause inflation, which leads to order of unity sound
velocity squared and hence small non-Gaussianities of primordial curvature perturbations. The second
one is that the relation between the tensor-to-scalar ratio and the field variation is modified. Then,
significant tensor-to-scalar ratio r � 0.01 is possible because the variation of the canonically normalized
inflaton can be beyond the reduced Planck scale. These new features are in sharp contrast with those of
the standard non-supersymmetric DBI inflation and hence have a lot of interest implications on upcoming
observations of cosmic microwave background (CMB) anisotropies by the Planck satellite as well as direct
detection experiments of gravitational waves like DECIGO and BBO.

© 2012 Elsevier B.V. Open access under CC BY license.
Recent observations of CMB anisotropies like the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) satellite strongly suggest the
presence of accelerated expansion called inflation in the early Uni-
verse [1]. During inflation, primordial curvature [2] and tensor [3]
perturbations are generated and stretched out to the cosmological
scales, which become seeds of the large scale structure formation
and the CMB anisotropies. The properties of primordial curvature
fluctuations are well known and are almost scale-invariant, adi-
abatic, and Gaussian. Though tensor perturbations have not yet
been found unfortunately, they are expected to be detectable in
upcoming CMB experiments like the Planck [4] and the CMBPol [5].
However, we do not know the origin of the inflaton at all, except
that it is an effective scalar field. (See Refs. [6] for recent review of
inflation model building.)

String theory is the most powerful candidate to unify all of the
fundamental interactions. Then, it is natural to pursue the candi-
date of an inflaton in string theory. In fact, inflation models in the
brane setting were proposed [7,8] and have been investigated in-
tensively. Among them, a particularly interesting class of inflation
models is DBI inflation [9], which is associated with the rela-
tivistic motion of a D-brane in the warped flux compactification.
This model has distinctive predictions for primordial perturbations:
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(i) it can naturally generate large non-Gaussianities of primordial
curvature perturbations thanks to the ultra-relativistic motion [9],
(ii) it is quite difficult to produce detectable tensor perturbations
because the maximal field variation of the inflaton is constrained
to be less than the reduced Planck scale Mpl [10]. Current observa-
tions like the WMAP satellite are precise enough to rule out simple
UV models of DBI inflation [11] though more elaborated models
are still compatible with the present observations [12,13].

Almost all of these studies of DBI inflation, however, have been
based on the non-supersymmetric setup. Supersymmetry is one
of the most promising solutions to the hierarchy problem of the
Standard Model as well as the unification of the fundamental inter-
actions. Once a probe D-brane is placed on supersymmetric back-
grounds, one expects that the world-volume effective theory of the
probe brane becomes supersymmetric. Therefore, it is quite impor-
tant to consider DBI inflation in the supersymmetric framework.
Recently, some attempts to supersymmetrize non-canonical kinetic
terms have been done [14,15]. However, in order to incorporate a
potential term, one needs to introduce a superpotential and solve
the equation of motion for the auxiliary field consistently. This is a
difficult task when the non-canonical kinetic terms are present.

In this Letter, we discuss the supersymmetric version of DBI in-
flation. First of all, the supersymmetric DBI action with the super-
potential is studied. By solving the equation of motion for the aux-
iliary field consistently, we show that correction terms associated
with the potential always appear in the kinetic term, which drasti-
cally changes the dynamics of DBI inflation. Then, using the newly
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obtained action, we investigate the dynamics of supersymmet-
ric DBI inflation in detail. It is revealed that the predictions of
primordial perturbations are completely different from those of
non-supersymmetric DBI inflation, which may require us to reana-
lyze all of the DBI inflation models including elaborated models in
preparation for the upcoming experiments.

Now let us begin with the supersymmetric DBI action in the
warped throat. Assuming that a probe D3-brane is moving in the
supersymmetric ten-dimensional geometry of the form

ds2
10 = H− 1

2 (y)ds2
4 + H

1
2 (y)ds2

6, (1)

where ds2
4, ds2

6 are four-dimensional spacetime and six-dimensional
internal space respectively, the supersymmetric DBI Lagrangian in
the flat spacetime [16] is generalized as follows:

LDBI =
∫

d4θ

[
ΦΦ† + 1

16T

(
DαΦDαΦ

)(
Dα̇Φ† Dα̇Φ†)

× 1

1 + A + √
(1 + A)2 − B

]
, (2)

where we have employed the static gauge and normalized the
D3-brane tension and the string slope parameter 2πα′ to unity.
The chiral and anti-chiral superfields are denoted by Φ and Φ†,
Dα and Dα̇ are the supercovariant derivatives, T = T (Φ,Φ†) is a
function of Φ , Φ† corresponding to the warp factor T = H−1, and
A, B are given by

A ≡ ∂μΦ∂μΦ†

T
, B ≡ ∂μΦ∂μΦ∂νΦ†∂νΦ†

T 2
. (3)

Here we have turned on one complex scalar field associated with
two independent fluctuations along the throat direction y. In order
to incorporate the potential, we add the superpotential term to the
Lagrangian,

Lpot =
∫

d2θ W (Φ) + h.c. (4)

Several kinds of superpotentials are induced by the background
fluxes. For example, we can introduce the superpotential of a mass
term W = 1

2 mΦ2 on the D3-brane in the presence of a constant
Ramond–Ramond 3-form background [17,18].

The component Lagrangian is

L = −T
(
1 + 2T −1∂μϕ∂μϕ + T −2(∂μϕ∂μϕ

)2

− T −2(∂μϕ∂μϕ
)(

∂νϕ∂νϕ
))1/2 + T + F F + ∂W

∂ϕ
F

+ ∂W

∂ϕ
F + G(ϕ)

(−2F F∂μϕ∂μϕ + F 2 F 2), (5)

where we have dropped the fermions since they do not contribute
to the dynamics of the inflation. The function G(ϕ) is defined as

G(ϕ) = 1

T

1

1 + A + √
(1 + A)2 − B

, (6)

with the replacement of Φ by ϕ in A and B .
The Lagrangian for the scalar component ϕ in the chiral su-

perfield Φ is obtained by solving the equation of motion for the
auxiliary field F in Φ . This is in general a simultaneous equation
for F and F̄ . After eliminating F̄ , we find the equation for F is
given by

2G(ϕ)
∂W

∂ϕ
F 3 + ∂W

∂ϕ

(
1 − 2G(ϕ)∂μϕ∂μϕ

)
F

+
(

∂W
)2

= 0. (7)

∂ϕ
Unlike the standard (quasi-)canonical case, a salient feature of the
supersymmetric DBI model is that the equation for F is cubic and
can be solved analytically by Cardano’s method,1

F = ωk 3

√√√√−q

2
+

√(
q

2

)2

+
(

p

3

)3

+ ω3−k 3

√√√√−q

2
−

√(
q

2

)2

+
(

p

3

)3

. (8)

Here ω is the complex cubic root, k = 0,1,2, and p and q are given
by

p =
(

∂W

∂ϕ

)−1
∂W

∂ϕ

1 − 2G∂μϕ∂μϕ

2G
,

q = 1

2G

(
∂W

∂ϕ

)−1(
∂W

∂ϕ

)2

. (9)

We note that if W = 0, the unique solution is given by F = 0 and
the bosonic part of the DBI Lagrangian (2) is not changed com-
pared with the non-supersymmetric case. A remarkable fact in the
case W �= 0 is that there are three different on-shell actions asso-
ciated with the k = 0,1,2 solutions in Eq. (8). In the following, we
concentrate on the k = 0 branch since it is continuously connected
to the ordinary solution F = −∂W /∂ϕ̄ in the canonical limit. The
other solutions with k = 1,2 do not have any definite limit and
will yield essentially inequivalent theories.

Now we denote the phase factor of ∂W /∂ϕ as α. Since the
functions A, B and G are real, the phase of p and q in the so-
lutions (9) are −2α and −3α respectively. Then from the k = 0
solution in (8), the phase of F is given by π − α. As a result,
the phase factor of the product of ∂W /∂ϕ and F becomes π
and does not depend on α in the on-shell Lagrangian. Therefore
only the absolute values of ∂W /∂ϕ and F contribute to the La-
grangian.

We further impose the global U (1)R symmetry on the superpo-
tential W (Φ) and the warp factor T . This is always possible when
the geometry (1) has a U (1) isometry in the y direction. A typ-
ical example of this kind of geometry is the near horizon limit
of N coincident D3-branes [9]. Since the supersymmetric DBI La-
grangian given in Eq. (2) is invariant under the U (1)R symmetry,
the dynamics of the scalar field ϕ depends only on its radial com-
ponent f . In this case, f is identified with the fluctuation along
the radial direction in AdS5 × S5.

Under these circumstances, the full on-shell action for the
scalar field f in curved spacetime is given by

S =
∫

d4x
√−g

(
1

2
M2

pl R +L f

)
, (10)

L f = LDBI +Laux, (11)

LDBI = T
γ − 1

γ
, (12)

Laux = F 2 − 2
√

2
dW

df
F + G F 2(2X + F 2), (13)

where F and ∂W /∂ f are real and positive, and

1 In the case where the fermions are present, a perturbative solution to the equa-
tion for F was discussed in [14].
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X ≡ −1

2
∂μ f ∂μ f , γ = 1√

1 − 2 X
T

,

G = 1

T

2γ 2

(1 + γ )2
. (14)

The equation for the auxiliary field can be rewritten as

2G F 3 + (1 + 2G X)F − √
2

dW

df
= 0. (15)

Although we have the analytic solutions to the above equation,
since its complexity would make it difficult to capture the essence
of the physical properties, we look for approximate solutions un-
der the assumption that one term in the left-hand side of Eq. (15)
is subdominant. This will provide a valuable intuition for the clear
characteristics of our model. Later, we will mention the case that
all the terms in Eq. (15) are comparable.

Case (i): subdominance of the first term. The auxiliary field F
is given by

F � √
2

γ + 1

3γ − 1

dW

df
. (16)

The condition that the first term is negligible is satisfied for

8γ 2(γ + 1)

(3γ − 1)3

1

T

(
dW

df

)2

� 1. (17)

Since the prefactor in the left-hand side of the above inequality is
of the order unity for γ � 1, (dW /df )2 � T . Under this condition,
the Lagrangian L f for the scalar field f is dominated by the DBI
kinetic term LDBI only except the case γ − 1 � 1 when the DBI
kinetic term is significantly suppressed. Hence, only inflation with
a usual (almost) canonical kinetic term can happen. In this case,
large tensor perturbations are prohibited due to the Lyth bound
and the constrained field variation.

Case (ii): subdominance of the last term. The solution is ob-
tained by taking the limit q → 0 in Eq. (8) and is found to be
F = 0, which leads to no potential and hence no inflation.

Case (iii): subdominance of the middle term. The solution is
given by taking the limit p → 0 in Eq. (8). We obtain

F � 1√
2

(
1 + γ

γ

) 2
3
(

T
dW

df

) 1
3

. (18)

The subdominance of the middle term is satisfied for

8γ 2(γ + 1)

(3γ − 1)3

1

T

(
dW

df

)2


 1. (19)

Note that this condition is just the opposite inequality of Eq. (17)
and equivalent to (dW /df )2 
 T . Substituting this solution of F in
Eq. (13) yields

Laux = − 1

2
2
3

(
γ + 1

γ

) 2
3

V ( f ), (20)

where the potential V ( f ) is defined so that Laux → −V ( f ) for
γ → 1 (i.e. no kinetic term limit X → 0),

V ( f ) ≡
(

27T

2

) 1
3
(

dW

df

) 4
3

. (21)

The condition (19) can be recast into V 
 T . Note that this is not
a sufficient condition for inflation because the kinetic terms (γ )
depending on the potential appears in Laux. In fact, the slow-roll
parameter ε is given by
ε = − Ḣ

H2
� 3(γ − 1)

2γ + 1
, (22)

where we have used V 
 T . Thus, inflation can happen only for
γ � 1, that is, the ultra-relativistic motion of the D-brane is pro-
hibited in the supersymmetric DBI inflation, which is in marked
contrast to the standard non-supersymmetric case. For k-inflation
type Lagrangian (L f = K ( f , X)) [19] including the DBI inflation
as a special case, the non-Gaussianities of the curvature per-
turbations are enhanced by 1/c2

s [20]. Then, the standard non-
supersymmetric DBI inflation predicts large non-Gaussianities for
ultra-relativistic motion because of c2

s = 1/γ 2 [9]. On the other
hand, in our case, the sound velocity squared are estimated as

c2
s � 3/

(
3γ 2 + γ − 1

) � 1, (23)

for V 
 T and γ � 1. Thus, c2
s becomes almost unity, and hence

negligible non-Gaussianity is predicted for the supersymmetric DBI
inflation. Next, we discuss tensor perturbations and comment on
the generalized Lyth bound [10,21]. The field variation of f can be
related to the e-folding number N for L f = K ( f , X) as,

df

Mpl
=

√
r

8cs K X
dN, (24)

where r is the tensor-to-scalar ratio and K X is the partial deriva-
tive of K with respect to X . Here, you should notice that cs K X = 1
both for the canonical kinetic term (cs = K X = 1) and for the stan-
dard DBI case c−1

s = γ = K X , which leads to the so-called Lyth
bound, namely, significant tensor-to-scalar ratio r � 0.01 is possi-
ble only for � f � Mpl. However, the relation cs K X = 1 does not
hold true in our case. Instead, the following relation is obtained
for γ ∼ 1 and V 
 T ,

cs K X ∼ V

3T

 1. (25)

Therefore, the tensor-to-scalar ratio r is enhanced by the factor
cs K X in comparison to the standard non-supersymmetric DBI infla-
tion, which leads to significant tensor-to-scalar ratio r � 0.01 even
for apparent sub-Planck variation of the field. This can be easily
understood by expanding the Lagrangian around γ = 1 and taking
the leading terms for V 
 T ,

L f � V

3T
X − V . (26)

Thus, the kinetic term is enhanced by V /3T . If we take the canon-
ical kinetic term by redefining the field f as fcan ∼ f

√
V /(3T ), the

Lyth bound applies for fcan.2 Therefore, the observable tensor per-
turbations are predicted because the variation of the canonically
normalized inflaton fcan can be beyond the reduced Planck scale.
Finally, we would like to mention the case that all of the terms in
the left-hand side of Eq. (15) are comparable. Under this condition,
V ∼ (dW /df )2 and T are comparable. Then, by comparing the ki-
netic part (12) and the auxiliary part (13) in the Lagrangian, it is
easy to verify that inflation is possible only for γ − 1 � 1 in this
case as well.

In summary, we have discussed the supersymmetric DBI infla-
tion. In order to accommodate the potential term in addition to the

2 Even in our case, Planck-suppressed operators for the canonically normalized
field fcan must be controlled to guarantee large tensor perturbations [22]. One of
such methods is to introduce (approximate) shift symmetry [23]. It is manifest from
the chiralities of Φ and Φ† that our DBI action given in Eq. (2) can be easily mod-
ified to respect it approximately. However, it should be notice that we have to
abandon a global U (1)R symmetry in this case, though the analysis runs almost
parallel.
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DBI kinetic term consistently, the equation of motion for the auxil-
iary field F is derived and solved. Inserting its solution into the La-
grangian, we obtain the effective Lagrangian for the supersymmet-
ric DBI inflation, in which the kinetic term related to the potential
always appears in addition to the DBI kinetic term. We find that
ultra-relativistic motion of the D-brane is forbidden to cause infla-
tion, which has the significant implications on the prediction of the
primordial perturbations. Firstly, the non-Gaussianities of the pri-
mordial curvature perturbations are negligible because the sound
velocity squared are almost unity. Second, the significant tensor-to-
scalar ratio is possible in our model, especially in Case (iii), because
of the enhancement of the kinetic term. These two features are
totally different from those of the standard non-supersymmetric
DBI inflation. Provided that our model be realized, upcoming ob-
servations such as Planck and CMBPol experiments will detect such
tensor perturbations though the non-Gaussianities of the curvature
perturbations will, unfortunately, not be observed.

These new predictions are based on the fact that one always
encounters kinetic (derivative) terms accompanied by the poten-
tial in supersymmetric models with non-canonical kinetic terms.
This feature is not confined to DBI inflation but quite generic to
non-trivial kinetic terms appearing in inflation models such as
k-inflation [19] and G-inflation [24], which must also be super-
symmetrized once supersymmetry would be found as fundamental
symmetry. For example, similar structures, such as a cubic equa-
tion of the auxiliary field and potential-induced kinetic terms,
appear in the k-inflation models with superpotentials. We will dis-
cuss elsewhere the supersymmetrization of these models and its
implications for cosmology by solving the equation for an auxiliary
field adequately.
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