A Necessary Condition for a Power Series to Be a Formal Solution of a Singular Linear Differential Equation of Order k

H. Gingold
Department of Mathematics, Technion, Haifa, Israel
Submitted by Norman Levinson

We obtain a necessary condition on the coefficients of a formal power series, which is a formal solution of a nontrivial singular linear differential equation of order k, with analytic coefficients and prove a "uniqueness" theorem for the differential equation.

Introduction

Given a linear differential equation of order k with analytic coefficients,

$$
\begin{equation*}
\sum_{j=0}^{j=k} a_{j}(z) Y^{(k-j)}=c(z) \tag{1}
\end{equation*}
$$

where

$$
a_{j}(z)=\sum_{0}^{\infty} a_{i, n} z^{n}, \quad j=0,1, \ldots, k, \quad c(z)=\sum_{0}^{\infty} c_{n} z^{n}
$$

$a_{j}(z), c(z)$ are absolutely convergent series in $|z|<r, r>0$, and $a_{0}(z) \neq 0$.
It is well-known (see $1, \mathrm{p} .22$ with a slight modification) that if $z=0$ is a singular regular point of (1) and $\sum_{0}^{\infty} A_{n} z^{n}$ is a formal solution, then these series are absolutely convergent for $|z| \leqslant \sigma$ for some $\sigma>0$. This means by Cauchy inequality (2, p. 84) that

$$
\begin{equation*}
A_{n}=\mathcal{O}\left(\sigma^{n}\right) \tag{*}
\end{equation*}
$$

The question of what conditions must A_{n} fulfill if $z=0$ is an irregular singular point of (1) and $\sum_{0}^{\infty} A_{n} Z^{n}$ is its formal solution will be answered now by the main result of this paper, which is Theorem 2. It states that

$$
\begin{equation*}
A_{n}=\mathcal{O}(n!)^{k} \sigma^{n} \quad \text { for some } \sigma>0 \tag{**}
\end{equation*}
$$

Define Eq. (1) for $k=0$ to be an algebraic equation $a_{0}(z) Y=c^{\prime}(z)$.

Consider now the set \mathscr{F} of equations of type (1), with $k \geqslant 0$, where $\sum_{0}^{\infty} A_{n} z^{n}$ is a formal solution of every member of \mathscr{F}. It is easily verified that there exists a member of \mathscr{F} with a minimal k. In view of the last statement we may consider $\left(^{*}\right)$ as a particular case of $\left({ }^{* *}\right)$, if in $\left({ }^{* *}\right)$ we always choose k to be the minimal one. There is a "uniqueness property" associated with the members of \mathscr{F} with minimal k, which will be proved in Theorem 1.

Theorem 1.
(i) Let $Y=\sum_{0}^{\infty} A_{n} z^{n}$ be a formal solution of two nontrivial differential equations of type (1):

$$
\begin{align*}
& \sum_{j=0}^{j=k} a_{j}(z) Y^{(k-j)}=c(z) \tag{2}\\
& \sum_{j=0}^{j=k} \bar{a}_{j}(z) Y^{(k-j)}=\bar{c}(z) \tag{3}
\end{align*}
$$

where k is minimal, then

$$
\frac{\bar{a}_{j}(z)}{a_{j}(z)}=f(z) \quad j=0,1,2, \ldots, n
$$

where $f(z)$ is a meromorphic function in $|z|<r$.
Proof. Assume $Y=\sum_{0}^{\infty} A_{n} z^{n}$ to satisfy Eqs. (2) and (3) where $a_{0}(z) \cdot \bar{a}_{0}(z) \not \equiv 0$. Multiply (2) by $\bar{a}_{0}(z)$ and (3) by $a_{0}(z)$, and subtract the multiplied equations to obtain

$$
\begin{equation*}
\sum_{j=1}^{j=k}\left[a_{j}(z) \bar{a}_{0}(z)-\bar{a}_{j}(z) a_{0}(z)\right] Y^{(k-j)}=c(z) \bar{a}_{0}(z)-\bar{c}(z) a_{0}(z) . \tag{4}
\end{equation*}
$$

Then Y satisfies (4), which is of order $k-1$ at most; this implies

$$
a_{j}(z) \bar{a}_{0}(z)-a_{j}(z) a_{0}(z)=0, \quad j=1, \ldots, n
$$

and the result follows.
Theorem 2. Let $Y=\sum_{0}^{\infty} A_{n} z^{n}$ be a formal solution of (1). Then $A_{n}=\mathcal{O}\left[(n!)^{k} \sigma^{n}\right]$, and the result is "sharp."

Proof. We break the proof into a few lemmas.
Lemma 1. The identity (1) can be written as a system of infinite equations of type

$$
\begin{equation*}
\sum_{j=0}^{j=n+j_{0}} \beta_{n, j} A_{j}=c_{n} \tag{5}
\end{equation*}
$$

so that
(I) $\exists_{j_{0}}, \exists_{n_{0}}$, such that for $n>n_{0}, \beta_{n, n+j_{0}} \neq 0$, but $\forall n$ and $k \geqslant j>j_{0}$, $\beta_{n, n+j}=0$.
(II) Moreover, $\exists_{j_{1}}, \exists_{n_{1}}$, such that for $n>n_{1}$

$$
\begin{equation*}
\frac{1}{\left|\beta_{n, n+j_{0}}\right|}<\frac{1}{\left(n+j_{0}\right) \cdots\left(n+2-j_{1}\right)}<\frac{1}{2} \tag{6}
\end{equation*}
$$

Proof. By observing that (1) is composed of $(k+1)$ terms on the left side, we collect from each term the coefficient of z^{n} and equate it to c_{n}. We write this explicitly:

$$
\begin{align*}
& \sum_{j=0}^{j=n} a_{k, j} A_{n-j} \\
&+ \sum_{j=0}^{j=n} a_{k-1, j}(n+1-j) A_{n+1-j} \\
& \quad \vdots \tag{7}\\
&+ \sum_{j=0}^{j=n} a_{k e} v(n+v-j)(n+v-j-1) \cdots(n+1-j) A_{n \mid v j} \\
& \quad \vdots \\
&+ \sum_{j=0}^{j=n} a_{0, j}(n+k-j)(n+k-j-1) \cdots(n+1-j) A_{n+k-j}=c_{n}
\end{align*}
$$

Assume without loss of generality that (i) is normalized such that $\sum_{j=0}^{j=k}\left|a_{j, 0}\right|>0$. Consider the quantities α_{p} defined by

$$
\begin{equation*}
\alpha_{p}=\sum_{j=0}^{j=p}\left|a_{p-j, j}\right| \tag{8}
\end{equation*}
$$

By (1) we have that there exists a minimal index p_{0} such that $\alpha_{p_{0}} \neq 0$ and $p_{0} \leqslant k$. From (7) we have that it can be written in the form (5) by defining $\beta_{n, j}$ to be the coefficient of A_{j} in (7).

By our definition $\beta_{n, n+j}=0$ for all $k \geqslant j>k-p_{0}$. Note that if $a_{0.0} \neq 0$, there is no $j, k \geqslant j>k-p_{0}$, such that $\beta_{n, n+j}=0$, since $\alpha_{0}=\left|\alpha_{0}\right|$. We define $k-p_{0}=j_{0}$. To complete the first part of the lemma, we have to show the existence of n_{0} so that $\beta_{n, n+j_{0}} \neq 0$ for $n>n_{0}$. By definition,

$$
\begin{align*}
\beta_{n, n+j_{0}}= & a_{k-j_{0}, 0}\left(n+j_{0}\right)\left(n+j_{0}-1\right) \cdots(n+1)+\cdots \\
& +a_{k-j_{0}-\nu, \nu}\left(n+j_{0}\right)\left(n+j_{0}-1\right) \cdots(n+1) \cdots(n+1-\nu) \\
& +a_{0, k-j_{0}}\left(n+j_{0}\right)\left(n+j_{0}-1\right) \cdots(n+1) \cdots(n+1-\nu) \cdots \tag{9}\\
& \times\left(n+1-k+j_{0}\right) .
\end{align*}
$$

We observe that $p_{0}=k-j_{0} \geqslant \nu \geqslant 0 . \beta_{n, n+j_{0}}$ is composed of $\left(p_{0}+1\right)$ terms. Every term is a product of $\left(j_{0}+v\right)$ factors, where $\left(j_{0}+\nu-1\right)$ of them are linear functions of n.

Since p_{0} is minimal and $\sum_{j=0}^{j=p_{0}}\left|a_{p_{0}-j, j}\right|>0$, there exists a maximal j that we will denote by j_{1} such that $\left|a_{p_{0}-j_{1}, j_{1}}\right|>0$, where as $\left|a_{p_{0}-j, j}\right|=0$ for $p_{0} \geqslant j>j_{1}$. Assume now (on the contrary) that such n_{0} does not exist; then there exists an infinite sequence $\left\{n_{m}\right\}, n_{m} \rightarrow \infty$ for $m \rightarrow \infty$ such that

$$
\beta_{n_{m}, n_{m}+j_{0}}=0
$$

Divide both sides of (9) by

$$
\begin{equation*}
\left(n_{m}+j_{0}\right)\left(n_{m}+j_{0}-1\right) \cdots\left(n_{m}+1-j_{1}\right) \tag{10}
\end{equation*}
$$

which is the exact coefficient of $a_{p_{0}-j_{1}, j_{1}}$ in (9), and let $n_{m} \rightarrow \infty$ and get by reconsidering the previous remarks that $a_{v_{0}-j_{1}, j_{1}}=0$, which is a contradiction. To prove the second statement of the lemma denote

$$
K=\max _{0 \leqslant j \leqslant j_{1}}\left|a_{p_{0}-j, j}\right|
$$

By applying the triangle inequality to (9), we obtain

$$
\begin{align*}
\left|\beta_{n, n+j_{0}}\right| & \geqslant\left|a_{p_{0}-j_{1}, j_{1}}\right|\left(n+j_{0}\right) \cdots\left(n+1-j_{1}\right)-j_{1} K\left(n+j_{0}\right) \cdots\left(n+2-j_{1}\right) \\
& \geqslant\left(n+j_{0}\right) \cdots\left(n+2-j_{1}\right)\left[\left|a_{p_{0}-j_{1}, j_{1}}\right|\left(n+1-j_{0}\right)-j_{1} K\right] \tag{11}
\end{align*}
$$

From this it is easily seen that $\exists n_{1}$ such that for $n>n_{1}$

$$
\left|a_{p_{0}-j_{1}, j_{1}}\right|\left[\left(n+1-j_{0}\right)-j_{1} K\right]>2
$$

Lemma 2. Let M be a positive constant such that

$$
\begin{equation*}
\left|a_{j, n}\right| \leqslant M, \quad\left|c_{n}\right| \leqslant M \quad \forall n, \forall_{j} \tag{12}
\end{equation*}
$$

then there exists $\sigma>0$ and $N>0$ such that for every m

$$
\begin{equation*}
\left|A_{m}\right| \leqslant N \cdot(m!)^{k} \sigma^{m} \tag{13}
\end{equation*}
$$

Proof. Consider $A_{0}, A_{1} \cdots A_{n_{1}+j_{0}}$, where n_{1} was the number found in the previous lemma.

Define $N=\max _{j}\left\{\left|A_{j}\right|, 1\right\}, 0 \leqslant j \leqslant n_{1}+j_{0}$. Choose $\sigma>1$ such that $M(k+1) /(\sigma-1)<1$.

For $m \leqslant n_{1}+j_{0}$ (13) is obviously true. Assume the statement (13) to be
true for $m>n_{1}+j_{0}$ and proceed to prove it by induction for $m+1$. By Lemma 1

$$
\sum_{j=0}^{j=m+1} \beta_{m+1-j_{0}, j} A_{j}=c_{m+1-j_{0}} .
$$

We transfer terms in this formula and apply the triangle inequality to obtain

$$
\begin{equation*}
\left|\beta_{m+\mathbf{1}-j_{0}, m+\mathbf{1}}\right|\left|A_{m+\mathbf{1}}\right| \leqslant\left|c_{m+1-j_{\mathbf{0}}}\right|+\sum_{j=\mathbf{0}}^{j-m}\left|\beta_{m+\mathbf{1}-j_{\mathbf{0}}, j}\right|\left|A_{j}\right| . \tag{14}
\end{equation*}
$$

Examining (5) and (7), We conclude that $\beta_{n, j}$ is composed of $(k+1)$ terms at most. Taking (12) into consideration also, we obtain

$$
\begin{equation*}
\left|\beta_{n, j}\right| \leqslant(k+1) M \cdot j^{k} \tag{15}
\end{equation*}
$$

Now insert the induction hypothesis into (14), and obtain after dividing by $\left|\beta_{m+1+j_{0}, m+1}\right|$ and using (6) and (15)

$$
\begin{align*}
\left|A_{m+1}\right| & \leqslant M \cdot \frac{1}{2}+N \cdot \frac{1}{2} \sum_{j=0}^{j=m}(k+1) M \cdot j^{k} \cdot(j!)^{k} \sigma^{j} \\
& \leqslant M \cdot \frac{1}{2}+\frac{M}{2} \cdot N(k+1) \cdot m^{k} \cdot(m!)^{k} \frac{\sigma^{m+1}-1}{\sigma-1} \tag{16}
\end{align*}
$$

Without loss of generality, assume also $M<N[(m+1)!]^{k} \sigma^{m+1}$, and use $\sigma>1, M(k+1) /(\sigma-1)<1$; then

$$
\left|A_{m+1}\right|<\frac{N[(m+1)!]^{k} \sigma^{m+1}}{2}+\frac{N \cdot m^{k} \cdot(m!)^{k} \sigma^{m+1}}{2}<N[(m+1)!]^{k} \sigma^{m+1} .
$$

Lemma 3. Let $\sum_{0}^{\infty} A_{n} z^{n}$ be a formal solution of (1); then there exists a series $\sum_{0}^{\infty} B_{n} \xi^{n} \equiv \sum_{0}^{\infty} A_{n} \rho^{n} \xi^{n}$ with $\rho>0$, which is a formal solution of

$$
\begin{equation*}
\sum_{j=0}^{j=k} b_{j}(\xi)\left(\sum_{0}^{\infty} B_{n} \xi^{n}\right)^{(k-j)}=d(\xi) \tag{17}
\end{equation*}
$$

where $b_{j}(\xi), j=0, \ldots, n, d(\xi)$ are absolutely convergent series in a circle $|\xi|<r$, $r>0$, and $\left|b_{j n}\right| \leqslant M,\left|d_{n}\right| \leqslant M$ for some $M, M>0$.

Proof. Since $a_{j}(z), c(z)$ converge in $|z| \leqslant \rho, \rho>0$, we have by Cauchy theorem $\exists M, M>0$, such that

$$
\begin{equation*}
\left|a_{j n}\right| \leqslant \frac{M}{\rho^{n}}, \quad\left|c_{n}\right| \leqslant \frac{M}{\rho^{n}} . \tag{18}
\end{equation*}
$$

It is easily verified that the series $B=\sum_{0}^{\infty} B_{n} \xi^{n}$, where $B_{n}=A_{n} \rho^{n}$ is a formal solution of the equation

$$
\begin{equation*}
\sum_{j=\mathbf{0}}^{j=k} \rho^{j} a_{j}(\rho \xi) B^{(k-j)}=c(\rho \xi) \rho^{k} . \tag{19}
\end{equation*}
$$

Define $b_{j}(\xi)=\rho^{j} a_{j}(\rho \xi), 0 \leqslant j \leqslant k$ and $d(\xi)=\rho^{k} c(\rho \xi)$. We obtain by this

$$
\begin{equation*}
b_{j n}=a_{j n} \rho^{n} \rho^{j} \quad \text { and } \quad d_{n}=c_{n} \rho^{\prime} \rho^{n} . \tag{20}
\end{equation*}
$$

Define $M_{1}=M \max _{j} \rho^{j}, 0 \leqslant j \leqslant k$. From (18) it is easily obtained that $\left|b_{j n}\right| \leqslant M_{1},\left|c_{n}\right| \leqslant M_{1}$ for every $j, 0 \leqslant j \leqslant k$. Applying Lemma 2 to series B, we obtain $A_{n} \rho^{n}=\mathcal{O}\left[(n!)^{k} \sigma^{n}\right]$, and the result follows.

To point out how "sharp" is the theorem, we define the following operators:

$$
\begin{equation*}
\phi_{1} A=[z A]^{\prime}, \quad \phi_{k+1} A=\left[z \phi_{k} A\right]^{\prime} . \tag{21}
\end{equation*}
$$

By (21) it follows that

$$
\begin{equation*}
[(n+1)!]^{k} z^{n+1}=z \phi_{k}\left[(n!)^{k} z^{n}\right] . \tag{22}
\end{equation*}
$$

Since the operator is linear, we obtain

$$
\begin{equation*}
z \phi_{k}\left(\sum_{0}^{\infty}(-1)^{n}(n!)^{k} z^{n}\right)=(-1) \sum_{0}^{\infty}(-1)^{n+1}\left[(n+1)!^{k}\right] z^{n+1} . \tag{23}
\end{equation*}
$$

And if we define

$$
E_{k, 1}=\sum_{0}^{\infty}(-1)^{n}[n!]^{k} z^{n}
$$

it follows from (23) that

$$
\begin{equation*}
z \phi_{k} E_{k, \mathbf{1}}+E_{k, \mathbf{1}}=1 \tag{24}
\end{equation*}
$$

Eq. (24) is readily observed to be a linear differential equation of order k. This means (by Theorem 2) also that k is the lowest order possible for a linear differential equation, having $E_{k, 1}$ as a formal solution.

Corollary 1. There exist formal series $\sum_{0}^{\infty} A_{n} z^{n}$, which cannot be formal solutions of (1) of any finite order.

Proof. For example, choose $A_{n}=(n!)^{n}$, which never can be $(n!)^{n}=$ $O\left[(n!)^{k} \sigma^{n}\right]$.

Corollary 2. Let

$$
\begin{equation*}
z^{m} Y^{\prime}+P(z) Y=c(z) \tag{25}
\end{equation*}
$$

be a vectorial system, where
(i) m is an integer,
(ii) Y is a column vector of n functions,
(iii) $P(z)$ is a matrix of $k \times k$ holomorphic functions in a circle $|z|<r$, $r>0$, and
(iv) $c(z)$ is a column vector of n holomorfic functions in $|z|<r$. Then if $Y=\sum_{0}^{\infty} A_{n} z^{n}$ is a formal solution of the aforementioned system, where A_{n} are k-dimensional column vectors, we have in the supremum norm

$$
\left\|A_{n}\right\|=\mathcal{O}\left[(n!)^{k} \sigma^{n}\right]
$$

Proof. Differentiate (25) ($k-1$) times. By elimination and substitution, it is easily verified that every one of the components of

$$
Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{k}
\end{array}\right)
$$

satisfies an equation of type (1) of order k at most. Apply to every Y_{i} Theorem 2 , and the result follows.

Corollary 3. Let $f(z)$ be a solution of (1) in some sector having vertex at the origin. Assume $f(z)$ to have asymptotic expansion of all orders in powers of z; then if $f(z) \sim \sum_{0}^{\infty} A_{n} z^{n}$, we have an estimation of A_{n} without computation!

Remark 1. At the expense of complicating the proof of Theorem 2, we could derive more delicate bounds for N and σ appearing in (13).

Remark 2. We conjecture that if $Y=\sum_{0} A_{n} z^{n}$ is a formal solution of $z^{m} Y^{\prime}=F(z, Y)$, where Y is a k-dimensional vector and $F(z, Y)$ is a k-dimensional vector function, analytic in $|z|<r,\|Y\|<\rho, m>0$, then

$$
\left\|A_{n}\right\|=\mathscr{O}\left[(n!)^{k} \sigma^{n}\right] \quad \text { for some } \sigma>0
$$

References

1. W. Wasow, "Asymptotic Expansions for Ordinary Differential Equations, Wiley," New York, 1965.
2. E. C. Titchmarsh, "The Theory of Functions," 2nd ed., Oxford University Press, London and New York, 1939.
