A new approach to nonlinear L^{2}-stability of double diffusive convection in porous media: Necessary and sufficient conditions for global stability via a linearization principle

Salvatore Rionero
University of Naples Federico II, Department of Mathematics and Applications " R. Caccioppoli," Complesso Universitario Monte S. Angelo, Via Cinzia, 80126 Naples, Italy
Received 10 March 2006
Available online 16 December 2006
Submitted by J. Lavery

Abstract

A new approach to nonlinear L^{2}-stability for double diffusive convection in porous media is given. An auxiliary system Σ of PDEs and two functionals V, W are introduced. Denoting by L and N the linear and nonlinear operators involved in Σ, it is shown that Σ-solutions are linearly linked to the dynamic perturbations, and that V and W depend directly on L-eigenvalues, while (along Σ) $\frac{d V}{d t}$ and $\frac{d W}{d t}$ not only depend directly on L-eigenvalues but also are independent of N. The nonlinear L^{2}-stability (instability) of the rest state is reduced to the stability (instability) of the zero solution of a linear system of ODEs. Necessary and sufficient conditions for general, global L^{2}-stability (i.e. absence of regions of subcritical instabilities for any Rayleigh number) are obtained, and these are extended to cover the presence of a uniform rotation about the vertical axis.

© 2006 Elsevier Inc. All rights reserved.
Keywords: Porous media; Global nonlinear stability; Peculiar Lyapunov functionals; Linearization principle

[^0]
1. Introduction

The equations governing the motion of a binary fluid mixture bounded by the horizontal planes $z=0, z=d>0$, in the Darcy-Oberbeck-Boussinesq scheme, are [1-4]

$$
\left\{\begin{array}{l}
\nabla p=-\frac{\mu}{k} \mathbf{v}+\rho_{f} \mathbf{g} \tag{1}\\
\nabla \cdot \mathbf{v}=0 \\
\tilde{A} T_{, t}+\mathbf{v} \cdot \nabla T=k_{T} \Delta T \\
\varepsilon C_{, t}+\mathbf{v} \cdot \nabla C=k_{C} \Delta C
\end{array}\right.
$$

where

$$
\begin{equation*}
\rho_{f}=\rho_{0}\left[1-\gamma_{T}\left(T-T_{0}\right)+\gamma_{C}\left(C-C_{0}\right)\right] \tag{2}
\end{equation*}
$$

and where the following notation is used:

$$
\begin{array}{ll}
\gamma_{T}=\text { thermal expansion coefficient }, & \gamma_{C}=\text { solute expansion coefficient }, \\
\varepsilon=\text { porosity, } & \mathbf{v}=\text { seepage velocity field, } \\
C=\text { concentration field, } & p=\text { pressure field, } \\
T=\text { temperature field, } & \mu=\text { viscosity }, \\
T_{0}=\text { reference temperature }, & C_{0}=\text { reference concentration }, \\
k_{T}=\text { thermal diffusivity }, & k_{C}=\text { solute diffusivity }, \\
c=\text { specific heat of the solid, } & \tilde{A}=\frac{\left(\rho_{0} c\right)_{m}}{\left(\rho_{0} c_{p}\right)_{f}}, \\
\rho_{0}=\text { fluid density at } T_{0}, C_{0} . & k=\text { permeability coefficient }, \\
c_{p}=\text { specific heat of fluid at constant pressure. } &
\end{array}
$$

The subscripts m and f refer to the porous medium and the fluid, respectively.
To (1) we append the boundary conditions

$$
\left\{\begin{array}{ll}
T_{L}=T_{0}+\frac{1}{2}\left(T_{1}-T_{2}\right), & C_{L}=C_{0}+\frac{1}{2}\left(C_{1}-C_{2}\right) \tag{3}
\end{array} \quad \text { on } z=0, ~ 子 \quad C_{U}=C_{0}-\frac{1}{2}\left(C_{1}-C_{2}\right) \quad \text { on } z=d,\right.
$$

with $T_{1}>T_{2}$ and $C_{1}>C_{2}$. By introducing the scaling

$$
\begin{aligned}
& \mathbf{x}=d \mathbf{x}^{*}, \quad t=\frac{\tilde{A} d^{2}}{k_{T}} t^{*}, \quad \mathbf{v}=\frac{k_{T}}{d} \mathbf{v}^{*}, \\
& p^{*}=\frac{k\left(p+\rho_{0} g z\right)}{\mu k_{T}}, \quad T^{*}=\frac{T-T_{0}}{T_{1}-T_{2}}, \quad C^{*}=\frac{C-C_{0}}{C_{1}-C_{2}}
\end{aligned}
$$

the dimensionless versions of (1) and (3)—omitting the stars-are respectively

$$
\begin{align*}
& \left\{\begin{array}{l}
\nabla p=-\mathbf{v}+(R T-\mathcal{C} C) \mathbf{k}, \\
\nabla \cdot \mathbf{v}=0, \\
T_{, t}+\mathbf{v} \cdot \nabla T=\Delta T, \\
\epsilon L e C_{, t}+L e \mathbf{v} \cdot \nabla C=\Delta C,
\end{array}\right. \tag{4}\\
& \left\{\begin{array}{l}
T_{L}=\frac{1}{2}, \quad C_{L}=\frac{1}{2} \quad \text { on } z=0, \\
T_{U}=-\frac{1}{2}, \quad C_{U}=-\frac{1}{2} \quad \text { on } z=1,
\end{array}\right. \tag{5}
\end{align*}
$$

with

$$
\begin{cases}R=\frac{\gamma_{T} g\left(T_{1}-T_{2}\right) k d}{\nu k_{T}} & \text { (thermal Rayleigh number), } \\ \mathcal{C}=\frac{\gamma_{C} g\left(C_{1}-C_{2}\right) k d}{\nu k_{T}} & \text { (solutal Rayleigh number), } \\ L e=\frac{k_{T}}{k_{C}} & \text { (Levis number) } \\ \nu=\frac{\mu}{\rho_{0}} & \text { (kinematic viscosity) } \\ \epsilon=\frac{\varepsilon}{\tilde{A}} & \text { (normalized porosity) }\end{cases}
$$

Equations (4)-(5) admit the steady solution (motionless state)

$$
\left\{\begin{array}{l}
\mathbf{v}_{S}=0, \quad \nabla p_{s}(z)=-(R+\mathcal{C})\left(z-\frac{1}{2}\right) \mathbf{k} \tag{6}\\
T_{S}(z)=-\left(z-\frac{1}{2}\right), \quad C_{S}(z)=-\left(z-\frac{1}{2}\right)
\end{array}\right.
$$

The stability of (6) has been considered by several authors (also when rotation about the vertical axis is incorporated) [4-18]. Precisely, denoting by

- $\mathbf{u}=(u, v, w)$ the velocity perturbation field,
- θ the temperature perturbation field,
- Γ the concentration perturbation field,
- $R_{C}^{(L)}$ the critical Rayleigh number of linear stability,
- $R_{C}^{(E)}$ the critical Rayleigh number of nonlinear energy stability
and assuming that the perturbations $(u, v, w, \theta, \Gamma)$
(i) are periodic in the x and y directions respectively of periods $\frac{2 \pi}{a_{x}}$ and $\frac{2 \pi}{a_{y}}$,
(ii) on the periodicity cell $\Omega=\left[0, \frac{2 \pi}{a_{x}}\right] \times\left[0, \frac{2 \pi}{a_{y}}\right] \times[0,1]$ (in order to guarantee uniqueness) u and v have zero mean value,
(iii) belong to $L^{2}(\Omega), \forall t \in \mathbb{R}^{+}$,
the results on nonlinear energy stability [4-18], as far as we know, can be summarized as follows: there exists a bounded positive number $R^{*} \ll \infty$ such that

$$
\begin{aligned}
& R \leqslant R^{*} \\
& \Rightarrow\left\{\begin{array}{l}
\text { (1) } R_{C}^{(E)}=R_{C}^{(L)} \\
\left.R \leqslant R_{C}^{(E)}\right) \\
\text { (2) } R \leqslant R_{C}^{(E)} \text { implies absence of regions of subcritical instabilities for } \\
\text { (2) }
\end{array}\right. \\
& R>R^{*} \\
& \Rightarrow\left\{\begin{array}{l}
(1) R_{C}^{(E)}<R_{C}^{(L)} \text { (i.e. existence of potential regions of subcritical instabilities), } \\
(2) R<R_{C}^{(E)} \text { implies local nonlinear } L^{2} \text {-stability. }
\end{array}\right.
\end{aligned}
$$

In the present paper, I reconsider the problem with the aim of showing that in the case at hand
(I) $R^{*}=\infty$ (i.e. absence of regions of subcritical instabilities $\forall R>0$),
(II) the nonlinear L^{2}-stability is always global.

Denoting by $L_{2}^{*}(\Omega)$ the class of perturbations (u, θ, Γ) satisfying (i)-(iii) and such that all their first derivatives and second spatial derivatives can be expanded in a Fourier series absolutely and uniformly convergent in Ω, the aim is to derive the following (main) theorem:

Theorem 1. Motion (6) is globally asymptotically exponentially L^{2}-stable if and only if the zero solution of the linear binary system of ODEs

$$
\left\{\begin{array}{l}
\frac{d \xi}{d t}=a_{1} \xi+a_{2} \eta \tag{7}\\
\frac{d \eta}{d t}=a_{3} \xi+a_{4} \eta
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
a_{1}=\frac{a^{2} R}{a^{2}+\pi^{2}}-\left(a^{2}+\pi^{2}\right), \quad a_{2}=-\frac{a^{2}}{a^{2}+\pi^{2}} L e C \tag{8}\\
a_{3}=\frac{a^{2} R}{a^{2}+\pi^{2}} \varepsilon L e, \quad a_{4}=-\frac{1}{\varepsilon}\left(\frac{a^{2} C}{a^{2}+\pi^{2}}+\frac{a^{2}+\pi^{2}}{L e}\right)
\end{array}\right.
$$

is stable for any value of the positive parameter a^{2}.
As far as we know, this is the first time that for double diffusive convection, coincidence of linear stability and global nonlinear L^{2}-stability of the rest state is established $\forall R$. In fact, for $\left\{R_{B}=4 \pi^{2}, C^{*}=\frac{R_{B}}{\varepsilon L e(\varepsilon L e-1)}\right\}$, the L^{2}-global stability conditions implied by (8) are

$$
\left\{\begin{array} { l }
{ \epsilon L e \leqslant 1 , } \tag{9}\\
{ R < R _ { B } + L e \mathcal { C } ; }
\end{array} \quad \left\{\begin{array}{l}
\epsilon L e \geqslant 1, \quad \mathcal{C} \geqslant \mathcal{C}^{*}, \\
R<\frac{\mathcal{C}}{\epsilon}+\left(1+\frac{1}{\epsilon L e}\right) R_{B}
\end{array}\right.\right.
$$

and coincide with those of linear stability $\forall R$. Therefore-in the case at hand-the absence of regions of subcritical instabilities is established.

The plan of the paper is as follows. In Section 2-dedicated to preliminaries-it is shown that \mathbf{u} is linearly linked to (θ, Γ). In Section 3 an auxiliary system Σ of PDEs and a quadratic functional V (different from the $L^{2}(\Omega)$-norm of (θ, Γ)) are introduced. Denoting by L and N, respectively, the linear and nonlinear operators involved in Σ, it is shown that
(a) the solutions of Σ are linearly linked to the perturbations $(\mathbf{u}, \theta, \Gamma)$ (Theorem 2);
(b) V depends in a simple direct way on the L eigenvalues;
(c) along Σ, $\frac{d V}{d t}$ not only depends in a simple direct way on the L eigenvalues, but also does not depend on N (Theorem 3).

Section 4 is devoted to the global nonlinear stability. By virtue of (c) conditions sufficient for guaranteeing global nonlinear L^{2}-stability are found (Theorems 4-5). Instability is considered in Section 5. By the introduction of a functional W having the properties (b)-(c) it is shown that the conditions found in Section 4 are necessary for the stability of the rest state (Theorems 6-8). Sections 6-7 are devoted to proof of the main theorem and its generalization to a rotating layer. The paper ends with an Appendices A.1-A. 3 in which-for the sake of completeness-some results, used in the paper, are discussed.

2. Preliminaries

By virtue of (4)-(5), the equations governing the perturbations $(\mathbf{u}, \theta, \Gamma)$ are

$$
\left\{\begin{array}{l}
\nabla \tilde{\pi}=-\mathbf{u}+(R \theta-\mathcal{C} \Gamma) \mathbf{k} \tag{10}\\
\nabla \cdot \mathbf{u}=0 \\
\frac{\partial \theta}{\partial t}+\mathbf{u} \cdot \nabla \theta=\Delta \theta+w \\
\epsilon L e \frac{\partial \Gamma}{\partial t}+L e \mathbf{u} \cdot \nabla \Gamma=\Delta \Gamma+w
\end{array}\right.
$$

under the boundary conditions

$$
\begin{equation*}
w=\theta=\Gamma=0 \quad \text { on } z=0,1, \tag{11}
\end{equation*}
$$

$\tilde{\pi}$ being the perturbation to the pressure field.
Since the sequence $\{\sin n \pi z\}(n=1,2, \ldots)$ is a complete orthogonal system for $L_{2}([0,1])$, by virtue of the periodicity, it turns out that for $\mathcal{L} \in\{w, \theta, \Gamma\}$ there exists a sequence $\left\{\tilde{\mathcal{L}}_{n}(x, y, t)\right\}$ such that

$$
\begin{equation*}
\mathcal{L}=\sum_{n=1}^{\infty} \tilde{\mathcal{L}}_{n}(x, y, t) \sin n \pi z, \quad \forall t \geqslant 0 \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta_{1} \tilde{\mathcal{L}}_{n}=-a^{2} \tilde{\mathcal{L}}_{n}, \quad \Delta_{1}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}, a^{2}=a_{x}^{2}+a_{y}^{2} \tag{13}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\zeta=(\nabla \times \mathbf{u}) \cdot \mathbf{k}, \tag{14}
\end{equation*}
$$

in view of $(10)_{2}$, one obtains

$$
\left\{\begin{align*}
\Delta_{1} u & =-\frac{\partial^{2} w}{\partial x \partial z}-\frac{\partial \zeta}{\partial y} \tag{15}\\
\Delta_{1} v & =-\frac{\partial^{2} w}{\partial y \partial z}+\frac{\partial \zeta}{\partial y}
\end{align*}\right.
$$

On the other hand (10) 1 implies $\zeta=0$, hence

$$
\Delta_{1} u=-\frac{\partial^{2} w}{\partial x \partial z}, \quad \Delta_{1} v=-\frac{\partial^{2} w}{\partial y \partial z},
$$

and therefore one obtains

$$
\left\{\begin{array}{l}
u=\sum_{n=1}^{\infty} \tilde{u}_{n}(x, y, t) \frac{d}{d z}(\sin n \pi z), \tag{16}\\
v=\sum_{n=1}^{\infty} \tilde{v}_{n}(x, y, t) \frac{d}{d z}(\sin n \pi z), \\
\Delta_{1} \tilde{u}_{n}=-a^{2} \tilde{u}_{n}, \quad \Delta_{1} \tilde{v}_{n}=-a^{2} \tilde{v}_{n}, \\
\tilde{u}_{n}=\frac{1}{a^{2}} \frac{\partial \tilde{w}_{n}}{\partial x}, \quad \tilde{v}_{n}=\frac{1}{a^{2}} \frac{\partial \tilde{w}_{n}}{\partial y} .
\end{array}\right.
$$

Then w, θ, Γ are the effective perturbation fields. These fields are not independent, however. In fact, from $(10)_{1}$ it follows that

$$
\nabla \times(\nabla \times \mathbf{u}) \cdot \mathbf{k}=\nabla \times[\nabla \times(R \theta-L e \mathcal{C} \Gamma) \mathbf{k}] \cdot \mathbf{k}
$$

i.e.

$$
\Delta w=\Delta_{1}(R \theta-L e \mathcal{C} \Gamma)
$$

and (10) becomes

$$
\left\{\begin{array}{l}
\Delta w=\Delta_{1}(R \theta-L e \mathcal{C} \Gamma) \tag{17}\\
\nabla \cdot \mathbf{u}=0 \\
\frac{\partial \theta}{\partial t}=\Delta \theta+w-\mathbf{u} \cdot \nabla \theta \\
\frac{\partial \Gamma}{\partial t}=\frac{1}{\epsilon L e}(\Delta \Gamma+w)-\frac{1}{\epsilon} \mathbf{u} \cdot \nabla \Gamma
\end{array}\right.
$$

According to (12)

$$
\left\{\begin{array}{l}
w_{n}=\tilde{w}_{n}(x, y, t) \sin n \pi z \tag{18}\\
\theta_{n}=\tilde{\theta}_{n}(x, y, t) \sin n \pi z \\
\Gamma_{n}=\tilde{\Gamma}_{n}(x, y, t) \sin n \pi z
\end{array}\right.
$$

and, in view of (12)-(16), one obtains

$$
\left\{\begin{array}{l}
\Delta w_{n}=-\left(n^{2} \pi^{2}+a^{2}\right) w_{n} \tag{19}\\
\mathbf{u}_{n}=\left(u_{n}, v_{n}, w_{n}\right), \\
u_{n}=\frac{1}{a^{2}} \frac{\partial^{2} w_{n}}{\partial x \partial z}, \quad v_{n}=\frac{1}{a^{2}} \frac{\partial^{2} w_{n}}{\partial y \partial z} \\
\Delta_{1} \theta_{n}=-a^{2} \theta_{n}, \quad \Delta_{1} \Gamma_{n}=-a^{2} \Gamma_{n}
\end{array}\right.
$$

Therefore, setting

$$
\begin{equation*}
\gamma_{n}=\frac{a^{2}}{\xi_{n}}, \quad \xi_{n}=a^{2}+n^{2} \pi^{2} \tag{20}
\end{equation*}
$$

it follows that

$$
\left\{\begin{array}{l}
w_{n}=\gamma_{n}\left(R \theta_{n}-L e \mathcal{C} \Gamma_{n}\right), \tag{21}\\
\mathbf{u}_{n}=\left(\frac{1}{a^{2}} \frac{\partial^{2} w_{n}}{\partial x \partial z}, \frac{1}{a^{2}} \frac{\partial^{2} w_{n}}{\partial y \partial z}, w_{n}\right)
\end{array}\right.
$$

satisfy, $\forall\left(a^{2}, n\right) \in \mathbb{R}^{+} \times N^{+}$, the boundary conditions

$$
\begin{equation*}
w_{n}=\theta_{n}=\Gamma_{n}=0 \quad \text { on } z=0,1, \forall n \in \mathbb{N}^{+}, \tag{22}
\end{equation*}
$$

(i)-(ii) and (17) ${ }_{1}-(17)_{2}$. Then-by virtue of linearity-the general solutions of $(17)_{1},(17)_{2}$ are

$$
\begin{equation*}
w=\sum_{n=1}^{\infty} w_{n}, \quad \mathbf{u}=\sum_{n=1}^{\infty} \mathbf{u}_{n} \tag{23}
\end{equation*}
$$

with w_{n}, \mathbf{u}_{n} given by (21).

3. Linearization principle via an auxiliary system

Let $Z_{p}=\tilde{Z}_{p} \sin (p \pi z)$ with $\tilde{Z}_{p} \in\left\{\tilde{\theta}_{p}, \tilde{\Gamma}_{p}\right\}, p \in \mathbb{N}^{+}$, and let $\langle\cdot, \cdot\rangle,\langle\langle\cdot \cdot\rangle\rangle$ denote, respectively, the scalar product in $L^{2}(\Omega)$ and $L^{2}[0,1]$. The following lemmas hold.

Lemma 1. Let $p, q, n \in \mathbb{N}^{+}$. Then $\max (p, q) \leqslant n$ implies

$$
\begin{align*}
& \| \sin (p \pi z), \sin (q \pi z)\rangle= \begin{cases}1 / 2 & \text { for } p=q, \\
0 & \text { for } p \neq q,\end{cases} \tag{24}\\
& \| \sin (q \pi z) \sin (n \pi z), \cos (p \pi z)\rangle= \begin{cases}0 & \text { for } p+q \neq n \\
1 / 4 & \text { for } p+q=n\end{cases} \tag{25}
\end{align*}
$$

Proof. (24) immediately follows from

$$
\| \sin (p \pi z), \sin (q \pi z)\rangle=\left\langle\left\langle\frac{1}{2}, \cos [(p-q) \pi z]-\cos [(p+q) \pi z] \|\right.\right.
$$

Concerning (25), we observe that, by virtue of

$$
\left\{\begin{array}{l}
\sin (q \pi z) \sin (n \pi z)=\frac{1}{2}\{\cos [(n-q) \pi z]-\cos [(n+q) \pi z]\} \\
\cos [(n-q) \pi z] \cos (p \pi z)=\frac{1}{2}\{\cos [(n-q-p) \pi z]+\cos [(n+p-q) \pi z]\} \\
\cos [(n+q) \pi z] \cos (p \pi z)=\frac{1}{2}\{\cos [(n+q+p) \pi z]+\cos [(n+q-p) \pi z]\}
\end{array}\right.
$$

it follows that

$$
\begin{align*}
& \| \sin (q \pi z) \sin (n \pi z), \cos (p \pi z)\rangle \\
& \quad=\|\left\langle\frac{1}{4}, \cos [(n+p-q) \pi z]+\cos [(p+q-n) \pi z]-\cos [(n+q-p) \pi z]\right\rangle \tag{26}
\end{align*}
$$

and hence (25) immediately follows.
Lemma 2. Let $Z=\sum_{p=1}^{\infty} Z_{p}$. Then it follows that

$$
\begin{align*}
& \left.\| \sum_{p=1}^{\infty} Z_{p}, \sin (n \pi z)\right\rangle=\frac{1}{2}, \\
& \left\langle\mathbf{u}_{p} \cdot \nabla Z_{q}, \sin (n \pi z)\right\rangle= \begin{cases}0 & \text { for } p+q \neq n \\
\frac{\pi}{4}\left(\frac{p}{a^{2}} \nabla \tilde{w}_{p} \cdot \nabla \tilde{Z}_{q}+q \tilde{w}_{p} \tilde{Z}_{q}\right) & \text { for } p+q=n\end{cases} \tag{28}
\end{align*}
$$

Proof. Lemma 2 is immediately implied by Lemma 1.
Let us set

$$
\begin{align*}
& \left\{\begin{array}{l}
b_{1 n}=\gamma_{n} R-\xi_{n}, \quad b_{2 n}=-\gamma_{n} L e C, \\
b_{3 n}=\frac{\gamma_{n} R}{\varepsilon L e}, \quad b_{4 n}=-\frac{\gamma_{n}}{\varepsilon L e}\left(L e C+\frac{\xi_{n}}{\gamma_{n}}\right),
\end{array}\right. \tag{29}\\
& S_{m}^{(\theta)}=\sum_{n=1}^{m} \theta_{n}, \quad S_{m}^{(\Gamma)}=\sum_{n=1}^{m} \Gamma_{n}, \quad \mathbf{U}_{m}=\sum_{n=1}^{m} \mathbf{u}_{n} \tag{30}
\end{align*}
$$

with w_{n} and \mathbf{u}_{n} given by (19) and $m, n \in \mathbb{N}^{+}$. Then $\left\{S_{m}^{(\theta)}, S_{m}^{(\Gamma)}, \mathbf{U}_{m}\right\}$ is a dynamical perturbation iff

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} S_{m}^{(\theta)}=\sum_{n=1}^{m}\left(b_{1 n} \theta_{n}+b_{2 n} \Gamma_{n}\right)-\mathbf{U}_{m} \cdot \nabla S_{m}^{(\theta)} \tag{31}\\
\frac{\partial}{\partial t} S_{m}^{(\Gamma)}=\sum_{n=1}^{m}\left(b_{3 n} \theta_{n}+b_{4 n} \Gamma_{n}\right)-\frac{1}{\varepsilon} \mathbf{U}_{m} \cdot \nabla S_{m}^{(\Gamma)} \\
\nabla \pi_{n}=-\mathbf{u}_{n}+\left(R \theta_{n}-L e C \Gamma_{n}\right) \mathbf{k} \\
\nabla \cdot \mathbf{u}_{n}=0 \\
w_{n}=\gamma_{n}\left(R \theta_{n}-L e C \Gamma_{n}\right)
\end{array}\right.
$$

under the boundary data (22) and \mathbf{u}_{n} given by (20)-(21).
With (31) we associate the auxiliary system

$$
\left\{\begin{array}{l}
\frac{\partial \theta_{1}^{*}}{\partial t}=b_{11} \theta_{1}^{*}+b_{21} \Gamma_{1}^{*}-\mathbf{U}_{m}^{*} \cdot \nabla \theta_{1}^{*}, \tag{32}\\
\frac{\partial \Gamma_{1}^{*}}{\partial t}=b_{31} \theta_{1}^{*}+b_{41} \Gamma_{1}^{*}-\frac{1}{\varepsilon} \mathbf{U}_{m}^{*} \cdot \nabla \Gamma_{1}^{*}, \\
\ldots \\
\frac{\partial \theta_{m}^{*}}{\partial t}=b_{1 m} \theta_{m}^{*}+b_{2 m} \Gamma_{m}^{*}-\mathbf{U}_{m}^{*} \cdot \nabla \theta_{m}^{*}, \\
\frac{\partial \Gamma_{m}^{*}}{\partial t}=b_{3 m} \theta_{m}^{*}+b_{4 m} \Gamma_{m}^{*}-\frac{1}{\varepsilon} \mathbf{U}_{m}^{*} \cdot \nabla \Gamma_{m}^{*},
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\mathbf{U}_{m}^{*}=\sum_{1}^{m} \mathbf{u}_{n}^{*}, \quad \mathbf{u}_{n}^{*}=\left(\frac{1}{a^{2}} \frac{\partial^{2} w_{n}^{*}}{\partial x \partial z}, \frac{1}{a^{2}} \frac{\partial^{2} w_{n}^{*}}{\partial y \partial z}, w_{n}^{*}\right), \tag{33}\\
w_{n}^{*}=\tilde{w}_{n}^{*} \sin (n \pi z), \quad \theta_{n}^{*}=\tilde{\theta}_{n}^{*}(x, y, t) \sin (n \pi z), \\
\Gamma_{n}^{*}=\tilde{\Gamma}_{n}^{*}(x, y, t) \sin (n \pi z), \quad \tilde{w}_{n}^{*}=\gamma_{n}\left(R \tilde{\theta}_{n}^{*}-L e C \tilde{\Gamma}_{n}^{*}\right)
\end{array}\right.
$$

with $\theta_{n}^{*}, \Gamma_{n}^{*}$ periodic in the x, y directions with Ω as cell of periodicity, under the boundary data analogous to (22)

$$
\begin{equation*}
\theta_{n}^{*}=\Gamma_{n}^{*}=0 \quad \text { for } z=0,1 . \tag{34}
\end{equation*}
$$

Theorem 2. Let $\left\{\theta_{1}^{*}, \ldots, \theta_{m}^{*} ; \Gamma_{1}^{*}, \ldots, \Gamma_{m}^{*} ; \mathbf{U}_{m}^{*}\right\}$ with $\left\{\mathbf{U}_{m}^{*}\right.$ given by (33) and $\left(S_{m}^{\left(\theta^{*}\right)}=\sum_{1}^{m} \theta_{i}^{*}\right.$, $\left.\left.S_{m}^{\left(\Gamma^{*}\right)}=\sum_{1}^{m} \Gamma_{i}^{*}\right) \in\left[L_{2}^{*}(\Omega)\right]^{2}, m \in \mathbb{N}\right\}$ be the solution of (32)-(34). Then (30) with $\left\{\theta_{n}=\right.$ $\left.\theta_{n}^{*}, \Gamma_{n}=\Gamma_{n}^{*}(n=1, \ldots, m) ; \mathbf{U}_{m}=\mathbf{U}_{m}^{*}\right\}$ is the solution of (31) under (20)-(22). Vice versa, if (30) with $\left\{S_{m}^{(\theta)}, S_{m}^{(\Gamma)}\right\} \in\left[L_{2}^{*}(\Omega)\right]^{2}, m \in \mathbb{N}$, is the solution of (31) under (20)-(22), then $\left\{\theta_{1}^{*}, \ldots, \theta_{n}^{*} ; \Gamma_{1}^{*}, \ldots, \Gamma_{m}^{*} ; \mathbf{U}_{m}^{*}\right\}$ with $\left\{\theta_{n}=\theta_{n}^{*}, \Gamma_{n}=\Gamma_{n}^{*}(n=1, \ldots, m) ; \mathbf{U}_{m}=\mathbf{U}_{m}^{*}\right\}$ is the solution of (32)-(34).

Proof. Let $\left(\theta_{1}^{*}, \ldots, \theta_{m}^{*} ; \Gamma_{1}^{*}, \ldots, \Gamma_{m}^{*} ; \mathbf{U}_{m}^{*}=\sum_{1}^{m} \mathbf{u}_{n}^{*}\right.$) with $\left\{\mathbf{u}_{n}^{*}\right.$ given by (33) and ($S_{m}^{\left(\theta^{*}\right)}=$ $\left.\left.\sum_{1}^{m} \theta_{n}^{*}, S_{m}^{\left(\Gamma^{*}\right)}=\sum_{1}^{m} \Gamma_{n}^{*}\right) \in\left[L_{2}^{*}(\Omega)\right]^{2}, m \in \mathbb{N}\right\}$ be the solution of (32)-(34). Then by adding (32) it immediately follows that $\left(S_{m}^{\left(\theta^{*}\right)}=\sum_{1}^{m} \theta_{n}^{*}, S_{m}^{\left(\Gamma^{*}\right)}=\sum_{1}^{m} \Gamma_{n}^{*}, \mathbf{U}_{m}^{*}\right)$ is the solution of (31) under
(20)-(22). Vice versa, let $\left(S_{m}^{(\theta)}, S_{m}^{(\Gamma)}, \mathbf{U}_{m}\right)$ with $\left\{S_{m}^{(\theta)}, S_{m}^{(\Gamma)}\right\} \in\left[L_{2}^{*}(\Omega)\right]^{2}, m \in \mathbb{N}$, be solution of (31) under (20)-(22) with

$$
\begin{equation*}
S_{m}^{(\theta)}(0)=\sum_{1}^{m} \theta_{n}(0), \quad S_{m}^{(\Gamma)}=\sum_{1}^{m} \theta_{n}(0) . \tag{35}
\end{equation*}
$$

Denoting by $\left(\theta_{1}^{*}, \ldots, \theta_{m}^{*} ; \Gamma_{1}^{*}, \ldots, \Gamma_{m}^{*}\right)$ the solution of (32)-(34) associated with the initial data

$$
\begin{equation*}
\theta_{n}^{*}(0)=\theta_{n}(0), \quad \Gamma_{n}^{*}(0)=\Gamma_{n}(0), \quad \mathbf{u}_{n}^{*}(0)=\mathbf{u}_{n}(0), \quad \forall n \in\{1, \ldots, m\}, \tag{36}
\end{equation*}
$$

it follows that $\left(S_{m}^{\left(\theta^{*}\right)}, S_{m}^{\left(\Gamma^{*}\right)}, \mathbf{U}_{m}^{*}\right)$ is the solution of (31) under (20)-(22). In view of the uniqueness theorem for (31) under (20)-(22) (see Appendix A.1), it turns out that

$$
\begin{equation*}
\theta_{n}^{*}=\theta_{n}, \quad \Gamma_{n}^{*}=\Gamma_{n}, \quad \mathbf{u}_{n}^{*}=\mathbf{u}_{n}, \quad \forall n \in\{1, \ldots, m\} . \tag{37}
\end{equation*}
$$

Remark 1. In view of Theorem 2, we can determine the stability of (6) by substituting (32)-(34) in (31) under (20)-(22).

Setting

$$
\begin{equation*}
I_{n}=b_{1 n}+b_{4 n}, \quad A_{n}=b_{1 n} b_{4 n}-b_{2 n} b_{3 n} \tag{38}
\end{equation*}
$$

the following linearization principle holds.
Theorem 3. The time derivative of

$$
\begin{equation*}
V_{n}=\frac{1}{2}\left[A_{n}\left(\left\|\theta_{n}\right\|^{2}+\left\|\Gamma_{n}\right\|^{2}\right)+\left\|b_{1 n} \Gamma_{n}-b_{3 n} \theta_{n}\right\|^{2}+\left\|b_{2 n} \Gamma_{n}-b_{4 n} \theta_{n}\right\|^{2}\right] \tag{39}
\end{equation*}
$$

along the solutions of (31) is given by

$$
\begin{equation*}
\frac{d V_{n}}{d t}=A_{n} I_{n}\left(\left\|\theta_{n}\right\|^{2}+\left\|\Gamma_{n}\right\|^{2}\right) . \tag{40}
\end{equation*}
$$

Proof. By virtue of Theorem 2, we may evaluate the time derivative of V_{n} along the solution of (32)-(34) and hence along the solution of

$$
\left\{\begin{array}{l}
\frac{\partial \theta_{n}}{\partial t}=b_{1 n} \theta_{n}+b_{2 n} \Gamma_{n}-\mathbf{U}_{m} \cdot \nabla \theta_{n}, \tag{41}\\
\frac{\partial \Gamma_{n}}{\partial t}=b_{3 n} \theta_{n}+b_{4 n} \Gamma_{n}-\frac{1}{\varepsilon} \mathbf{U}_{m} \cdot \nabla \Gamma_{n},
\end{array} \quad n=1, \ldots, m\right.
$$

It turns out that \{cf. Appendix A.3\}

$$
\begin{equation*}
\frac{d V_{n}}{d t}=A_{n} I_{n}\left(\left\|\theta_{n}\right\|^{2}+\left\|\Gamma_{n}\right\|^{2}\right)+\Psi_{n} \tag{42}
\end{equation*}
$$

where Ψ_{n}, the contribution of the nonlinear terms appearing in (41), is given by

$$
\left\{\begin{array}{l}
\Psi_{n}=-\left\langle\alpha_{1 n} \theta_{n}-\alpha_{3 n} \Gamma_{n}, \mathbf{U}_{m} \cdot \nabla \theta_{n}\right\rangle-\frac{1}{\varepsilon}\left\langle\alpha_{2 n} \Gamma_{n}-\alpha_{3 n} \theta_{n}, \mathbf{U}_{m} \cdot \nabla \Gamma_{n}\right\rangle \tag{43}\\
\alpha_{1 n}=A_{n}+b_{3 n}^{2}+b_{4 n}^{2}, \quad \alpha_{2 n}=A_{n}+b_{1 n}^{2}+b_{2 n}^{2}, \quad \alpha_{3 n}=b_{1 n} b_{3 n}+b_{2 n} b_{4 n}
\end{array}\right.
$$

By virtue of (28), it turns out that

$$
\begin{equation*}
\left\langle\mathbf{U}_{m} \cdot \nabla \theta_{n}, \Gamma_{n}\right\rangle=\left\langle\left\langle\mathbf{U}_{m} \cdot \nabla \Gamma_{n}, \theta_{n}\right\rangle=0, \quad n=1, \ldots, m .\right. \tag{44}
\end{equation*}
$$

Further, in view of $\nabla \cdot \mathbf{U}_{m}=0$ and the boundary data, it follows that

$$
\left\{\begin{array}{l}
\left\langle\mathbf{U}_{m} \cdot \nabla \theta_{n}, \theta_{n}\right\rangle=\frac{1}{2}\left\langle\mathbf{U}_{m}, \nabla \theta_{n}^{2}\right\rangle=0 \tag{45}\\
\left\langle\mathbf{U}_{m} \cdot \nabla \Gamma_{n}, \Gamma_{n}\right\rangle=\frac{1}{2}\left\langle\mathbf{U}_{m}, \nabla \Gamma_{n}^{2}\right\rangle=0
\end{array}\right.
$$

Then (44)-(45) imply

$$
\begin{equation*}
\Psi_{n}=0 \quad \forall n \in\{1,2, \ldots, m\} \tag{46}
\end{equation*}
$$

Remark 2. Let us observe that:
(i) denoting by $\left(\lambda_{1 n}, \lambda_{2 n}\right)$ the eigenvalues of

$$
\left\{\begin{array}{l}
\frac{d \theta_{n}}{d t}=b_{1 n} \theta_{n}+b_{2 n} \Gamma_{n}, \tag{47}\\
\frac{d \Gamma_{n}}{d t}=b_{3 n} \theta_{n}+b_{4 n} \Gamma_{n}
\end{array}\right.
$$

it follows that

$$
\left\{\begin{array}{l}
A_{n}=\lambda_{1 n} \cdot \lambda_{2 n}, \tag{48}\\
I_{n}=\lambda_{1 n}+\lambda_{2 n} ;
\end{array}\right.
$$

(ii) V_{n} and \dot{V}_{n} are linked in a direct simple way to the eigenvalues of the linear operator involved in (32) and, moreover, \dot{V}_{n} does not depend on the nonlinear operator involved in (32);
(iii) the time derivative of

$$
\begin{equation*}
E_{n}=\frac{1}{2}\left(\left\|\theta_{n}\right\|^{2}+\left\|\Gamma_{n}\right\|^{2}\right) \tag{49}
\end{equation*}
$$

along the solutions of (41) is given by

$$
\begin{equation*}
\frac{d E_{n}}{d t}=b_{1 n}\left\|\theta_{n}\right\|^{2}+\left(b_{2 n}+b_{3 n}\right)\left\langle\theta_{n}, \Gamma_{n}\right\rangle+b_{4 n}\left\|\Gamma_{n}\right\|^{2} \tag{50}
\end{equation*}
$$

and is also independent of the nonlinear terms. However, the eigenvalues of the quadratic form appearing in the right-hand side of (50)—in view of $b_{2 n} \neq b_{3 n}, \forall n \in \mathbb{N}^{+}$-are not, in general, those determined by $\left(\begin{array}{l}b_{1 n} b_{2 n} \\ b_{3 n}\end{array} b_{4 n}\right)$.

4. Global stability

Lemma 3. Setting

$$
\left\{\begin{array}{l}
R_{B}=4 \pi^{2}, \quad R_{C}^{(1)}=R_{B}+L e \mathcal{C}, \tag{51}\\
R_{C}^{(2)}=\frac{\mathcal{C}}{\epsilon}+\left(1+\frac{1}{\epsilon L e}\right) R_{B}, \quad R_{C}=\inf \left(R_{C}^{(1)}, R_{C}^{(2)}\right)
\end{array}\right.
$$

it follows that

$$
\left\{\begin{array}{l}
R_{B}=\inf \frac{\xi_{n}}{\gamma_{n}}, \tag{52}\\
\epsilon L e \leqslant 1 \quad \Rightarrow \quad R_{C}=R_{C}^{(1)}<R_{C}^{(2)}, \\
\left\{\epsilon L e>1, \quad \mathcal{C}>\mathcal{C}^{*}=\frac{R_{B}}{(\epsilon L e-1) L e}\right\} \quad \Rightarrow \quad R_{C}=R_{C}^{(2)}<R_{C}^{(1)} .
\end{array}\right.
$$

Proof. By virtue of

$$
\frac{\xi_{n}}{\gamma_{n}}=\frac{\left(a^{2}+n^{2} \pi^{2}\right)^{2}}{a^{2}} \geqslant \frac{\left(a^{2}+\pi^{2}\right)^{2}}{a^{2}},
$$

(52) $)_{1}$ immediately follows. In view of

$$
\begin{equation*}
R_{C}^{(2)}-R_{C}^{(1)}=\frac{1}{\epsilon}\left[(1-\epsilon L e) \mathcal{C}+\frac{R_{B}}{L e}\right] \tag{53}
\end{equation*}
$$

(52) $)_{2}$ becomes obvious. Passing to $(52)_{3}$, from $\mathcal{C}>\mathcal{C}^{*}$, it turns out that

$$
\begin{equation*}
R_{C}^{(2)}-R_{C}^{(1)}<\frac{1}{\epsilon}\left(-\frac{R_{B}}{L e}+\frac{R_{B}}{L e}\right)=0 . \tag{54}
\end{equation*}
$$

Lemma 4. Let

$$
\begin{equation*}
R<R_{C} . \tag{55}
\end{equation*}
$$

Then $\forall n \in \mathbb{N}^{+}, \forall a>0$,

$$
\left\{\begin{array}{l}
A_{n} \geqslant \frac{\pi^{4}}{\epsilon L e}\left(1-\eta_{1}\right)>0, \tag{56}\\
I_{n} \leqslant-\pi^{2}\left(1+\frac{1}{\epsilon L e}\right)\left(1-\eta_{2}\right)<0, \quad A_{n} I_{n} \leqslant-\delta
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
\eta_{1}=\frac{1}{R_{B}}(R-L e C), \quad \eta_{2}=\frac{R-C / \varepsilon}{R_{B}(1+1 /(\varepsilon L e))}, \tag{57}\\
\delta=\frac{\pi^{6}}{\epsilon L e}\left(1+\frac{1}{\epsilon L e}\right)\left(1-\eta_{1}\right)\left(1-\eta_{2}\right)
\end{array}\right.
$$

Proof. (55) implies $0<\eta_{i}<1$ ($i=1,2$). Further, by virtue of (51)-(54), it turns out that

$$
\left\{\begin{align*}
A_{n} & =\frac{\xi_{n} \gamma_{n}}{\epsilon L e}\left(\frac{\xi_{n}}{\gamma_{n}}+L e \mathcal{C}-R\right)>\frac{\xi_{n}^{2}}{\epsilon L e}\left(1-\eta_{1} \frac{R_{B}}{\xi_{n} / \gamma_{n}}\right) \\
& \geqslant \frac{\left(a^{2}+n^{2} \pi^{2}\right)^{2}}{\epsilon L e}\left(1-\eta_{1}\right)>\frac{\pi^{4}}{\epsilon L e}\left(1-\eta_{1}\right), \tag{58}\\
-I_{n} & =\gamma_{n}\left[\left(1+\frac{1}{\epsilon L e}\right) \frac{\xi_{n}}{\gamma_{n}}+\frac{\mathcal{C}}{\epsilon}-R\right]>\gamma_{n}\left(1+\frac{1}{\epsilon L e}\right)\left(\frac{\xi_{n}}{\gamma_{n}}-\eta_{2} R_{B}\right) \\
& =\left(1+\frac{1}{\epsilon L e}\right) \xi_{n}\left(1-\frac{\eta_{2} R_{B}}{\xi_{n} / \gamma_{n}}\right)>\left(1+\frac{1}{\epsilon L e}\right) \pi^{2}\left(1-\eta_{2}\right)
\end{align*}\right.
$$

Lemma 5. Let (55) hold. Setting

$$
\left\{\begin{array}{l}
B_{n}=2 \max \left(b_{1 n}^{2}, b_{2 n}^{2}, b_{3 n}^{2}+b_{4 n}^{2}\right), \tag{59}\\
d=\frac{2 \pi^{2}(1+\epsilon L e)}{(1+\mu) \epsilon L e}\left(1-\eta_{2}\right), \\
\mu=\frac{2}{R_{B}^{2}}\left(1-\eta_{1}\right) \max \left\{2 \epsilon L e\left(R^{2}+R_{B}^{2}\right), \frac{\left(L e \mathcal{C}+R_{B}\right)^{2}}{\epsilon L e}, \frac{R^{2}}{\epsilon L e}, \epsilon L e^{3} \mathcal{C}^{2}\right\}
\end{array}\right.
$$

it turns out that $\left(\forall n \in N^{+}, \forall a>0\right)$

$$
\left\{\begin{array}{l}
\frac{B_{n}}{A_{n}} \leqslant \mu, \tag{60}\\
d_{n}=\frac{2\left|I_{n}\right| A_{n}}{A_{n}+B_{n}} \geqslant d .
\end{array}\right.
$$

Proof. In view of
$(60)_{2}$ easily follows. On the other hand, by virtue of

$$
\begin{equation*}
d_{n}=\frac{2\left|I_{n}\right|}{1+\frac{B_{n}}{A_{n}}} \geqslant \frac{2\left|I_{n}\right|}{1+\mu} \tag{62}
\end{equation*}
$$

$(60)_{3}$ is implied by $(56)_{2}$.
Lemma 6. Let $A_{n}>0$. Then V_{n} is positive definite and it turns out that $\left(\forall n \in N^{+}\right)$

$$
\begin{equation*}
E_{n}<\frac{V_{n}}{A_{n}}<(1+\mu) E_{n} . \tag{63}
\end{equation*}
$$

Proof. From Lemma 5, (63) immediately follows.
Theorem 4. Let either

$$
\left\{\begin{array}{l}
\epsilon L e \leqslant 1, \tag{64}\\
R<R_{B}+L e \mathcal{C}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\epsilon L e \geqslant 1, \quad \mathcal{C} \geqslant \mathcal{C}^{*}, \tag{65}\\
R<\frac{\mathcal{C}}{\epsilon}+\left(1+\frac{1}{\epsilon L e}\right) R_{B}
\end{array}\right.
$$

hold. Then the nonlinear global asymptotic exponential L^{2}-stability of (6), with respect to the perturbations $\left\{S_{m}^{(\theta)}, S_{m}^{(\Gamma)}, \mathbf{U}_{m}\right\}, \forall m \in \mathbb{N}^{+}$, is guaranteed.

Proof. (64)-(65) imply (55). Then, by virtue of (40) and Lemmas 4-6 it turns out that

$$
\begin{equation*}
\frac{d V_{n}}{d t}=-2\left|I_{n}\right| A_{n} E_{n} \leqslant-\frac{2\left|I_{n}\right| A_{n}}{A_{n}+B_{n}} V_{n} \leqslant-d V_{n} \tag{66}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
V_{n}(t) \leqslant V_{n}(0) e^{-d t} \quad \forall t \geqslant 0, \forall n \leqslant m, \tag{67}
\end{equation*}
$$

and, in view of (63), one obtains

$$
\begin{equation*}
E_{n}(t) \leqslant(1+\mu) E_{n}(0) e^{-d t} \tag{68}
\end{equation*}
$$

Setting

$$
\begin{equation*}
V_{m}^{*}=\sum_{1}^{m} V_{n}, \quad \mathcal{E}_{m}=\sum_{1}^{m} E_{n} \tag{69}
\end{equation*}
$$

(66)-(67) imply

$$
\left\{\begin{array}{l}
V_{m}^{*} \leqslant V_{m}^{*}(0) e^{-d t} \tag{70}\\
\mathcal{E}_{m} \leqslant(1+\mu) \mathcal{E}_{m}(0) e^{-d t}
\end{array}\right.
$$

Theorem 5. Let either (64) or (65) hold. Then (6) is nonlinearly globally exponentially L^{2}-stable with respect to any perturbation $\{\theta, \Gamma, \mathbf{u}\}$ according to

$$
\left\{\begin{array}{l}
E(t) \leqslant(1+\mu) E(0) e^{-d t} \tag{71}\\
V \leqslant V(0) e^{-d t}
\end{array}\right.
$$

with

$$
\begin{equation*}
E=\mathcal{E}_{\infty}=\sum_{1}^{\infty} E_{n}, \quad V=V_{\infty}^{*}=\sum_{1}^{\infty} V_{n} . \tag{72}
\end{equation*}
$$

Proof. In view of (70), letting $m \rightarrow \infty$, (71) immediately follow.

5. Instability

Theorem 6. Suppose there exists an $\bar{a}^{2} \in \mathbb{R}^{+}$such that

$$
\begin{equation*}
I_{1}\left(\bar{a}^{2}\right)>0 \tag{73}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{1}\left(\bar{a}^{2}\right) \leqslant 0 . \tag{74}
\end{equation*}
$$

Then (6) is L^{2}-unstable.
Proof. In the case (73) with $A_{1}>0, \forall a^{2} \in \mathbb{R}^{+}$, in view of (72) and (63), it turns out that

$$
\begin{equation*}
E \geqslant E_{1} \geqslant \frac{V_{1}}{(1+\mu) A_{1}} \tag{75}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{d V_{1}}{d t}=2 I_{1} A_{1} E_{1} \geqslant \frac{2 I_{1}}{1+\mu} V_{1}, \tag{76}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
V_{1} \geqslant V_{1}(0) \exp \left(\frac{2 I_{1}}{1+\mu} t\right) \tag{77}
\end{equation*}
$$

In the case (74), in view of $\left\{b_{31}>0, \forall a^{2}\right\}$, we introduce the functional

$$
\begin{equation*}
W=\frac{1}{2}\left(\|X\|^{2}+\|Y\|^{2}\right) \tag{78}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
X=\left(b_{1}-\lambda_{1}\right) \Gamma^{*}-b_{3} \theta^{*}, \tag{7}\\
Y=\left(b_{1}-\lambda_{2}\right) \Gamma^{*}-b_{3} \theta^{*}, \\
\lambda_{1}+\lambda_{2}=\left[I_{1}\right]_{a=\bar{a}}, \quad \lambda_{1} \lambda_{2}=\left[A_{1}\right]_{a=\bar{a}}, \\
b_{1}=\left[b_{11}\right]_{a=\bar{a}}, \quad b_{3}=\left[b_{31}\right]_{a=\bar{a}}, \quad \theta^{*}=\left[\theta_{1}\right]_{a=\bar{a}}, \quad \Gamma^{*}=\left[\Gamma_{1}\right]_{a=\bar{a}} .
\end{array}\right.
$$

By straightforward calculations (cf. Appendix A.2), it follows that

$$
\left\{\begin{array}{l}
\theta^{*}=\frac{1}{b_{3}\left(\lambda_{2}-\lambda_{1}\right)}\left[\left(b_{1}-\lambda_{2}\right) X-\left(b_{1}-\lambda_{1}\right) Y\right] \tag{80}\\
\Gamma^{*}=\frac{1}{\lambda_{2}-\lambda_{1}}(X-Y)
\end{array}\right.
$$

and, in view of (41)—for $n=1$ and $a=\bar{a}$-we obtain

$$
\left\{\begin{array}{l}
\frac{\partial X}{\partial t}=\lambda_{1} X+F \tag{81}\\
\frac{\partial Y}{\partial t}=\lambda_{2} Y+G
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
F=b_{3} \mathbf{U}_{m} \cdot \nabla \theta^{*}-\frac{1}{\varepsilon}\left(b_{1}-\lambda_{1}\right) \overline{\mathbf{U}}_{m} \cdot \nabla \Gamma^{*} \tag{82}\\
G=b_{3} \mathbf{U}_{m} \cdot \nabla \theta^{*}-\frac{1}{\varepsilon}\left(b_{1}-\lambda_{2}\right) \overline{\mathbf{U}}_{m} \cdot \nabla \Gamma^{*} \\
\overline{\mathbf{U}}_{m}=\left[\mathbf{U}_{m}\right]_{a=\bar{a}}
\end{array}\right.
$$

By virtue of (74), the eigenvalues λ_{i} are real, nonnegative numbers, hence (81) implies

$$
\begin{equation*}
\frac{d W}{d t}=\lambda_{1}\|X\|^{2}+\langle X, F\rangle+\lambda_{2}\|Y\|^{2}+\langle Y, G\rangle \tag{83}
\end{equation*}
$$

On the other hand $\forall a^{2}$, (28) implies

$$
\begin{equation*}
\langle X, F\rangle=\langle Y, G\rangle=0, \tag{84}
\end{equation*}
$$

hence the instability follows from

$$
\begin{equation*}
\frac{d W}{d t}>0, \quad(W(0), t) \in \mathbb{R}^{+} \times \mathbb{R}^{+} \tag{85}
\end{equation*}
$$

Theorem 7. Let

$$
\begin{equation*}
\epsilon L e>1, \quad R>R_{C} . \tag{86}
\end{equation*}
$$

Then (6) is nonlinearly L^{2}-unstable.
Proof. In view of (52), it follows that

$$
\epsilon L e>1 \quad \Rightarrow \quad R_{C}=R_{C}^{(2)}=\frac{\mathcal{C}}{\epsilon}+\left(1+\frac{1}{\epsilon L e}\right) R_{B}
$$

and hence $(86)_{2}$ implies

$$
\begin{equation*}
R=\frac{\mathcal{C}}{\epsilon}+\left(1+\frac{1}{\epsilon L e}\right)\left(R_{B}+k\right) \tag{87}
\end{equation*}
$$

k being a positive constant. If

$$
\begin{equation*}
R_{C}^{(2)}<R<R_{C}^{(1)} \tag{88}
\end{equation*}
$$

then (87) implies

$$
\left\{\begin{array}{l}
I_{1}\left(a^{2}\right)=\gamma_{1}\left[R-\frac{\mathcal{C}}{\epsilon}-\frac{\xi_{1}}{\gamma_{1}}\left(1+\frac{1}{\epsilon L e}\right)\right]=\gamma_{1}\left(1+\frac{1}{\epsilon L e}\right)\left(R_{B}+k-\frac{\xi_{1}}{\gamma_{1}}\right) \tag{89}\\
A_{1}\left(a^{2}\right)>\frac{\xi_{1} \gamma_{1}}{\epsilon L e}\left(\frac{\xi_{1}}{\gamma_{1}}+L e \mathcal{C}-R_{C}^{(1)}\right)=\frac{\xi_{1} \gamma_{1}}{\epsilon L e}\left(\frac{\xi_{1}}{\gamma_{1}}-R_{B}\right)
\end{array}\right.
$$

Let $0<\varepsilon_{1}<1$ and consider the equation

$$
\begin{equation*}
\frac{\xi_{1}\left(a^{2}\right)}{\gamma_{1}\left(a^{2}\right)}=R_{B}+\varepsilon_{1} k \tag{90}
\end{equation*}
$$

having the positive roots

$$
\begin{equation*}
\bar{a}^{2}=\frac{4 \pi^{2}+\varepsilon_{1} k \pm \sqrt{\left(4 \pi^{2}+\varepsilon_{1} k\right)^{2}-4 \pi^{4}}}{2} . \tag{91}
\end{equation*}
$$

It turns out that $\left\{I_{1}(\bar{a})>0, A_{1}(\bar{a})>0\right\}$ and the instability comes from Theorem 6. In the case

$$
\begin{equation*}
R>R_{C}^{(1)}>R_{C}^{(2)} \tag{92}
\end{equation*}
$$

there exist two positive constants k, k_{1} such that (87) and

$$
\begin{equation*}
R=R_{C}^{(1)}+k_{1} \tag{93}
\end{equation*}
$$

hold. It follows that

$$
\left\{\begin{array}{l}
I_{1}=\gamma_{1}\left(1+\frac{1}{\epsilon L e}\right)\left(R_{B}+k-\frac{\xi_{1}}{\gamma_{1}}\right) \tag{94}\\
A_{1}=\frac{\xi_{1} \gamma_{1}}{\epsilon L e}\left(\frac{\xi_{1}}{\gamma_{1}}-R_{B}-k_{1}\right)
\end{array}\right.
$$

If $k>k_{1}$, then for any \bar{a} such that

$$
\begin{equation*}
R_{B}+k_{1}<\frac{\xi_{1}(\bar{a})}{\gamma_{1}(\bar{a})}<R_{B}+k \tag{95}
\end{equation*}
$$

one obtains $\left\{I_{1}(\bar{a})>0, A_{1}(\bar{a})>0\right\}$ and instability follows. If $k \leqslant k_{1}$, then for any \bar{a} such that

$$
\begin{equation*}
\frac{\xi_{1}(\bar{a})}{\gamma_{1}(\bar{a})}<R_{B}+k \tag{96}
\end{equation*}
$$

it follows that (74) is established.

Theorem 8. Let

$$
\left\{\begin{array}{l}
\varepsilon L e \leqslant 1, \quad \mathcal{C} \leqslant \mathcal{C}^{*}, \tag{97}\\
R>R_{C} .
\end{array}\right.
$$

Then (6) is L^{2}-unstable.
Proof. In view of (52), it follows that

$$
\left\{\epsilon L e \leqslant 1, \quad \mathcal{C} \leqslant \mathcal{C}^{*}\right\} \quad \Rightarrow \quad R_{C}=R_{C}^{(1)}=R_{B}+L e \mathcal{C}
$$

and hence (97) implies (93)-(94) 2 and (74) for any \bar{a} such that

$$
\begin{equation*}
R_{B}<\frac{\xi_{1}(\bar{a})}{\gamma_{1}(\bar{a})}<R_{B}+k_{1} . \tag{98}
\end{equation*}
$$

Remark 3. In the case $\left\{I_{1}=0, A_{1}>0\right\}$ it follows that $\left\{I_{n}<0, A_{n}>0\right\}, \forall n>1$. By virtue of (66), it turns out that
(i) (6) is (simply) a L^{2}-stable center;
(ii) all the harmonics tend to zero, except the principal one $(n=1)$.

6. Proof of the main theorem

Collecting the L^{2}-stability (instability) results obtained, we have to show that they can be incapsulated in Theorem 1. By virtue of

$$
\left\{\begin{array}{l}
I_{n}=\gamma_{n}\left[R-\frac{C}{\varepsilon}-\left(1+\frac{1}{\varepsilon L e}\right) \frac{\xi_{n}}{\gamma_{n}}\right] \tag{99}\\
A_{n}=\frac{\xi_{n} \gamma_{n}}{\varepsilon L e}\left(\frac{\xi_{n}}{\gamma_{n}}+L e C-R\right), \\
\gamma_{n}>0, \quad \xi_{n}>0, \quad \frac{\partial}{\partial n}\left(\frac{\xi_{n}}{\gamma_{n}}\right)>0, \quad \forall a^{2},
\end{array}\right.
$$

it follows that $\left[\forall\left(n^{2}, a^{2}\right) \in \mathbb{N}^{+} \times \mathbb{R}^{+}\right]$

$$
I_{1}<0 \quad \Rightarrow \quad I_{n}<0 ; \quad A_{1}>0 \quad \Rightarrow \quad A_{n}>0
$$

and that $A_{\bar{n}}\left(\bar{a}^{2}\right) \leqslant 0$ only if $A_{1}\left(\bar{a}^{2}\right) \leqslant 0$. Taking into account (56)3, Theorems $2-8$ and

$$
\left\{\begin{array}{l}
I_{1}<0, \\
A_{1}>0,
\end{array} \forall a^{2} \quad \Rightarrow \quad R<R_{C},\right.
$$

the proof of Theorem 1, by virtue of ($a_{1}=b_{11}, a_{2}=b_{21}, a_{3}=b_{31}, a_{4}=b_{41}$), immediately follows.

7. Rotating layer

When the layer rotates with constant angular velocity $\underline{\omega}_{*}=\omega_{*} \mathbf{k}$ about the vertical z axis, (1) becomes

$$
\left\{\begin{array}{l}
\nabla p=-\frac{\mu}{k} \mathbf{v}+\rho_{f} \mathbf{g}-2 \frac{\rho_{0}}{\varepsilon} \underline{\omega}_{*} \times \mathbf{v} \tag{100}\\
\nabla \cdot \mathbf{v}=0 \\
\tilde{A} T_{, t}+\mathbf{v} \cdot \nabla T=k_{T} \Delta T \\
\varepsilon C, t+\mathbf{v} \cdot \nabla C=k_{C} \Delta C
\end{array}\right.
$$

with

$$
\begin{equation*}
p=p_{1}-\frac{1}{2} \rho_{0}\left[\underline{\omega}_{*} \times \mathbf{k}\right]^{2} \tag{101}
\end{equation*}
$$

under the boundary conditions (3). By using the same scalings as in Section 1, the dimensionless version of Eqs. (100) is

$$
\left\{\begin{array}{l}
\nabla p=-\mathbf{v}+(R T-\mathcal{C} C) \mathbf{k}+\mathcal{T} \mathbf{v} \times \mathbf{k} \tag{102}\\
\nabla \cdot \mathbf{v}=0 \\
T_{, t}+\mathbf{v} \cdot \nabla T=\Delta T \\
\varepsilon L e C_{, t}+\mathbf{v} \cdot \nabla C=\Delta C
\end{array}\right.
$$

where $\mathcal{T}=\frac{2 k \omega_{*}}{\varepsilon v}$ is the Taylor-Darcy number. Under the boundary data (5), (6) continues to be the only equilibrium state admissible. The equations governing the perturbations [$\mathbf{u}=$ $(u, v, w), \theta, \Gamma]$ are easily found to be

$$
\left\{\begin{array}{l}
\nabla \tilde{\pi}=-\mathbf{u}+(R \theta-\mathcal{C} \Gamma) \mathbf{k}+\mathcal{T} \mathbf{u} \times \mathbf{k} \tag{103}\\
\nabla \cdot \mathbf{u}=0 \\
\theta_{, t}=w+\Delta T-\mathbf{u} \cdot \nabla \theta \\
\varepsilon L e C_{, t}=w+\Delta \Gamma-L e \mathbf{u} \cdot \nabla \Gamma
\end{array}\right.
$$

under the boundary data (11). Following the procedure of Section 2, it turns out that

$$
\left\{\begin{array}{l}
\Delta w+\mathcal{T}^{2} w_{z z}=\Delta_{1}(R \theta-L e \mathcal{C} \Gamma) \tag{104}\\
\nabla \cdot \mathbf{u}=0 \\
\frac{\partial \theta}{\partial t}=\Delta \theta+w-\mathbf{u} \cdot \nabla \theta \\
\frac{\partial \Gamma}{\partial t}=\frac{1}{\epsilon L e}(\Delta \Gamma+w)-\frac{1}{\epsilon} \mathbf{u} \cdot \nabla \Gamma
\end{array}\right.
$$

under the boundary data (11). It easily follows that the general solution of $(104)_{1}-(104)_{2}$ is given by

$$
\begin{equation*}
w=\sum_{1}^{\infty} w_{n}, \quad \mathbf{u}=\sum_{1}^{\infty} \mathbf{u}_{n} \tag{105}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
w_{n}=\gamma_{n}^{*}\left(R \theta_{n}-\mathcal{C} \Gamma_{n}\right) \tag{106}\\
\gamma_{n}^{*}=\frac{a^{2}}{\xi_{n}+\mathcal{T}^{2} n^{2} \pi^{2}}, \quad \xi_{n}=a^{2}+n^{2} \pi^{2} \\
\mathbf{u}_{n}=\left(\frac{1}{a^{2}} \frac{\partial^{2} w_{n}}{\partial x \partial z}, \frac{1}{a^{2}} \frac{\partial^{2} w_{n}}{\partial y \partial z}, w_{n}\right)
\end{array}\right.
$$

Then-following step by step-the procedures of Sections 3-6, and setting

$$
\begin{equation*}
R_{B}^{*}=\pi^{2}\left(1+\sqrt{1+\mathcal{T}^{2}}\right)^{2}=\inf \frac{\xi_{n}}{\gamma_{n}^{*}}, \tag{107}
\end{equation*}
$$

one finds that, on replacing R_{B} by R_{B}^{*}, each result of Sections 4-6 continues to hold. In particular, the main Theorem 1 continues to hold with $a^{2}+(1+\mathcal{T}) \pi^{2}$ in place of $a^{2}+\pi^{2}$.

Acknowledgments

This work has been performed under the auspices of the G.N.F.M. of I.N.D.A.M. and M.I.U.R. (P.R.I.N. 2005): "Nonlinear Propagation and Stability in Thermodynamical Processes of Continuous Media." The author thanks the comments and the accuracy of the anonymous reviewer.

Appendix A.1. Uniqueness theorem

Let $(\mathbf{u}, \theta, \Gamma, \tilde{\pi}),\left(\mathbf{u}^{*}, \theta^{*}, \Gamma^{*}, \tilde{\pi}^{*}\right)$ be two perturbations to the rest state (6) having the same initial data. Then-by virtue of the uniqueness theorem for (1)-it turns out that

$$
\left\{\begin{array}{l}
\mathbf{u}=\mathbf{u}^{*}, \tag{108}\\
\theta=\theta^{*}, \\
\Gamma=\Gamma^{*}
\end{array} \quad \forall t \geqslant 0\right.
$$

Therefore, in view of

$$
\begin{align*}
& \theta=\sum_{n=1}^{m} \tilde{\theta}_{n} \sin (n \pi z), \tag{109}\\
& \theta^{*}=\sum_{n=1}^{m} \tilde{\theta}_{n}^{*} \sin (n \pi z) \tag{110}
\end{align*}
$$

it turns out that

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\tilde{\theta}_{n}-\tilde{\theta}_{n}^{*}\right) \sin (n \pi z)=0 \quad \forall t \geqslant 0 \tag{111}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\|\tilde{\theta}_{n}-\tilde{\theta}_{n}^{*}\right\|=0 \quad \forall n \leqslant m \in \mathbb{N}^{+}, t \in \mathbb{R}^{+} \tag{112}
\end{equation*}
$$

Analogously

$$
\left\{\begin{array}{l}
\Gamma=\sum_{1}^{m} \tilde{\Gamma}_{n} \sin (n \pi z), \tag{113}\\
\Gamma^{*}=\sum_{1}^{m} \tilde{\Gamma}_{n}^{*} \sin (n \pi z)
\end{array} \Rightarrow\left\|\tilde{\Gamma}_{n}-\tilde{\Gamma}_{n}^{*}\right\|=0 \quad \forall n \leqslant m \in \mathbb{N}^{+}, t \in \mathbb{R}^{+}\right.
$$

and hence

$$
\left\{\begin{array}{l}
\mathbf{u}=\sum_{1}^{m} \tilde{\mathbf{u}}_{n} \sin (n \pi z), \tag{114}\\
\mathbf{u}^{*}=\sum_{1}^{m} \tilde{\mathbf{u}}_{n}^{*} \sin (n \pi z)
\end{array} \Rightarrow\left\|\tilde{\mathbf{u}}_{n}-\tilde{\mathbf{u}}_{n}^{*}\right\|=0 \quad \forall n \leqslant m \in \mathbb{N}^{+}, t \in \mathbb{R}^{+}\right.
$$

In conclusion, one obtains that each harmonic $\left(\mathbf{u}_{n}, \theta_{n}, \Gamma_{n}\right)$ of the perturbation field ($\mathbf{u}=\sum_{1}^{m} \mathbf{u}_{n}$, $\theta=\sum_{1}^{m} \theta_{m}, \Gamma=\sum_{1}^{m} \Gamma_{m}$) is uniquely determined by its initial value.

Appendix A.2. Time derivative of W along (41)

For the sake of generality we consider

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\alpha^{*} \tag{115}\\
\frac{\partial v}{\partial t}=\beta^{*}
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
\alpha^{*}=a_{11} u+a_{12} v+\psi, \tag{116}\\
\beta^{*}=a_{21} u+a_{22} v+\psi^{*},
\end{array}\right.
$$

$a_{i j}(i, j=1,2)$ being constants such that $a_{11} a_{22}-a_{12} a_{21}<0$ and $\psi=\psi(u, v), \psi^{*}=\psi^{*}(u, v)$. By virtue of

$$
\left\{\begin{array}{l}
u=\frac{1}{a_{21}\left(\lambda_{2}-\lambda_{1}\right)}\left[\left(a_{11}-\lambda_{2}\right) X-\left(a_{11}-\lambda_{1}\right) Y\right] \tag{117}\\
v=\frac{1}{\lambda_{2}-\lambda_{1}}(X-Y)
\end{array}\right.
$$

it turns out that

$$
\left\{\begin{array}{l}
\left(a_{11}-\lambda_{2}\right) \frac{\partial X}{\partial t}-\left(a_{11}-\lambda_{1}\right) \frac{\partial Y}{\partial t}=a_{21}\left(\lambda_{2}-\lambda_{1}\right) \alpha^{*} \tag{118}\\
\frac{\partial X}{\partial t}-\frac{\partial Y}{\partial t}=\left(\lambda_{2}-\lambda_{1}\right) \beta^{*}
\end{array}\right.
$$

and hence

$$
\left\{\begin{array}{l}
\frac{\partial X}{\partial t}=-a_{21} \alpha^{*}+\left(a_{11}-\lambda_{1}\right) \beta^{*} \tag{119}\\
\frac{\partial Y}{\partial t}=-a_{21} \alpha^{*}+\left(a_{11}-\lambda_{2}\right) \beta^{*}
\end{array}\right.
$$

Taking into account that

$$
\left\{\begin{array}{l}
a_{11}-\lambda_{2}=\lambda_{1}-a_{22}, \quad a_{11}-\lambda_{1}=\lambda_{2}-a_{22} \tag{120}\\
a_{11}\left(a_{11}-\lambda_{2}\right)+a_{12} a_{21}=\lambda_{1}\left(a_{11}-\lambda_{2}\right) \\
a_{11}\left(a_{11}-\lambda_{1}\right)+a_{12} a_{21}=\lambda_{2}\left(a_{11}-\lambda_{1}\right)
\end{array}\right.
$$

one obtains

$$
\left\{\begin{align*}
& \alpha^{*}= \frac{1}{a_{21}\left(\lambda_{2}-\lambda_{1}\right)}\left[\lambda_{1}\left(a_{11}-\lambda_{2}\right) X-\lambda_{2}\left(a_{11}-\lambda_{1}\right) Y\right]+\psi \tag{121}\\
& \beta^{*}= \frac{1}{\lambda_{2}-\lambda_{1}}\left(\lambda_{1} X-\lambda_{2} Y\right)+\psi^{*} \\
& a_{21} \alpha^{*}= \frac{1}{\lambda_{2}-\lambda_{1}}\left\{\left[a_{11}\left(a_{11}-\lambda_{2}\right)+a_{21} a_{12}\right] X\right. \\
&\left.-\left[a_{11}\left(a_{11}-\lambda_{1}\right)+a_{12} a_{21}\right] Y\right\}+a_{21} \psi \\
&= \frac{1}{\lambda_{2}-\lambda_{1}}\left[\lambda_{1}\left(a_{11}-\lambda_{2}\right) X-\lambda_{2}\left(a_{11}-\lambda_{1}\right) Y\right]+a_{21} \psi \\
&\left(a_{11}-\lambda_{1}\right) \beta^{*}=\frac{a_{11}-\lambda_{1}}{\lambda_{2}-\lambda_{1}}\left[\lambda_{1} X-\lambda_{2} Y\right]+\left(a_{11}-\lambda_{1}\right) \psi^{*} \\
&\left(a_{11}-\lambda_{2}\right) \beta^{*}=\frac{a_{11}-\lambda_{2}}{\lambda_{2}-\lambda_{1}}\left[\lambda_{1} X-\lambda_{2} Y\right]+\left(a_{11}-\lambda_{2}\right) \psi^{*}
\end{align*}\right.
$$

and hence by virtue of

$$
\left\{\begin{array}{l}
{\left[\left(a_{11}-\lambda_{1}\right) \lambda_{1}-\lambda_{1}\left(a_{11}-\lambda_{2}\right)\right] X+\left[\left(a_{11}-\lambda_{1}\right) \lambda_{2}-\lambda_{2}\left(a_{11}-\lambda_{1}\right)\right] Y} \tag{122}\\
\quad=\lambda_{1}\left(\lambda_{2}-\lambda_{1}\right) X, \\
{\left[\left(a_{11}-\lambda_{2}\right) \lambda_{1}-\lambda_{1}\left(a_{11}-\lambda_{2}\right)\right] X+\left[\left(a_{11}-\lambda_{1}\right) \lambda_{2}-\lambda_{2}\left(a_{11}-\lambda_{2}\right)\right] Y} \\
\quad=\lambda_{2}\left(\lambda_{2}-\lambda_{1}\right) Y
\end{array}\right.
$$

it turns out that

$$
\left\{\begin{array}{l}
-a_{21} \alpha^{*}+\left(a_{11}-\lambda_{1}\right) \beta^{*}=\lambda_{1} X+F^{*} \tag{123}\\
-a_{21} \alpha+\left(a_{11}-\lambda_{2}\right) \beta=\lambda_{2}+G^{*} \\
F^{*}=-a_{21} \psi+\left(a_{11}-\lambda_{1}\right) \psi^{*} \\
G^{*}=-a_{21} \psi+\left(a_{11}-\lambda_{2}\right) \psi^{*}
\end{array}\right.
$$

Therefore in view of (119) and (123) one obtains

$$
\left\{\begin{array}{l}
\frac{\partial X}{\partial t}=\lambda_{1} X+F^{*} \tag{124}\\
\frac{\partial Y}{\partial t}=\lambda_{2} Y+G^{*}
\end{array}\right.
$$

and hence

$$
W=\frac{1}{2}\left[\|X\|^{2}+\|Y\|^{2}\right]
$$

implies

$$
\begin{equation*}
\frac{d W}{d t}=\lambda_{1}\|X\|^{2}+\left\langle X, F^{*}\right\rangle+\lambda_{2}\|Y\|^{2}+\left\langle Y, G^{*}\right\rangle . \tag{125}
\end{equation*}
$$

Appendix A.3. Time derivative of $V_{\boldsymbol{n}}$ along (41)

For the sake of generality we consider (115)-(116). Setting [18]

$$
\begin{equation*}
A=a_{11} a_{22}-a_{12} a_{21}, \quad I=a_{11}+a_{22} \tag{126}
\end{equation*}
$$

and introducing the functional

$$
\begin{equation*}
V=\frac{1}{2}\left[A\left(\|u\|^{2}+\|v\|^{2}\right)+\left\|a_{11} v-a_{12} u\right\|^{2}+\left\|a_{12} v-a_{22} u\right\|^{2}\right] \tag{127}
\end{equation*}
$$

it follows that

$$
\begin{align*}
\frac{d V}{d t}= & \left(A+a_{21}^{2}+a_{22}^{2}\right)\left\langle u, u_{t}\right\rangle+\left(A+a_{11}^{2}+a_{12}^{2}\right)\left\langle v, v_{t}\right\rangle \\
& -\left(a_{11} a_{21}+a_{12} a_{22}\right)\left\langle v, u_{t}\right\rangle-\left(a_{11} a_{31}+a_{12} a_{22}\right)\left\langle u, v_{t}\right\rangle . \tag{128}
\end{align*}
$$

Since, along (115)-(116), it turns out that

$$
\left\{\begin{array}{l}
\left\langle u, u_{t}\right\rangle=a_{11}\|u\|^{2}+a_{12}\langle u, v\rangle+\langle u, \psi\rangle \tag{129}\\
\left\langle v, v_{t}\right\rangle=a_{21}\langle u, v\rangle+a_{22}\|v\|^{2}+\left\langle v, \psi^{*}\right\rangle \\
\left\langle v, u_{t}\right\rangle=a_{11}\langle u, v\rangle+a_{12}\|v\|^{2}+\langle v, \psi\rangle \\
\left\langle u, v_{t}\right\rangle=a_{21}\|u\|^{2}+a_{22}\langle u, v\rangle+\left\langle u, \psi^{*}\right\rangle
\end{array}\right.
$$

by straightforward calculations it follows that

$$
\begin{equation*}
\frac{d V}{d t}=A I\left(\|u\|^{2}+\|v\|^{2}\right)+\Psi^{* *} \tag{130}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\Psi^{* *}=\left\langle\alpha_{1} u-\alpha_{3} v, \psi\right\rangle+\left\langle\alpha_{2} v-\alpha_{3} u, \psi^{*}\right\rangle, \tag{131}\\
\alpha_{1}=A+a_{21}^{2}+a_{22}^{2}, \quad \alpha_{2}=A+a_{11}^{2}+a_{12}^{2}, \quad \alpha_{3}=a_{11} a_{21}+a_{12} a_{22} .
\end{array}\right.
$$

References

[1] J.N. Flavin, S. Rionero, Qualitative Estimates for Partial Differential Equations, CRC Press, Boca Raton, FL, 1996.
[2] D.A. Nield, A. Bejan, Convection in Porous Media, Springer-Verlag, New York, 1992.
[3] D.D. Joseph, Stability of Fluid Motions I, II, Springer-Verlag, New York, 1976.
[4] B. Straughan, The Energy Method, Stability, and Nonlinear Convection, second ed., Appl. Math. Sci., vol. 91, Springer-Verlag, 2004.
[5] F. Capone, S. Rionero, On the onset of convection for a double diffusive mixture in a porous medium under periodic in space boundary conditions, in: R. Monaco, S. Pennisi, S. Rionero, T. Ruggeri (Eds.), Proceedings "Wascom2003" 12th Conference on Waves and Stability in Continuous Media, World Scientific, 2004, pp. 109-115.
[6] S. Lombardo, G. Mulone, S. Rionero, Global stability of the Bénard problem for a mixture with superimposed plane parallel shear flows, Math. Methods Appl. Sci. 23 (2000) 1447.
[7] S. Lombardo, G. Mulone, S. Rionero, Global nonlinear exponential stability of the conduction-diffusion solution for Schmidt numbers greater than Prandtl numbers, J. Math. Anal. Appl. 262 (2001) 191.
[8] S. Lombardo, G. Mulone, B. Straughan, Nonlinear stability in the Bénard problem for a double-diffusive mixture in a porous medium, Math. Methods Appl. Sci. 24 (2001) 1229.
[9] G. Mulone, On the nonlinear stability of a fluid layer of a mixture heated and salted from below, Contin. Mech. Thermodyn. 6 (1994) 161.
[10] G. Mulone, S. Rionero, Unconditional nonlinear exponential stability in the Bénard problem for a mixture: Necessary and sufficient conditions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 9 (1998) 221.
[11] F. Capone, S. Rionero, Nonlinear stability of a convective motion in a porous layer driven by horizontally periodic temperature gradient, Contin. Mech. Thermodyn. 15 (2003) 529.
[12] S. Lombardo, G. Mulone, Nonlinear stability and convection for laminar flows in a porous medium with Brinkman law, Math. Methods Appl. Sci. 26 (2003) 453.
[13] S. Rionero, On instability sources in dynamical systems, in: S. Rionero, G. Romano (Eds.), Trends and Applications of Mathematics to Mechanics, STAMM, 2002, Springer, 2004, pp. 141-154.
[14] F. Capone, S. Rionero, On the instability of double diffusive convection in porous media under boundary data periodic in space, in: S. Rionero, G. Romano (Eds.), Trends and Applications of Mathematics to Mechanics, STAMM, 2002, Springer, 2004, pp. 1-8.
[15] S. Rionero, Functionals for the coincidence between linear and nonlinear stability with applications to spatial ecology and double diffusive convection, in: R. Monaco, G. Mulone, S. Rionero, T. Rugeri (Eds.), Proceedings "Wascom 2005" 13th Conference on Waves and Stability in Continuous Media, World Scientific, 2006, pp. 461-474.
[16] F. Capone, M. Gentile, S. Rionero, Influence of linear concentration heat source and parabolic density on penetrative convection onset, in: R. Monaco, G. Mulone, S. Rionero, T. Rugeri (Eds.), Proceedings "Wascom 2005" 13th Conference on Waves and Stability in Continuous Media, World Scientific, 2006, pp. 77-82.
[17] F. Capone, M. Gentile, S. Rionero, On penetrative convection in porous media driven by quadratic sources, in: R. Monaco, G. Mulone, S. Rionero, T. Rugeri (Eds.), Proceedings "Wascom 2005" 13th Conference on Waves and Stability in Continuous Media, World Scientific, 2006, pp. 83-88.
[18] S. Rionero, A rigorous reduction of the L^{2}-stability of the solutions to a nonlinear binary reaction-diffusion system of PDEs to the stability of the solutions to a linear binary system of ODEs, J. Math. Anal. Appl. 319 (2) (2006) 377-397.

[^0]: E-mail address: rionero@unina.it.

