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We describe a method for the explicit computation of a list of
possibilities for the Galois group G of an unramified 2-class tower
that combines the p-group generation algorithm with algorithms
from explicit class field theory. We successfully applied this
method to 19 of the 36 imaginary quadratic fields of absolute
discriminant less than 20,000 that have 2-class group (2,2,2),
three negative prime discriminant factors in their discriminant,
and whose 2-class towers have derived length at least 3. This is
the only class of imaginary quadratic fields with 2-class group
(2,2,2) and three negative prime discriminant factors not entirely
classified by recent work of Benjamin, Lemmermeyer and Snyder.
Additionally, among the 19 are all such fields whose 2-class towers,
if infinite, would provide improved upper bounds for the root
discriminant problem. In each case we show that these 2-class
towers are finite, and in fact write down for each a short list
of candidate groups for the associated Galois groups. Some of
these results are unconditional, while some require the Generalized
Riemann Hypothesis.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a number field and p a rational prime. An important object of study in number theory
is K un,p , the maximal unramified pro-p extension of K . Consider the p-class tower associated to K ,
K = K0,p ⊆ K1,p ⊆ K2,p ⊆ · · · , where Ki+1,p is the Hilbert p-class field of Ki,p , that is, the maximal
unramified abelian p-extension of Ki,p . Let G = Gal(K un,p/K ). Then the fields in the tower are the
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fixed fields of the terms of the derived series of G , so the length of the tower equals the dervied
length of G . As pro-p groups are pro-solvable, we further have that

⋃
i Ki,p = K un,p .

As class groups, and hence abelianizations of open subgroups of G , are finite, note that the tower is
of finite length if and only if G is finite. While it is generally difficult to lay our hands computationally
on a Ki,p directly, combining group theory with explicit class field theory often will allow us partially
to determine G .

In [3], Boston and Leedham-Green introduced a method to compute a short list of candidates
for the Galois group associated to a tamely-ramified p-class tower of Q. In [5], Bush modified that
method to compute the unramified 2-class towers of certain imaginary quadratic fields of interest, all
of whose class groups had 2-rank 2.

Bush was particularly interested in the field Q(
√−2379) due to its potential application to the

problem of finding the minimal asymptotic root discriminant. For any number field L, define the root
discriminant rdL as |DiscL/Q |1/[L:Q] . Let Rn be the minimal root discriminant over all number fields
of degree n, and let R = lim infn→∞ Rn . The Generalized Riemann Hypothesis implies that R � 44.7,
and it is of interest to determine how tight this bound is. As all number fields in an unramified tower
have the same root discriminant, if a number field K has an infinite unramified tower then R � rdK .
The best upper bound for R at the moment is 82.2, due to Hajir and Maire [8]. Stark noted that if
Q(

√−2379 ) had infinite 2-class tower, then the upper bound would be dramatically tightened. Hajir
had earlier generalized a result of Koch showing that an imaginary quadratic field with 4-rank at
least 3 has infinite 2-class tower [7], so it was natural to investigate an example of the 4-rank 2 case.
However, Bush showed that this field in fact had finite 2-class tower.

The basic idea of both methods is to use explicit class field theory to compute the appropriate p-
class groups of both K and its low degree extensions with appropriate ramification. These correspond
to the abelianizations of G and its low index subgroups. One also has some information on the rela-
tion ranks of these groups from Galois cohomology. One then searches for G in the appropriate tree
generated by O’Brien’s p-group generation algorithm [9]. This tree contains, up to isomorphism, every
p-group with exactly d generators, organized by increasing p-class, where H0 and H1 are connected
if and only if H0/Pk(H0) is isomorphic to H1 and H0 is of p-class k + 1. By starting at the root, the
elementary abelian p-group with d generators, and pruning the tree by the arithmetic data, one gets
a list of candidates for G . If all groups below some p-class have been pruned away, then G must be
on the list, and in particular G must be finite.

Since Bush’s work, there has been interest in finding other imaginary quadratic fields with infinite
2-class towers but small root discriminants. Various heuristics suggested that the next most promising
imaginary quadratic field was Q(

√−3135 ), but direct attempts to apply existing methods in this and
other cases resulted in a combinatorial explosion in the tree.

The field Q(
√−3135 ) has also come up recently in another context. In [1], Benjamin, Lemmer-

meyer and Snyder made a study of imaginary quadratic fields with 2-class group isomorphic to
C2 × C2 × C2. They divided up such fields based on the diagram formed by the quadratic reciprocity
relationships among the prime factors of the discriminant. Genus theory tells us that the discrimi-
nants of such fields will factor into 4 prime discriminants (treating ±4 in the normal way). If three
of these are positive, G/[G ′, G] will have order 64, while if three are negative G/[G ′, G] will have
order 32. For each class of fields they computed exactly what G/[G ′, G] is. For those classes of fields
where |G/[G ′, G]| = 32, in all but one case knowledge of this quotient allowed them to explicitly
determine G , which was then seen to have derived length 2. In the remaining case, G/[G ′, G] is iso-
morphic to the group denoted by 32.033 in the Hall-Senior notation and by SmallGroup(32,27) in
Magma/GAP and the corresponding tower must have length at least 3. The field Q(

√−3135 ) has the
smallest discriminant of any imaginary quadratic field in this class.

In [4], the author outlined his work on an improvement of the method of Boston and Leedham-
Green and Bush that showed that the 2-class tower of Q(

√−3135 ) is finite of length 3. In this paper
we expand on these results. Using the criterion developed in [1], one finds that there are 36 imaginary
quadratic fields with 2-class group isomorphic to C2 × C2 × C2, with |G/[G ′, G]| = 32, with 2-class
tower of length at least 3, and with absolute discriminant less than 20,000. For 19 of these fields our
method finds that the 2-class tower is finite of length 3. These 19 include in particular all such fields
with root discriminant less than 90, so the 2-class tower of a field of this type will not provide an
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improved upper bound for the root discriminant. For a given field, the candidate groups are typically
very similar, generally being of the same order and having the same quotients by non-trivial terms of
the central and 2-central series.

Many of our results are conditional on the Generalized Riemann Hypothesis (GRH), as this hypoth-
esis is often used to compute the class groups of some higher degree fields. In several cases though
we can show unconditionally that the 2-class towers are finite, even if without GRH we cannot prune
the list of candidate groups as thoroughly.

2. Mathematical background

As mentioned above, the algorithm combines class field theory and group theory. We first review
some necessary mathematical background.

2.1. Some class field theory

Let K be a number field and Clp(K ) the p-part of its class group. We say that L/K is a p-extension
if [L : K ] is a power of p and L/K is Galois. Class field theory gives us a correspondence between
unramified abelian p-extensions of K and subgroups of Clp(K ). In particular, for G = Gal(K un,p/K ),
we have that Clp(K ) ∼= G/G ′ , where G ′ is the closure of the commutator subgroup of G .

Galois theory in fact tells us more. We have a one-to-one correspondence between open subgroups
H of G and unramified p-power extensions L/K where the Galois closure of L/K is a p-extension. In
this case we further have that Clp(L) is isomorphic to H/H ′ . By Burnside’s basis theorem, we know
that the p-rank of H/H ′ is the generator rank of H , and so this also tells us the generator rank of
each such H .

In this paper we are interested in the case p = 2. It is not hard to show that a 2-power extension
L/K has Galois closure a 2-extension if and only if there is a tower of intermediate fields K = L0 ⊆
L1 ⊆ · · · ⊆ Ln = L with [Li+1 : Li] = 2 for all i. Consequently, the lattice of open subgroups of G with
abelianizations attached corresponds to the lattice of unramified 2-power extensions of K reachable
by repeated extensions of degree 2, with 2-class groups attached. This observation is at the heart of
our algorithm.

In addition to the abelianization, and hence generator rank, of our subgroups, we also have some
notion of their relator rank. In particular, we have

Proposition 1. If K is a totally complex number field and G = Gal(K un,2/K ) has generator rank d and relator
rank r, then we have that

r − d � [K : Q]/2.

Proof. This follows from [10]. �
2.2. Some p-group theory

Now we must review some group theory. Let G be a finite p-group. We define the lower p-central
series1 of G as P0(G) = G and Pk+1(G) = [G, Pk(G)]Pk(G)p .

We say that G has p-class k if k is the smallest integer such that Pk(G) = {1}, that is, that
G/Pk(G) ∼= G . Note that G/Pk(G) consequently has p-class the smaller of k and the p-class of G .
If G is a pro-p group then the Pk(G) are defined as the closures of the subgroups above. In either
case, P1(G) is the Frattini subgroup of G , the intersection of the open maximal subgroups of G . We
say that H is a descendant of G if H/Pk(H) ∼= G for some k, and we say that H is an immediate
descendant if additionally the p-class of H is k + 1. These definitions are well-motivated. Given a

1 Some authors start with P1(G) = G , and some of their other definitions will differ accordingly.
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finite p-group G , the number of immediate descendants of G is finite, and an algorithm of O’Brien
will compute them explicitly [9].

This leads us to the notion of the O’Brien tree. Fix a number of generators d. Then every p-
group of generator rank d is a descendant of the elementary abelian p-group of rank d, say E . The
root of our tree will be E . The children of E will be the immediate descendants of E , as computed
by O’Brien’s algorithm. Each of these vertices will have as children their immediate descendants,
and so on. Every p-group of generator rank d will, up to isomorphism, appear exactly once on the
corresponding infinite tree. Further, infinite pro-p groups with generator rank d correspond to infinite
paths through the tree.

2.3. Inherited properties

From here onward we specialize to the case p = 2. Again let K be some number field and let
G be Gal(K un,2/K ). What we should like to do is to gather arithmetic data from K and some of
its extensions, and then prune our way down the O’Brien tree. To do that, we must know how our
conditions on G imply conditions on the G/Pk(G), or in other words how certain properties of groups
imply other properties for their children or ancestors. Above we described two properties of G that
are often directly computable, depending on the complexity of K and its unramified extensions: the
lattice of low index subgroups of G with attached abelianizations and a bound on its relator rank
given its generator rank. We now show how these properties, when known, impose requirements on
G/Pk(G).

We start by defining a partial order ‘�’ on abelian groups. We will write A � B exactly when A is
realizable as a quotient of B . For a pro-2 group H , let Ab(H) denote its abelianization H/H ′ . Then we
have

Proposition 2. Let G be a finitely generated pro-2 group with generator rank d. Let v be 2-adic valuation.
Then we have the following:

(1) Ab(G/Pk(G)) � Ab(G) for k � 1, with equality if k � v([G : G ′]) − d + 1.
(2) For k � 1, the lattices of subgroups of index at most 2 of G/Pk(G) and of G are isomorphic. Further, if the

index 2 subgroup H � G/Pk(G) lifts to H � G, then Ab(H) � Ab(H), with equality if k � v([H : H ′]) −
d + 2.

(3) For k � 2, the lattices of subgroups of index at most 4 of G/Pk(G) and of G are isomorphic. Further, if the
index 4 subgroup M � G/Pk(G) lifts to M � G, then Ab(M) � Ab(M), with equality holding for k greater
than or equal to v([M : M ′]) + 3 − d for M is normal and for k greater than or equal to 2v([M : M ′]) −
v([H : H ′]) + 4 − d otherwise, where H is an index 2 subgroup normalizing M.

First we need a lemma.

Lemma 3. Let M and N be subgroups of a group G with N � G. If N � M, then Ab(M/N) � Ab(M). Further,
if N � M ′ , then Ab(M/N) = Ab(M).

Proof. For any homomorphism ϕ , ϕ(M ′) = ϕ(M)′ . Consequently,

(M/N)
/
(M/N)′ ∼= (M/N)

/
(M ′N/N) ∼= M/M ′N � M/M ′.

If N � M ′ then M ′N = M ′ and the second statement follows. �
Proof of Proposition 2. For a finite index N � G , we start by finding an upper bound for the value
of k such that Pk(G) � N . It suffices to consider the case where N is normal. Note that if θ : G → G0
is a homomorphism, then Pk(G)θ = Pk(Gθ ). So taking θ to be the canonical projection, we have that
Pk(G/N) = Pk(G)N/N . Thus Pk(G) � N if and only if Pk(G/N) = N . Also note that for pro-2 groups
P , Pk(P ) �= Pk+1(P ) unless Pk(P ) = {1}, so [Pk(P ) : Pk+1(P )] � 2 if Pk(P ) �= {1}.
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Assume Pk(G) � N for some k. Then

[G : N] >
[
G/N : Pk(G/N)

]

= [
G/N : P1(G/N)

][
P1(G/N) : P2(G/N)

] · · · [Pk−1(G/N) : Pk(G/N)
]

�
[
G/N : P1(G/N)

] · 2k−1.

So k � v([G : N]) − v([G/N : P1(G/N)]) + 1 implies that Pk(G) � N . Note that [G/N : P1(G/N)] =
[G : P1(G)] = 2d if N � P1(G), and if not, it is at least 2, and so it suffices to have k � v([G : N]).

Now the proposition follows from a lattice isomorphism theorem and the lemma once we show
that Pk(G) is contained in the appropriate subgroups of G .

(1) We immediately have that P1(G) is contained in G . As P1(G) is the Frattini subgroup, G/P1(G)

is elementary abelian, so P1(G) � G ′ , yielding the second part.
(2) As P1(G) is the Frattini subgroup, it is the intersection of all open maximal subgroups, hence

P1(G) � H . As G is a pro-2 group, H is normal in G , so H ′ is as well, being characteristic in H .
Further, H/P1(G) is a subgroup of the abelian group G/P1(G), so P1(G) � H ′ , from which the
formula for equality follows.

(3) If M � G , then for Pk(G) � M we only need that k � v([G : M]) = 2. So assume M is not normal.
The core MG = ⋂

g∈G M g of M is normal in G , and is the kernel of the map from G into S4, the
symmetric group on 4 elements, induced by the coset action of G on M . As all 2-subgroups of S4
have 2-class at most 2, Pk(G) � MG for k � 2.
Now we need to establish when Pk(G) � M ′ . If M � G , then M ′ is as well. As M ′ � G ′ � P1(G),
Pk(G) � M ′ if k � v([M : M ′]) + 3 − d.
So assume M is not normal in G . Then the normalizer of M is H , and so also the normalizer of
M ′ is H . Then M has one other conjugate, say M g , and M ′ also has one conjugate, say M ′g , which
is the commutator of M g . The core of M ′ is M ′ ∩ M ′g . We have MM g = H , and so M ′M ′g � H ′ .
We then have by a lattice isomorphism theorem that

[
G : M ′ ∩ M ′g] = [G : M ′][M ′ : M ′ ∩ M ′g]

= [G : M ′][M ′M ′g : M ′g]

� [G : M ′][H ′ : M ′]

= [G : M][M : M ′] [H : M ′]
[H : H ′] .

In this case as well M ′ � G ′ � P1(G), so Pk(G) � M ′ ∩ M ′g � M ′ if k � 2v([M : M ′]) −
v([H : H ′]) + 4 − d.

We note here that (1) and (2) go through for any p, and (3) goes through suitably modified based
on estimates as to the indices of particular core subgroups. Also, further conditions can be developed
for higher index subgroups. �

The relation rank of a descendant is also partly determined by its ancestors.

Proposition 4. Let G be a finitely generated pro-p group. Then for k � 1, the difference between the ranks of
the p-multiplicator and the nucleus of G/Pk(G) is at most r, the relation rank of G.

Proof. For a definition of the terms, see [9]. This is a generalization of a proposition in [6] inspired
by a lemma in [3]. The proof is given in [4]. �
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3. The method

We can now describe the method. For concreteness we describe the case where K is an imaginary
quadratic field, which is the situation for all our examples. The method for this case has been fully
implemented using Magma [2] and BASH scripts.

3.1. Gather lattice data

Start by computing the 2-class group Cl2(K ) of K . Currently the only general way we know to
compute Cl2(K ) is to compute Cl(K ) and take the 2-part. Utilizing explicit class field theory, use
Cl2(K ) to construct all unramified extensions of K of degree 2. For each of these fields L we com-
pute Cl2(L) and compute their unramified degree 2 extensions F . Lastly, we check for and eliminate
duplicates among the extensions F of the L’s, and then compute Cl2(F ) for each F .

This information corresponds to the lattice of subgroups of index at most 4 in G with attached
abelianizations, as described above. We call such a lattice an augmented lattice. We also have some
information about normality: the index 2 subgroups are automatically normal, and the index 4 sub-
groups that are contained in three index 2 subgroups, corresponding to degree 4 extensions containing
three degree 2 subextensions, are necessarily normal.

Class group computations are where some dependence on GRH may enter. Class group computa-
tions for higher degree and higher discriminant fields can become both memory and time intensive.
As a result, calculating Cl2(F ) sometimes fails due to resource constraints. Class groups are computed
by examining all ideals with norm up to some bound, and it is this bound that drives memory usage.
A result of Bach states that under GRH this bound can be lowered, and Magma can be instructed to
use this lower bound instead. As this lower bound was necessary to construct some of our augmented
lattices, some of our results depend on GRH.

3.2. Pruning the tree

From Burnside’s basis theorem, we know that the generator rank d of G is the generator rank of
Ab(G) ∼= Cl2(K ), and so we know that G is a descendant of ×d

i=1C2. We construct and prune a subset
of the O’Brien tree recursively, as follows.

Assume that the 2-group P , of 2-class k − 1, has been determined to be a potential ancestor for
G . Begin by using O’Brien’s algorithm to construct the finite set D of immediate descendants of P , all
of which will have 2-class k. Now for each C ∈ D we want to check, first, if C is a possible ancestor
of G , and, second, if C could be G . For each of these we have two conditions, a lattice condition and
a cohomological condition.

First we compute the augmented lattice of subgroups of C of index at most 4. Then we attempt
to match this lattice with our known augmented lattice of G . If k is large enough, Proposition 2 tells
us that the lattices up to index 2 or 4 must match. Additionally, the abelianizations of groups in C
must be realizable as quotients of the abelianizations of the matching groups in G , and depending on
k some or all of these abelianizations must match exactly as well.

By combining Propositions 1 and 4, we also have that the p-multiplicator rank minus the nuclear
rank must be at most d + 1.

If C fails either of these conditions, we discard it. If it passes both, we recurse, repeating our
procedure with C as our new P . Before we recurse, we check to see if C could in fact be G . First, if
k was small enough that we did not check if the augmented index 4 lattice of C matched that of G
exactly, we do so now. We also directly check that the relation rank of C is at most one more than
the generator rank by computing H2(C,F2).

Further, as subgroups M of G correspond to number fields, Proposition 1 gives us an upper bound
on r(M)− d(M) in terms of the index [G : M], and we can check if the resulting inequality is satisfied
for all subgroups M of C of index up to some bound. If all these conditions are met, we add C to the
list of candidates for G .

Often it is the case that the algorithm terminates, finding on any given path down the unpruned
tree a P that has no descendants that can be ancestors of G . In this case we know that G must be
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among the list of potential candidates produced by the algorithm, and in particular that the 2-class
tower is finite.

Of course, there is no guarantee that the pruned O’Brien tree will be finite. Certainly if G is infinite,
the tree must be infinite, and this method will not yield G , though we do gain some information
about possible quotients of G . Even if G is finite, the index 4 lattice data and cohomological criterion
may not prune the O’Brien tree sufficiently. Using calculations similar to Proposition 2, we know that
past a certain p-class every group in the tree encountered by the algorithm will pass our lattice
criterion. As that is our strongest filter we expect paths from this point on will only terminate if the
tree naturally does so. While this is not impossible, we only have so much time to continue looking.

Additionally, even if the pruned tree is finite, memory constraints may not allow us to discover this
with the available resources. Although we carry out our search depth first to save memory, sometimes
there is insufficient memory to calculate all the descendants of a given group.

3.3. Narrowing the candidate list

Assuming the tree recursion terminates successfully, we are left with a list of candidates for G .
These candidates are necessarily similar, having the same augmented index 4 lattice as G .

We can now further narrow the list of candidates by selective computation of the class groups of
certain unramified degree 8 extensions of K . We begin by computing the augmented index 8 lattices
for each of our candidate groups. If all of these lattices are the same, then we stop. However, if
they are non-isomorphic, then we can find an index 4 subgroup whose subgroups in the augmented
index 8 lattice differ from one candidate group to another. There is some subtlety as to which index 4
subgroup in one candidate corresponds to a particular index 4 subgroup in another, but this can be
dealt with.

We then go back to our arithmetic lattice of unramified 2-extensions and 2-class groups and de-
termine which degree 4 extensions of K might correspond to the index 4 subgroup whose subgroups
in the augmented index 8 lattices differ. For each of these fields, we compute its degree 2 extensions
and their class groups. With the computing resources available to us, the computation of these class
groups, which are of fields of degree 16 over Q, always requires GRH. After getting this data, we have
illuminated some of the index 8 lattice of G , chosen in such a way that it will eliminate some candi-
dates. We then repeat the process until all remaining candidates share the same augmented index 8
lattice.

4. Results

We ran the algorithm on the first 36 imaginary quadratic fields with 2-class group elementary
abelian of rank 3 and G/[G ′, G] isomorphic to 32.033, which corresponded to a bound on the absolute
discriminant of 20,000. Sometimes GRH was necessary to recover the lattice up to index 4, but often
not. In 19 cases the pruning of the O’Brien tree was successful. For the remaining 17 fields, 7 times
we ran out of memory when constructing the pruned O’Brien tree, while 10 times the augmented
index 4 data appeared insufficient to constrain the tree.

In those cases where the tree was successfully pruned, it was always necessary to use GRH when
calculating the class groups that were used in narrowing the candidate groups down to sharing a
single augmented index 8 lattice.

We often found that two fields would have isomorphic augmented index 4 lattices. When this
occurs they must necessarily have the same pruned O’Brien tree, and so we only needed to carry out
this step once for such a family. Often, fields in this situation wound up having the same index 8
lattice data and so the same final candidate groups, but this did not always occur.

We summarize these results in Table 1. The table consists of the 36 imaginary quadratic fields
mentioned above. For each, we indicated first whether GRH was necessary to recover the augmented
index 4 lattice. As mentioned above, fields with the same index 4 data would have the same pruned
O’Brien trees, and would also often have the same final set of candidates as well. Consequently, if a
field is the first to have that particular index 4 lattice, we indicate the success of the tree pruning. If
successful, we list the number of candidates after this stage. If unsuccessful, we put a ‘w’, for wide,
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Table 1
A summary of results

Field Index 4 GRH Tree cands Narrowed cands

Q(
√−3135 ) n 84 4

Q(
√−3864 ) n 38 4

Q(
√−3876 ) n 76 4

Q(
√−6132 ) y Q(

√−3876 ) 4

Q(
√−6216 ) y Q(

√−3135 ) Q(
√−3135 )

Q(
√−6279 ) y Q(

√−3135 ) Q(
√−3135 )

Q(
√−8148 ) y w

Q(
√−8772 ) y d

Q(
√−9044 ) y Q(

√−3876 ) Q(
√−6132 )

Q(
√−9492 ) y d

Q(
√−9636 ) y Q(

√−3876 ) Q(
√−3876 )

Q(
√−11508 ) y w

Q(
√−11748 ) y w

Q(
√−11928 ) y d

Q(
√−11935 ) y Q(

√−11928 )

Q(
√−12036 ) y Q(

√−8772 )

Q(
√−12243 ) y w

Q(
√−12264 ) y 84 8

Q(
√−13035 ) y Q(

√−3135 ) Q(
√−3135 )

Q(
√−13640 ) y d

Q(
√−13668 ) y w

Q(
√−14007 ) y Q(

√−11928 )

Q(
√−14212 ) y Q(

√−3876 ) 4

Q(
√−14916 ) y 84 4

Q(
√−15252 ) y d

Q(
√−16296 ) y Q(

√−3864 ) Q(
√−3864 )

Q(
√−16932 ) y Q(

√−8772 )

Q(
√−17043 ) y 84 4

Q(
√−17871 ) y Q(

√−17043 ) Q(
√−17043 )

Q(
√−18084 ) y Q(

√−3135 ) 4

Q(
√−18088 ) y d

Q(
√−18312 ) y Q(

√−3864 ) Q(
√−3864 )

Q(
√−18447 ) y w

Q(
√−18984 ) y w

Q(
√−19096 ) y Q(

√−17043 ) Q(
√−17043 )

Q(
√−19572 ) y Q(

√−3876 ) 4

if we ran out of memory, or a ‘d’, for deep, if the tree seemed unconstrained. If a field has the same
index 4 data as a prior field, then we list that field instead.

If the tree pruning was successful and this is the first field to narrow down to those particular
candidates, we indicate how many candidates were left after the narrowing step. If those candidates
had previously been narrowed down to, we list the first field where this occurred.

All of our candidate groups necessarily have a presentation with 3 generators and 4 relators.
However, the few survivors after the narrowing step are generally quite similar, having the same
immediate parent in the O’Brien tree, and so the most parsimonious presentation for all these groups
at once is with power-conjugate (pc) presentations. In a pc presentation of a p-group P , where
n = v(|G|), we use n generators x1, . . . , xn . We then give relations where each LHS is either xp

i or

x
x j

i with j > i and where each RHS is an expression in the xk with k � i. Every p-group has such
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a presentation. For the interests of space, we do not list power relations where the RHS is trivial or
conjugate relations where the generators commute.

We give the fields as Q(
√−D ) where D > 0 is the absolute value of the discriminant, so D may be

divisible by 4 but is otherwise square-free. As mentioned above, fields sharing the same augmented
index 4 lattices necessarily have the same pruned trees and are often observed to have the same
narrowed candidates, so we organize our results by shared augmented index 4 lattices.

4.1. Q(
√−3135 ), Q(

√−6216), Q(
√−6279),Q(

√−13035 ), Q(
√−18084 )

We can compute the index 4 lattice of Q(
√−3135 ) without GRH. The pruned O’Brien tree is finite

with this data, yielding 84 possible candidate groups with a total of 24 possible index 8 lattices. All
these candidate groups have derived length 3, 2-class either 6, 7, or 8, nilpotency class either 6, 7,
or 8, and size either 4096, 8192, or 16384.

We then use GRH in the narrowing step to reduce to 4 possible candidates. For the other fields,
GRH is necessary to get the augmented index 4 lattice. The resulting 84 candidates are narrowed by
the partial index 8 data to the same 4 groups.

Proposition 5. The 2-class tower of Q
√−3135 is finite of length 3. Additionally, under GRH, the 2-class towers

of Q(
√−6216 ), Q(

√−6279 ) and Q(
√−13035 ) are as well, and the Galois groups for all four towers have

size 8192, both 2-class and nilpotency class 7, and each is one of the 4 groups given by the pc presentations

x2
1 = a, x2

2 = x7x12, x2
3 = b,

x2
4 = x6x13, x2

5 = x8x10, x2
6 = x13,

x2
7 = x11x12, x2

8 = x10x13, x2
9 = x12,

x2
10 = x13, x2

11 = x13, xx1
2 = x2x4,

xx1
3 = x3x5, xx1

4 = x4x6, xx2
4 = x4x6x9x12,

xx3
4 = x4x7, xx1

5 = x5x8, xx2
5 = x5x7x9x11x13,

xx3
5 = x5x8x9x12, xx4

5 = x5x9x12x13, xx1
6 = x6x13,

xx2
6 = x6x13, xx3

6 = x6x13, xx1
7 = x7x9,

xx2
7 = x7x13, xx4

7 = x7x11x12, xx1
8 = x8x10,

xx2
8 = x8x11, xx3

8 = x8x10x12, xx4
8 = x8x12,

xx1
9 = x9x12, xx2

9 = x9x11, xx4
9 = x9x12,

xx1
10 = x10x13, xx2

10 = x10x13, xx3
10 = x10x13,

xx1
11 = x11x12, xx2

11 = x11x13, xx4
11 = x11x13,

xx2
12 = x12x13,

where a is either x6x10 or x6x10x13 and b is either x6x7x10x11 or x6x7x10x11x13 .

The field Q(
√−18084 ) shares the same index 4 lattice as the above fields, but narrows to some-

thing else.

Proposition 6. Under GRH, the 2-class tower of Q(
√−18084 ) is finite of length 3. Further, the Galois group

of this tower has size 8192, both 2-class and nilpotency class 7, and is one of the 4 groups given by the pc
presentation

x2
1 = a, x2

2 = x7x9x10x12, x2
3 = b,

x2
4 = x6, x2

5 = x8x10, x2
7 = x11,

x2 = x10x13, x2 = x12, x2 = x13,
8 9 10
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x2
11 = x13, xx1

2 = x2x4, xx1
3 = x3x5,

xx1
4 = x4x6, xx2

4 = x4x6x9x13, xx3
4 = x4x7,

xx1
5 = x5x8, xx2

5 = x5x7x9x11x12x13, xx3
5 = x5x8,

xx4
5 = x5x9x11x12x13, xx1

7 = x7x9, xx2
7 = x7x11,

xx3
7 = x7x11x13, xx4

7 = x7x11x13, xx5
7 = x7x11x13,

xx1
8 = x8x10, xx3

8 = x8x10, xx1
9 = x9x12,

xx2
9 = x9x11, xx3

9 = x9x11, xx4
9 = x9x12,

xx5
9 = x9x12, xx1

10 = x10x13, xx3
10 = x10x13,

xx1
11 = x11x12, xx2

11 = x11x13, xx3
11 = x11x13,

xx4
11 = x11x13, xx5

11 = x11x13, xx2
12 = x12x13,

xx3
12 = x12x13,

where a and b are each either x6 or x6x13 .

4.2. Q(
√−3864 ), Q(

√−16296 ), Q(
√−18312 )

The initial lattice for Q(
√−3864 ) was also recovered unconditionally. After pruning the tree we

had 38 remaining candidates with a total of 11 different index 8 lattices. These groups all had derived
length 3, size 4096 or 8192, 2-class 6 or 7, and nilpotency class 6 or 7. We then used GRH in the
narrowing step to arrive at 4 final candidate groups.

The other two fields required GRH for the index 4 data, but narrowed to the same 4 final groups.

Proposition 7. The 2-class tower of Q(
√−3864 ) is finite of length 3. Additionally, under GRH, the 2-class

towers of Q(
√−16296 ) and Q(

√−18312 ) are also of length 3, and the Galois groups of the towers for all
three fields have size 4096, 2-class and nilpotency class both 7, and each is one of the 4 groups given by the pc
presentations

x2
1 = a, x2

2 = b, x2
3 = x6x9,

x2
4 = x6x12, x2

5 = x8x10x12, x2
6 = x11,

x2
7 = x10x12, x2

9 = x11, x2
10 = x12,

xx1
2 = x2x4, xx1

3 = x3x5, xx1
4 = x4x6,

xx2
4 = x4x6, xx3

4 = x4x7, xx1
5 = x5x8,

xx2
5 = x5x7x9x10x11x12, xx3

5 = x5x8x10, xx4
5 = x5x9,

xx1
6 = x6x11, xx2

6 = x6x11, xx3
6 = x6x10x12,

xx5
6 = x6x11, xx1

7 = x7x9, xx2
7 = x7x10x12,

xx3
7 = x7x10, xx5

7 = x7x10x12, xx1
8 = x8x11x12,

xx5
8 = x8x12, xx1

9 = x9x11, xx2
9 = x9x11,

xx3
9 = x9x10, xx5

9 = x9x11, xx1
10 = x10x11,

xx2
10 = x10x12, xx3

10 = x10x12, xx5
10 = x10x12,

xx3
11 = x11x12,

where a is x6x10 or x6x10x12 and b is x8 or x8x12 .

4.3. Q(
√−3876 ),Q(

√−6132 ),Q(
√−9044 ),Q(

√−9636 ),Q(
√−14212 ),Q(

√−19572 )

These 5 fields share the same augmented index 4 lattice, but can narrow to one of three sets of 4
final candidates each.
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For Q(
√−3876 ), the initial lattice was computed unconditionally. The O’Brien tree again termi-

nates and we are left with 76 candidate groups. All are of derived length 3, the possible sizes are
4096 and 8192 and the 2-class and nilpotency class are both 7 or 8.

The remaining fields all required GRH to get the index 4 data, but then narrowed. We therefore
have

Proposition 8. The 2-class tower of Q(
√−3876 ) is finite of length 3. Additionally, under GRH, so is the 2-

class tower of Q(
√−9636 ), and the Galois groups of both towers have size 4096, 2-class and nilpotency class

both 7, and each is one of the 4 groups given by the pc presentations

x2
1 = a, x2

2 = x8, x2
3 = b,

x2
4 = x6, x2

5 = x8x12, x2
7 = x10x11x12,

x2
8 = x12, x2

9 = x11, x2
10 = x12,

xx1
2 = x2x4, xx1

3 = x3x5, xx2
3 = x3x11,

xx1
4 = x4x6, xx2

4 = x4x6x12, xx3
4 = x4x7,

xx1
5 = x5x8, xx2

5 = x5x7x9x10, xx3
5 = x5x8x12,

xx4
5 = x5x9x10, xx1

7 = x7x9, xx3
7 = x7x10x11,

xx4
7 = x7x10x11, xx5

7 = x7x10x11, xx1
8 = x8x12,

xx3
8 = x8x12, xx1

9 = x9x11, xx2
9 = x9x10,

xx3
9 = x9x10x11x12, xx4

9 = x9x11, xx5
9 = x9x11,

xx1
10 = x10x11, xx2

10 = x10x12, xx4
10 = x10x12,

xx5
10 = x10x12, xx2

11 = x11x12, xx3
11 = x11x12,

where a is either x6 or x6x12 and b is either x6x8x11 or x6x8x11x12 .

Proposition 9. Under GRH, the 2-class towers of both Q(
√−6132 ) and Q(

√−9044 ) have length 3, and their
Galois groups have size 4096, 2-class and nilpotency class both 7, and each is one of the 4 groups given by the
pc presentations

x2
1 = a, x2

2 = x8x9, x2
3 = b,

x2
4 = x6, x2

5 = x8x11x12, x2
7 = x10x11x12,

x2
8 = x11x12, x2

9 = x11, x2
10 = x12,

xx1
2 = x2x4, xx1

3 = x3x5, xx2
3 = x3x11,

xx1
4 = x4x6, xx2

4 = x4x6x12, xx3
4 = x4x7,

xx1
5 = x5x8, xx2

5 = x5x7x9x10, xx3
5 = x5x8x11x12,

xx4
5 = x5x9x11, xx1

7 = x7x9, xx3
7 = x7x10x11x12,

xx4
7 = x7x10x11, xx1

8 = x8x11x12, xx2
8 = x8x10x12,

xx3
8 = x8x11x12, xx4

8 = x8x11, xx1
9 = x9x11,

xx2
9 = x9x10, xx3

9 = x9x11, xx4
9 = x9x11,

xx1
10 = x10x11, xx2

10 = x10x12, xx3
10 = x10x12,

xx4
10 = x10x12, xx2

11 = x11x12,

where a is either x6 or x6x12 and b is either x6x8x9x10x11 or x6x8x9x10x11x12 .
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Proposition 10. Under GRH, the 2-class tower of Q(
√−14212 ) is finite of length 3. The Galois group of the

tower has size 4096, both 2-class and nilpotency class 7, and is one of the four groups given by the pc presen-
tations

x2
1 = a, x2

2 = x8, x2
3 = b,

x2
4 = x6, x2

5 = x8x12, x2
7 = x10x11x12,

x2
8 = x12, x2

9 = x11, x2
10 = x12,

xx1
2 = x2x4, xx1

3 = x3x5, xx2
3 = x3x11,

xx1
4 = x4x6, xx2

4 = x4x6x12, xx3
4 = x4x7,

xx1
5 = x5x8, xx2

5 = x5x7x9x10, xx3
5 = x5x8x11,

xx4
5 = x5x9x10, xx1

7 = x7x9, xx3
7 = x7x10x11x12,

xx4
7 = x7x10x11, xx5

7 = x7x10x11, xx1
8 = x8x12,

xx3
8 = x8x12, xx1

9 = x9x11, xx2
9 = x9x10,

xx3
9 = x9x10x11x12, xx4

9 = x9x11, xx5
9 = x9x11,

xx1
10 = x10x11, xx2

10 = x10x12, xx4
10 = x10x12,

xx5
10 = x10x12, xx2

11 = x11x12, xx3
11 = x11x12,

where a is either x6 or x6x10 and b is either x6x10 or x6x10x12 .

Proposition 11. Under GRH, the 2-class tower of Q(
√−19572 ) is finite of length 3. The Galois group of the

tower has size 4096, both 2-class and nilpotency class 7, and is one of the four groups given by the pc presen-
tations

x2
1 = a, x2

2 = x8x9, x2
3 = b,

x2
4 = x6, x2

5 = x8x11x12, x2
7 = x10x11x12,

x2
8 = x11x12, x2

9 = x11, x2
10 = x12,

xx1
2 = x2x4, xx1

3 = x3x5, xx2
3 = x3x11,

xx1
4 = x4x6, xx2

4 = x4x6x12, xx3
4 = x4x7,

xx1
5 = x5x8, xx2

5 = x5x7x9x10, xx3
5 = x5x8,

xx4
5 = x5x9x11, xx1

7 = x7x9, xx3
7 = x7x10x11,

xx4
7 = x7x10x11, xx1

8 = x8x11x12, xx2
8 = x8x10x12,

xx3
8 = x8x11x12, xx4

8 = x8x11, xx1
9 = x9x11,

xx2
9 = x9x10, xx3

9 = x9x11, xx4
9 = x9x11,

xx1
10 = x10x11, xx2

10 = x10x12, xx3
10 = x10x12,

xx4
10 = x10x12, xx2

11 = x11x12,

where a and b are each either x6 or x6x12 .

4.4. Q(
√−12264 )

No other fields shared this field’s augmented index 4 lattice. GRH was necessary to obtain its index
4 data. The pruned O’Brien tree contained 84 possible candidates for the Galois group, which were
narrowed to 8 remaining possibilities that all shared the same index 8 data.
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Proposition 12. Under GRH, the 2-class tower of Q(
√−12264 ) is finite of length 3, and the Galois group of

the tower is of size 16384, 2-class and nilpotency class both 7, and is one of the eight groups given by the pc
presentations

x2
1 = x6a1, x2

2 = x7a2, x2
3 = x6x7x11x12x13a3,

x2
4 = x6, x2

5 = x8x10, x2
6 = a4,

x2
7 = x11x13a5, x2

8 = x10x12, x2
9 = x13,

x2
10 = x12x14, x2

11 = x14, x2
12 = x14,

xx1
2 = x2x4, xx1

3 = x3x5, xx1
4 = x4x6,

xx2
4 = x4x6x9x13x14, xx3

4 = x4x7, xx1
5 = x5x8,

xx2
5 = x5x7x9x11a6, xx3

5 = x5x8x9x13a7, xx4
5 = x5x9x13a8,

xx1
6 = x6a9, xx2

6 = x6a10, xx3
6 = x6a11,

xx2
7 = x7a12, xx3

7 = x7a13, xx1
7 = x7x9,

xx3
7 = x7x14, xx4

7 = x7x11x13, xx1
8 = x8x10,

xx2
8 = x8x11a14, xx3

8 = x8x10x13, xx4
8 = x8x13,

xx1
9 = x9x13, xx2

9 = x9x11, xx4
9 = x9x13,

xx1
10 = x10x12, xx2

10 = x10x14, xx3
10 = x10x12,

xx1
11 = x11x13, xx2

11 = x11x14, xx4
11 = x11x14,

xx1
12 = x12x14, xx3

12 = x12x14, xx2
13 = x13x14,

where (a1, . . . ,a14) is one of

Group

1 2 3 4 5 6 7 8

a1 1 1 x14 x14 x12 x12 x12x14 x12x14
a2 x12 x12 x12 x12 x13 x13 x13 x13
a3 1 x14 1 x14 1 x14 1 x14
a4 1 1 1 1 x14 x14 x14 x14
a5 x14 x14 x14 x14 1 1 1 1
a6 1 1 1 1 x14 x14 x14 x14
a7 x14 x14 x14 x14 1 1 1 1
a8 1 1 1 1 x14 x14 x14 x14
a9 1 1 1 1 x14 x14 x14 x14
a10 1 1 1 1 x14 x14 x14 x14
a11 1 1 1 1 x14 x14 x14 x14
a12 1 1 1 1 x14 x14 x14 x14
a13 x14 x14 x14 x14 1 1 1 1
a14 x14 x14 x14 x14 1 1 1 1

4.5. Q(
√−14916 )

We again needed GRH to get the augmented index 4 data, after which the pruned O’Brien tree
contained 84 possible candidates for G . The narrowing stage brought this down to 4 groups, all shar-
ing the same index 4 lattice.
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Proposition 13. Under GRH, the 2-class tower of Q(
√−14916 ) is finite of length 3. Further, the Galois group

associated to the tower has size 131072, 2-class and nilpotency class both 11, and is one of the four groups
given by the pc presentations

x2
1 = a, x2

2 = x7x9x10x12x16, x2
3 = b,

x2
4 = x6, x2

5 = x8x10, x2
7 = x11x14x15,

x2
8 = x10x17, x2

9 = x12, x2
10 = x17,

x2
11 = x13, x2

12 = x14, x2
13 = x15,

x2
14 = x16, x2

15 = x17, xx1
2 = x2x4,

xx1
3 = x3x5, xx1

4 = x4x6, xx2
4 = x4x6x9x14x17,

xx3
4 = x4x7, xx1

5 = x5x8, xx2
5 = x5x7x9x11x12x13x16x17,

xx3
5 = x5x8x12, xx4

5 = x5x9x11x12x13x16x17, xx1
7 = x7x9,

xx2
7 = x7x11x15, xx3

7 = x7x11x15x17, xx4
7 = x7x11x13x14x16x17,

xx5
7 = x7x11x13x14x16x17, xx1

8 = x8x10, xx3
8 = x8x10,

xx1
9 = x9x12x14x16, xx2

9 = x9x11, xx3
9 = x9x11,

xx4
9 = x9x12x14x16, xx5

9 = x9x12x14x16, xx1
10 = x10x17,

xx3
10 = x10x17, xx1

11 = x11x12, xx2
11 = x11x13x15x17,

xx3
11 = x11x13x15x17, xx4

11 = x11x13x15x17, xx5
11 = x11x13x15x17,

xx1
12 = x12x14x16, xx2

12 = x12x13, xx3
12 = x12x13,

xx4
12 = x12x14x16, xx5

12 = x12x14x16, xx1
13 = x13x14,

xx2
13 = x13x15x17, xx3

13 = x13x15x17, xx4
13 = x13x15x17,

xx5
13 = x13x15x17, xx1

14 = x14x16, xx2
14 = x14x15,

xx3
14 = x14x15, xx4

14 = x14x16, xx5
14 = x14x16,

xx1
15 = x15x16, xx2

15 = x15x17, xx3
15 = x15x17,

xx4
15 = x15x17, xx5

15 = x15x17, xx2
16 = x16x17,

xx3
16 = x16x17,

where a is either x6 or x6x17 and b is either x6x11x12 or x6x11x12x17 .

4.6. Q(
√−17043 ), Q(

√−17871), Q(
√−19096 )

These 3 fields have isomorphic augmented index 4 lattices, and all 3 require GRH to procure that
information. After pruning the O’Brien tree, 84 candidates representing 10 different possible aug-
mented index 8 lattices are left. These are narrowed to 4 remaining possibilities sharing a single
index 8 lattice, which is the same for all 3 fields.

Proposition 14. Under GRH, the 2-class towers of Q(
√−17043 ), Q(

√−17871 ), and Q(
√−19096 ) are all

finite of length 3. Further, the Galois groups of these towers are all of size 32768, 2-class and nilpotency class
both 9, and each is one of the four groups given by the pc presentations

x2
1 = a, x2

2 = x7x14, x2
3 = b,

x2
4 = x6x13x15, x2

5 = x8x10, x2
7 = x11x12x13x14,

x2 = x10x14x15, x2 = x12, x2 = x14x15,
8 9 10
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x2
11 = x13, x2

12 = x14, x2
13 = x15,

xx1
2 = x2x4, xx1

3 = x3x5, xx1
4 = x4x6,

xx2
4 = x4x6x9x12x13x14, xx3

4 = x4x7, xx1
5 = x5x8,

xx2
5 = x5x7x9x11x15, xx3

5 = x5x8x9x14, xx4
5 = x5x9x12x14x15,

xx1
6 = x6x14x15, xx3

6 = x6x15, xx4
6 = x6x15,

xx1
7 = x7x9, xx2

7 = x7x15, xx4
7 = x7x11x12,

xx1
8 = x8x10, xx2

8 = x8x11x13, xx3
8 = x8x10x12x14,

xx4
8 = x8x12, xx1

9 = x9x12x14, xx2
9 = x9x11,

xx4
9 = x9x12x14, xx1

10 = x10x14x15, xx2
10 = x10x13,

xx3
10 = x10x15, xx4

10 = x10x14, xx1
11 = x11x12,

xx2
11 = x11x13x15, xx4

11 = x11x13x15, xx1
12 = x12x14,

xx2
12 = x12x13, xx4

12 = x12x14, xx1
13 = x13x14,

xx2
13 = x13x15, xx4

13 = x13x15, xx2
14 = x14x15,

where a is either x6x10 or x6x10x15 and b is either x6x7x10x12 or x6x7x10x12x15 .

As one of our primary motivations was trying to identify imaginary quadratic fields with poten-
tially infinite 2-class towers, we summarize some of our results in the following theorem.

Theorem 15. Let K be an imaginary quadratic field with 2-class group isomorphic to C2 × C2 × C2 . Then if the
factorization of the discriminant of K into 4 prime discriminants has three negative prime discriminant factors
and K has an infinite 2-class tower, the root discriminant of K is at least 78.3. Further, under GRH, such a K
must have root discriminant at least 90.2.

Proof. By the results in [1], if K is such a field and has tower of derived length at least 3 and root
discriminant less than 141, then it must appear on our table. However, we showed unconditionally
that all such fields with absolute discriminant strictly less than 6132 have finite 2-class tower, and
under GRH we showed that all such fields with absolute discriminant strictly less than 8148 also have
finite 2-class tower. �
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