A new approach to nonlinear L^2-stability of double diffusive convection in porous media: Necessary and sufficient conditions for global stability via a linearization principle

Salvatore Rionero

University of Naples Federico II, Department of Mathematics and Applications “R. Caccioppoli,” Complesso Universitario Monte S. Angelo, Via Cinzia, 80126 Naples, Italy

Received 10 March 2006
Available online 16 December 2006
Submitted by J. Lavery

Abstract

A new approach to nonlinear L^2-stability for double diffusive convection in porous media is given. An auxiliary system Σ of PDEs and two functionals V, W are introduced. Denoting by L and N the linear and nonlinear operators involved in Σ, it is shown that Σ-solutions are linearly linked to the dynamic perturbations, and that V and W depend directly on L-eigenvalues, while (along Σ) $\frac{dV}{dt}$ and $\frac{dW}{dt}$ not only depend directly on L-eigenvalues but also are independent of N. The nonlinear L^2-stability (instability) of the rest state is reduced to the stability (instability) of the zero solution of a linear system of ODEs. Necessary and sufficient conditions for general, global L^2-stability (i.e. absence of regions of subcritical instabilities for any Rayleigh number) are obtained, and these are extended to cover the presence of a uniform rotation about the vertical axis.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Porous media; Global nonlinear stability; Peculiar Lyapunov functionals; Linearization principle

E-mail address: rionero@unina.it.
1. Introduction

The equations governing the motion of a binary fluid mixture bounded by the horizontal planes \(z = 0, \ z = d > 0 \), in the Darcy–Oberbeck–Boussinesq scheme, are \([1–4]\)

\[
\begin{align*}
\nabla p &= -\frac{\mu}{k}v + \rho_f g, \\
\nabla \cdot v &= 0, \\
\hat{A}T_{,t} + v \cdot \nabla T &= k_T \Delta T, \\
\varepsilon C_{,t} + v \cdot \nabla C &= k_C \Delta C,
\end{align*}
\]

where

\[
\rho_f = \rho_0 \left[1 - \gamma_T (T - T_0) + \gamma_C (C - C_0) \right]
\]

and where the following notation is used:

- \(\gamma_T \) = thermal expansion coefficient,
- \(\gamma_C \) = solute expansion coefficient,
- \(\varepsilon \) = porosity,
- \(v \) = seepage velocity field,
- \(C \) = concentration field,
- \(p \) = pressure field,
- \(T \) = temperature field,
- \(\mu \) = viscosity,
- \(k_T \) = thermal diffusivity,
- \(k_C \) = solute diffusivity,
- \(c \) = specific heat of the solid,
- \(\hat{A} = \frac{(\rho_0 c)_m}{(\rho_0 c_p)_f} \),
- \(\rho_0 \) = fluid density at \(T_0, C_0 \),
- \(k_p \) = permeability coefficient,
- \(c_p \) = specific heat of fluid at constant pressure.

The subscripts \(m \) and \(f \) refer to the porous medium and the fluid, respectively.

To (1) we append the boundary conditions

\[
\begin{align*}
T_L &= T_0 + \frac{1}{2}(T_1 - T_2), \quad C_L = C_0 + \frac{1}{2}(C_1 - C_2) \quad \text{on} \ z = 0, \\
T_U &= T_0 - \frac{1}{2}(T_1 - T_2), \quad C_U = C_0 - \frac{1}{2}(C_1 - C_2) \quad \text{on} \ z = d,
\end{align*}
\]

with \(T_1 > T_2 \) and \(C_1 > C_2 \). By introducing the scaling

\[
\begin{align*}
\mathbf{x} &= d\mathbf{x}^*, \\
\tau &= \hat{A}d^2t^*, \\
v &= \frac{k_T}{d}v^*, \\
p^* &= \frac{k(p + \rho_0 g z)}{\mu k_T}, \\
T^* &= \frac{T - T_0}{T_1 - T_2}, \\
C^* &= \frac{C - C_0}{C_1 - C_2},
\end{align*}
\]

the dimensionless versions of (1) and (3)—omitting the stars—are respectively

\[
\begin{align*}
\nabla p &= -v + (RT - CC)k, \\
\nabla \cdot v &= 0, \\
T_{,t} + v \cdot \nabla T &= \Delta T, \\
\varepsilon Le C_{,t} + Le v \cdot \nabla C &= \Delta C, \\
\hat{T} &= \frac{1}{2}, \quad \hat{C} = \frac{1}{2} \quad \text{on} \ z = 0, \\
\hat{T} &= -\frac{1}{2}, \quad \hat{C} = -\frac{1}{2} \quad \text{on} \ z = 1,
\end{align*}
\]
with
\[
\begin{align*}
R &= \gamma T g(T_1 - T_2)kd \quad \text{(thermal Rayleigh number),} \\
C &= \gamma C g(C_1 - C_2)kd \quad \text{(solutal Rayleigh number),} \\
Le &= \frac{kT}{kC} \quad \text{(Levi number),} \\
v &= \frac{\mu}{\rho_0 g} \quad \text{(kinematic viscosity),} \\
\epsilon &= \frac{\tilde{A}}{A} \quad \text{(normalized porosity).}
\end{align*}
\]

Equations (4)–(5) admit the steady solution (motionless state)
\[
\begin{align*}
\nabla &p_s(z) = -(R + C)\left(z - \frac{1}{2}\right)k, \\
T_s(z) &= -(z - \frac{1}{2}), \\
C_s(z) &= -(z - \frac{1}{2}).
\end{align*}
\]
(6)

The stability of (6) has been considered by several authors (also when rotation about the vertical axis is incorporated) [4–18]. Precisely, denoting by

• $u = (u, v, w)$ the velocity perturbation field,
• θ the temperature perturbation field,
• Γ the concentration perturbation field,
• $R^{(L)}_C$ the critical Rayleigh number of linear stability,
• $R^{(E)}_C$ the critical Rayleigh number of nonlinear energy stability

and assuming that the perturbations $(u, v, w, \theta, \Gamma)$

(i) are periodic in the x and y directions respectively of periods $\frac{2\pi}{a_x}$ and $\frac{2\pi}{a_y}$,
(ii) on the periodicity cell $\Omega = [0, \frac{2\pi}{a_x}] \times [0, \frac{2\pi}{a_y}] \times [0, 1]$ (in order to guarantee uniqueness) u and v have zero mean value,
(iii) belong to $L^2(\Omega)$, $\forall t \in \mathbb{R}^+$,

the results on nonlinear energy stability [4–18], as far as we know, can be summarized as follows: there exists a bounded positive number $R^* \ll \infty$ such that

\[
R \leq R^* \\
\Rightarrow \begin{cases}
(1) \quad R^{(E)}_C = R^{(L)}_C \quad \text{(i.e. absence of regions of subcritical instabilities for)} \\
\quad \quad \quad R \leq R^{(E)}_C, \\
(2) \quad R \leq R^{(E)}_C \; \text{implies global nonlinear L^2-stability,} \\
\end{cases}
\]

\[
R > R^* \\
\Rightarrow \begin{cases}
(1) \quad R^{(E)}_C < R^{(L)}_C \quad \text{(i.e. existence of potential regions of subcritical instabilities),} \\
\quad \quad \quad \text{(2) } R < R^{(E)}_C \; \text{implies local nonlinear L^2-stability.}
\end{cases}
\]

In the present paper, I reconsider the problem with the aim of showing that in the case at hand
(I) $R^* = \infty$ (i.e. absence of regions of subcritical instabilities $\forall R > 0$),

(II) the nonlinear L^2-stability is always global.

Denoting by $L^2_\Omega(\Omega)$ the class of perturbations (u, θ, Γ) satisfying (i)–(iii) and such that all their first derivatives and second spatial derivatives can be expanded in a Fourier series absolutely and uniformly convergent in Ω, the aim is to derive the following (main) theorem:

Theorem 1. Motion (6) is globally asymptotically exponentially L^2-stable if and only if the zero solution of the linear binary system of ODEs

\[
\begin{align*}
\frac{d\xi}{dt} &= a_1\xi + a_2\eta, \\
\frac{d\eta}{dt} &= a_3\xi + a_4\eta
\end{align*}
\]

is stable for any value of the positive parameter a^2.

As far as we know, this is the first time that for double diffusive convection, coincidence of linear stability and global nonlinear L^2-stability of the rest state is established $\forall R$. In fact, for \(\{R_B = 4\pi^2, \ C^* = \frac{R_B}{\epsilon Le(\epsilon Le - 1)}\} \), the L^2-global stability conditions implied by (8) are

\[
\begin{align*}
\epsilon Le &\leq 1, \\
R &< R_B + Le C;
\end{align*}
\]

and coincide with those of linear stability $\forall R$. Therefore—in the case at hand—the absence of regions of subcritical instabilities is established.

The plan of the paper is as follows. In Section 2—dedicated to preliminaries—it is shown that u is linearly linked to (θ, Γ). In Section 3 an auxiliary system Σ of PDEs and a quadratic functional V (different from the $L^2(\Omega)$-norm of (θ, Γ)) are introduced. Denoting by L and N, respectively, the linear and nonlinear operators involved in Σ, it is shown that

(a) the solutions of Σ are linearly linked to the perturbations (u, θ, Γ) (Theorem 2);

(b) V depends in a simple direct way on the L eigenvalues;

(c) along Σ, $\frac{dV}{dt}$ not only depends in a simple direct way on the L eigenvalues, but also does not depend on N (Theorem 3).

Section 4 is devoted to the global nonlinear stability. By virtue of (c) conditions sufficient for guaranteeing global nonlinear L^2-stability are found (Theorems 4–5). Instability is considered in Section 5. By the introduction of a functional W having the properties (b)–(c) it is shown that the conditions found in Section 4 are necessary for the stability of the rest state (Theorems 6–8). Sections 6–7 are devoted to proof of the main theorem and its generalization to a rotating layer. The paper ends with an Appendices A.1–A.3 in which—for the sake of completeness—some results, used in the paper, are discussed.
2. Preliminaries

By virtue of (4)–(5), the equations governing the perturbations \((u, \theta, \Gamma)\) are

\[
\begin{align*}
\nabla \tilde{\pi} &= -u + (R\theta - C\Gamma)k, \\
\nabla \cdot u &= 0, \\
\frac{\partial \theta}{\partial t} + u \cdot \nabla \theta &= \Delta \theta + w, \\
\epsilon Le \frac{\partial \Gamma}{\partial t} + Le u \cdot \nabla \Gamma &= \Delta \Gamma + w
\end{align*}
\]

(10)

under the boundary conditions

\[
w = \theta = \Gamma = 0 \quad \text{on } z = 0, 1,
\]

(11)

\(\tilde{\pi}\) being the perturbation to the pressure field.

Since the sequence \(\{\sin n\pi z\} (n = 1, 2, \ldots)\) is a complete orthogonal system for \(L_2([0, 1])\), by virtue of the periodicity, it turns out that for \(\mathcal{L} \in \{w, \theta, \Gamma\}\) there exists a sequence \(\{\tilde{\mathcal{L}}_n(x, y, t)\}\) such that

\[
\mathcal{L} = \sum_{n=1}^{\infty} \tilde{\mathcal{L}}_n(x, y, t) \sin n\pi z, \quad \forall t \geq 0,
\]

(12)

with

\[
\Delta_1 \tilde{\mathcal{L}}_n = -a^2 \tilde{\mathcal{L}}_n, \quad \Delta_1 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}, \quad a^2 = a_x^2 + a_y^2.
\]

(13)

Setting

\[
\zeta = (\nabla \times u) \cdot k,
\]

(14)

in view of (10)2, one obtains

\[
\begin{align*}
\Delta_1 u &= -\frac{\partial^2 w}{\partial x \partial z} - \frac{\partial \zeta}{\partial y}, \\
\Delta_1 v &= -\frac{\partial^2 w}{\partial y \partial z} + \frac{\partial \zeta}{\partial y}.
\end{align*}
\]

(15)

On the other hand (10)1 implies \(\zeta = 0\), hence

\[
\begin{align*}
\Delta_1 u &= -\frac{\partial^2 w}{\partial x \partial z}, \\
\Delta_1 v &= -\frac{\partial^2 w}{\partial y \partial z},
\end{align*}
\]

and therefore one obtains

\[
\begin{align*}
u &= \sum_{n=1}^{\infty} \tilde{\bar{u}}_n(x, y, t) \frac{d}{dz} (\sin n\pi z), \\
v &= \sum_{n=1}^{\infty} \tilde{\bar{v}}_n(x, y, t) \frac{d}{dz} (\sin n\pi z), \\
\Delta_1 \tilde{\bar{u}}_n &= -a^2 \tilde{\bar{u}}_n, \\
\Delta_1 \tilde{\bar{v}}_n &= -a^2 \tilde{\bar{v}}_n,
\end{align*}
\]

\[
\begin{align*}
\tilde{u}_n &= \frac{1}{a^2} \frac{\partial \tilde{\bar{u}}_n}{\partial x}, \\
\tilde{v}_n &= \frac{1}{a^2} \frac{\partial \tilde{\bar{v}}_n}{\partial y}.
\end{align*}
\]

(16)
Then w, θ, Γ are the effective perturbation fields. These fields are not independent, however. In fact, from (10) it follows that

$$\nabla \times (\nabla \times u) \cdot k = \nabla \times \left[\nabla \times (R\theta - L\epsilon \Gamma) \right] \cdot k$$

i.e.

$$\Delta w = \Delta_1 (R\theta - L\epsilon \Gamma),$$

and (10) becomes

$$\begin{cases}
\Delta w = \Delta_1 (R\theta - L\epsilon \Gamma), \\
\nabla \cdot u = 0, \\
\frac{\partial \theta}{\partial t} = \Delta \theta + w - u \cdot \nabla \theta, \\
\frac{\partial \Gamma}{\partial t} = \frac{1}{\epsilon L} (\Delta \Gamma + w) - \frac{1}{\epsilon} u \cdot \nabla \Gamma.
\end{cases}$$

(17)

According to (12)

$$\begin{cases}
w_n = \tilde{w}_n(x, y, t) \sin n\pi z, \\
\theta_n = \tilde{\theta}_n(x, y, t) \sin n\pi z, \\
\Gamma_n = \tilde{\Gamma}_n(x, y, t) \sin n\pi z
\end{cases}$$

(18)

and, in view of (12)–(16), one obtains

$$\begin{cases}
\Delta w_n = -(n^2 \pi^2 + a^2) w_n, \\
u_n = (u_n, v_n, w_n), \\
u_n = \frac{1}{a^2} \frac{\partial^2 w_n}{\partial x \partial z}, \\
v_n = \frac{1}{a^2} \frac{\partial^2 w_n}{\partial y \partial z}, \\
\Delta_1 \theta_n = -a^2 \theta_n, \\
\Delta_1 \Gamma_n = -a^2 \Gamma_n.
\end{cases}$$

(19)

Therefore, setting

$$\gamma_n = \frac{a^2}{\xi_n}, \quad \xi_n = a^2 + n^2 \pi^2,$$

(20)

it follows that

$$\begin{cases}
w_n = \gamma_n (R\theta_n - L\epsilon \Gamma_n), \\
u_n = \left(\frac{1}{a^2} \frac{\partial^2 w_n}{\partial x \partial z}, \frac{1}{a^2} \frac{\partial^2 w_n}{\partial y \partial z}, w_n \right)
\end{cases}$$

(21)

satisfy, $\forall (a^2, n) \in \mathbb{R}^+ \times \mathbb{N}^+$, the boundary conditions

$$w_n = \theta_n = \Gamma_n = 0 \quad \text{on } z = 0, 1, \forall n \in \mathbb{N}^+, \quad (i)$$

$$\text{and } (17)_1 - (17)_2. \text{ Then—by virtue of linearity—the general solutions of } (17)_1, (17)_2 \text{ are}$$

$$w = \sum_{n=1}^{\infty} w_n, \quad u = \sum_{n=1}^{\infty} u_n$$

(23)

with w_n, u_n given by (21).
3. Linearization principle via an auxiliary system

Let $\tilde{Z}_p = \tilde{\theta}_p \sin(p\pi z)$ with $\tilde{\theta}_p, \tilde{\Gamma}_p \in \{ \tilde{\theta}_p, \tilde{\Gamma}_p \}$, $p \in \mathbb{N}^+$, and let $\langle \cdot, \cdot \rangle$, $\langle \langle \cdot, \cdot \rangle \rangle$ denote, respectively, the scalar product in $L^2(\Omega)$ and $L^2[0, 1]$. The following lemmas hold.

Lemma 1. Let $p, q, n \in \mathbb{N}^+$. Then $\max(p, q) \leq n$ implies

$$\langle \langle \sin(p\pi z), \sin(q\pi z) \rangle \rangle = \begin{cases} 1/2 & \text{for } p = q, \\ 0 & \text{for } p \neq q, \end{cases} \quad (24)$$

$$\langle \langle \sin(q\pi z) \sin(n\pi z), \cos(p\pi z) \rangle \rangle = \begin{cases} 0 & \text{for } p + q \neq n, \\ 1/4 & \text{for } p + q = n. \end{cases} \quad (25)$$

Proof. (24) immediately follows from

$$\langle \langle \sin(p\pi z), \sin(q\pi z) \rangle \rangle = \left\langle \frac{1}{2}, \cos[(p - q)\pi z] - \cos[(p + q)\pi z] \right\rangle.$$

Concerning (25), we observe that, by virtue of

$$\begin{align*}
\sin(q\pi z) \sin(n\pi z) &= \frac{1}{2} \{ \cos[(n - q)\pi z] - \cos[(n + q)\pi z] \}, \\
\cos[(n - q)\pi z] \cos(p\pi z) &= \frac{1}{2} \{ \cos[(n - q - p)\pi z] + \cos[(n + p - q)\pi z] \}, \\
\cos[(n + q)\pi z] \cos(p\pi z) &= \frac{1}{2} \{ \cos[(n + q + p)\pi z] + \cos[(n + q - p)\pi z] \}
\end{align*}$$

it follows that

$$\langle \langle \sin(q\pi z) \sin(n\pi z), \cos(p\pi z) \rangle \rangle = \left\langle \frac{1}{4}, \cos[(n + p - q)\pi z] + \cos[(p + q - n)\pi z] - \cos[(n + q - p)\pi z] \right\rangle \quad (26)$$

and hence (25) immediately follows. □

Lemma 2. Let $Z = \sum_{p=1}^{\infty} Z_p$. Then it follows that

$$\langle \langle \sum_{p=1}^{\infty} Z_p, \sin(n\pi z) \rangle \rangle = \frac{1}{2}, \quad (27)$$

$$\langle \langle u_p \cdot \nabla Z_q, \sin(n\pi z) \rangle \rangle = \begin{cases} 0 & \text{for } p + q \neq n, \\ \pi \left(\frac{p}{n^2} \nabla \tilde{\omega}_p \cdot \nabla \tilde{\omega}_q + q \tilde{\omega}_p \tilde{\omega}_q \right) & \text{for } p + q = n. \end{cases} \quad (28)$$

Proof. Lemma 2 is immediately implied by Lemma 1. □

Let us set

$$\begin{align*}
b_{1n} &= \gamma_n R - \xi_n, \\
b_{2n} &= -\gamma_n Le C, \\
b_{3n} &= \frac{\gamma_n R}{\varepsilon Le}, \\
b_{4n} &= -\frac{\gamma_n}{\varepsilon Le} \left(Le C + \frac{\xi_n}{\gamma_n} \right), \\
S_m^{(\theta)} &= \sum_{n=1}^{m} \theta_n, \\
S_m^{(f)} &= \sum_{n=1}^{m} \Gamma_n, \\
U_m &= \sum_{n=1}^{m} u_n \quad (29)
\end{align*}$$
with w_n and u_n given by (19) and $m, n \in \mathbb{N}^+$. Then \(\{ S_m^{(\theta)}, S_m^{(\Gamma)}, U_m \} \) is a dynamical perturbation iff

\[
\begin{align*}
\frac{\partial}{\partial t} S_m^{(\theta)} &= \sum_{n=1}^{m} (b_{1n} \theta_n + b_{2n} \Gamma_n) - U_m \cdot \nabla S_m^{(\theta)}, \\
\frac{\partial}{\partial t} S_m^{(\Gamma)} &= \sum_{n=1}^{m} (b_{3n} \theta_n + b_{4n} \Gamma_n) - \frac{1}{\varepsilon} U_m \cdot \nabla S_m^{(\Gamma)}, \\
\nabla \pi_n &= -u_n + (R \theta_n - Le C \Gamma_n) k, \\
\nabla \cdot u_n &= 0,
\end{align*}
\]

(31)

under the boundary data (22) and u_n given by (20)–(21).

With (31) we associate the auxiliary system

\[
\begin{align*}
\frac{\partial \theta^*_1}{\partial t} &= b_{11} \theta^*_1 + b_{21} \Gamma^*_1 - U_m^* \cdot \nabla \theta^*_1, \\
\frac{\partial \Gamma^*_1}{\partial t} &= b_{31} \theta^*_1 + b_{41} \Gamma^*_1 - \frac{1}{\varepsilon} U_m^* \cdot \nabla \Gamma^*_1, \\
&\quad \ldots \\
\frac{\partial \theta^*_m}{\partial t} &= b_{1m} \theta^*_m + b_{2m} \Gamma^*_m - U_m^* \cdot \nabla \theta^*_m, \\
\frac{\partial \Gamma^*_m}{\partial t} &= b_{3m} \theta^*_m + b_{4m} \Gamma^*_m - \frac{1}{\varepsilon} U_m^* \cdot \nabla \Gamma^*_m,
\end{align*}
\]

(32)

where

\[
\begin{align*}
U_m^* &= \sum_{1}^{m} u_n^*, \\
u_n^* &= \left(\frac{1}{a^2} \frac{\partial^2 w_n^*}{\partial x \partial z}, \frac{1}{a^2} \frac{\partial^2 w_n^*}{\partial y \partial z}, w_n^* \right), \\
\theta_n^* &= \tilde{\theta}_n^*(x, y, t) \sin(n\pi z), \\
\Gamma_n^* &= \tilde{\Gamma}_n^*(x, y, t) \sin(n\pi z), \\
w_n^* &= \tilde{w}_n^* (n\pi z), \quad \tilde{\theta}_n^* = \gamma_n (R \tilde{\theta}_n^* - Le C \tilde{\Gamma}_n^*)
\end{align*}
\]

(33)

with θ^*_n, Γ^*_n periodic in the x, y directions with Ω as cell of periodicity, under the boundary data analogous to (22)

\[
\theta_n^* = \Gamma_n^* = 0 \quad \text{for } z = 0, 1.
\]

(34)

Theorem 2. Let \(\{ \theta^*_1, \ldots, \theta^*_m, \Gamma^*_1, \ldots, \Gamma^*_m; U_m^* \} \) with \(U_m^* \) given by (33) and \((S_m^{(\theta^*)} = \sum_{1}^{m} \theta^*_n, S_m^{(\Gamma^*)} = \sum_{1}^{m} \Gamma^*_n) \in [L^2(\Omega)]^2, m \in \mathbb{N} \) be the solution of (32)–(34). Then (30) with $\theta_n = \theta_n^*$, $\Gamma_n = \Gamma_n^*$ ($n = 1, \ldots, m$); $U_m = U_m^*$ is the solution of (31) under (20)–(22). Vice versa, if (30) with \(\{ S_m^{(\theta)}, S_m^{(\Gamma)} \} \in [L^2(\Omega)]^2, m \in \mathbb{N}, \) is the solution of (31) under (20)–(22), then \(\{ \theta^*_1, \ldots, \theta^*_m, \Gamma^*_1, \ldots, \Gamma^*_m; U_m^* \} \) with $\theta_n = \theta_n^*$, $\Gamma_n = \Gamma_n^*$ ($n = 1, \ldots, m$); $U_m = U_m^*$ is the solution of (32)–(34).

Proof. Let \(\{ \theta^*_1, \ldots, \theta^*_m; \Gamma^*_1, \ldots, \Gamma^*_m; U_m^* = \sum_{1}^{m} u_n^* \} \) with \(u_n^* \) given by (33) and \((S_m^{(\theta^*)} = \sum_{1}^{m} \theta^*_n, S_m^{(\Gamma^*)} = \sum_{1}^{m} \Gamma^*_n) \in [L^2(\Omega)]^2, m \in \mathbb{N} \) be the solution of (32)–(34). Then by adding (32) it immediately follows that \((S_m^{(\theta^*)} = \sum_{1}^{m} \theta^*_n, S_m^{(\Gamma^*)} = \sum_{1}^{m} \Gamma^*_n, U_m^* \) is the solution of (31) under
(20)–(22). Vice versa, let \((S_m^{(\theta)} , S_m^{(\Gamma)} , U_m)\) with \(\{S_m^{(\theta)} , S_m^{(\Gamma)} \} \in [L^2_\ast(\Omega)]^2, m \in \mathbb{N}\), be solution of (31) under (20)–(22) with
\[
S_m^{(\theta)} (0) = \sum_{n=1}^{m} \theta_n(0), \quad S_m^{(\Gamma)} (0) = \sum_{n=1}^{m} \theta_n(0).
\]
(35)
Denoting by \((\theta_1^*, \ldots, \theta_m^*; \Gamma_1^*, \ldots, \Gamma_m^*)\) the solution of (32)–(34) associated with the initial data
\[
\theta_n^*(0) = \theta_n(0), \quad \Gamma_n^*(0) = \Gamma_n(0), \quad u_n^*(0) = u_n(0), \quad \forall n \in \{1, \ldots, m\},
\]
(36)
it follows that \((S_m^{(\theta^*)} , S_m^{(\Gamma^*)} , U_m)\) is the solution of (31) under (20)–(22). In view of the uniqueness theorem for (31) under (20)–(22) (see Appendix A.1), it turns out that
\[
\theta_n^* = \theta_n, \quad \Gamma_n^* = \Gamma_n, \quad u_n^* = u_n, \quad \forall n \in \{1, \ldots, m\}, \quad \square
\]
(37)
Remark 1. In view of Theorem 2, we can determine the stability of (6) by substituting (32)–(34) in (31) under (20)–(22).

Setting
\[
I_n = b_1 n + b_4 n, \quad A_n = b_1 b_4 n - b_2 b_3 n
\]
(38)
the following linearization principle holds.

Theorem 3. The time derivative of
\[
V_n = \frac{1}{2} \left[A_n (\|\theta_n\|^2 + \|\Gamma_n\|^2) + \|b_1 n \Gamma_n - b_3 n \theta_n\|^2 + \|b_2 n \Gamma_n - b_4 n \theta_n\|^2 \right]
\]
(39)
along the solutions of (31) is given by
\[
\frac{dV_n}{dt} = A_n I_n (\|\theta_n\|^2 + \|\Gamma_n\|^2).
\]
(40)
Proof. By virtue of Theorem 2, we may evaluate the time derivative of \(V_n\) along the solution of (32)–(34) and hence along the solution of
\[
\begin{aligned}
\frac{\partial \theta_n}{\partial t} &= b_1 n \theta_n + b_2 n \Gamma_n - U_m \cdot \nabla \theta_n, \\
\frac{\partial \Gamma_n}{\partial t} &= b_3 n \theta_n + b_4 n \Gamma_n - \frac{1}{\varepsilon} U_m \cdot \nabla \Gamma_n,
\end{aligned}
\]
(41)
It turns out that \(\{\text{cf. Appendix A.3}\}\)
\[
\frac{dV_n}{dt} = A_n I_n (\|\theta_n\|^2 + \|\Gamma_n\|^2) + \Psi_n
\]
(42)
where \(\Psi_n\), the contribution of the nonlinear terms appearing in (41), is given by
\[
\begin{aligned}
\Psi_n &= - \langle \alpha_{1n} \theta_n - \alpha_{3n} \Gamma_n , U_m \cdot \nabla \theta_n \rangle - \frac{1}{\varepsilon} \langle \alpha_{2n} \Gamma_n - \alpha_{3n} \theta_n , U_m \cdot \nabla \Gamma_n \rangle , \\
\alpha_{1n} &= A_n + b_3^2 n + b_4^2 n, \quad \alpha_{2n} = A_n + b_1^2 n + b_2^2 n, \quad \alpha_{3n} = b_1 n b_3 n + b_2 n b_4 n.
\end{aligned}
\]
(43)
By virtue of (28), it turns out that
\[
\langle U_m \cdot \nabla \theta_n , \Gamma_n \rangle = \langle U_m \cdot \nabla \Gamma_n , \theta_n \rangle = 0, \quad n = 1, \ldots, m.
\]
(44)
Further, in view of $\nabla \cdot \mathbf{U}_m = 0$ and the boundary data, it follows that
\[
\begin{cases}
\langle \mathbf{U}_m \cdot \nabla \theta_n, \theta_n \rangle = \frac{1}{2} \langle \mathbf{U}_m, \nabla \theta_n^2 \rangle = 0, \\
\langle \mathbf{U}_m \cdot \nabla \Gamma_n, \Gamma_n \rangle = \frac{1}{2} \langle \mathbf{U}_m, \nabla \Gamma_n^2 \rangle = 0.
\end{cases}
\] (45)

Then (44)–(45) imply
\[
\Psi_n = 0 \quad \forall n \in \{1, 2, \ldots, m\}. \quad \square \tag{46}
\]

Remark 2. Let us observe that:

(i) denoting by $(\lambda_{1n}, \lambda_{2n})$ the eigenvalues of
\[
\begin{cases}
\frac{d\theta_n}{dt} = b_{1n} \theta_n + b_{2n} \Gamma_n, \\
\frac{d\Gamma_n}{dt} = b_{3n} \theta_n + b_{4n} \Gamma_n
\end{cases}
\] (47)

it follows that
\[
\begin{aligned}
A_n &= \lambda_{1n} \cdot \lambda_{2n}, \\
I_n &= \lambda_{1n} + \lambda_{2n};
\end{aligned}
\] (48)

(ii) V_n and \dot{V}_n are linked in a direct simple way to the eigenvalues of the linear operator involved in (32) and, moreover, \dot{V}_n does not depend on the nonlinear operator involved in (32);

(iii) the time derivative of
\[
E_n = \frac{1}{2} (\|\theta_n\|^2 + \|\Gamma_n\|^2)
\] (49)

along the solutions of (41) is given by
\[
\frac{dE_n}{dt} = b_{1n} \|\theta_n\|^2 + (b_{2n} + b_{3n}) \langle \theta_n, \Gamma_n \rangle + b_{4n} \|\Gamma_n\|^2
\] (50)

and is also independent of the nonlinear terms. However, the eigenvalues of the quadratic form appearing in the right-hand side of (50)—in view of $b_{2n} \neq b_{3n}, \forall n \in \mathbb{N}^+$—are not, in general, those determined by $(b_{1n} \ b_{2n} \ b_{3n} \ b_{4n})$.

4. Global stability

Lemma 3. Setting
\[
\begin{cases}
R_B = 4\pi^2, \\
R_C^{(1)} = R_B + Le C, \\
R_C^{(2)} = \frac{C}{\epsilon} + \left(1 + \frac{1}{\epsilon Le} \right) R_B, \\
R_C = \inf \{R_C^{(1)}, R_C^{(2)}\}
\end{cases}
\] (51)

it follows that
\[
\begin{cases}
R_B = \inf \frac{\xi_n}{\gamma_n}, \\
\epsilon Le \leq 1 \quad \Rightarrow \quad R_C = R_C^{(1)} < R_C^{(2)}, \\
\epsilon Le > 1, \quad C > C^* = \frac{R_B}{(\epsilon Le - 1) Le} \quad \Rightarrow \quad R_C = R_C^{(2)} < R_C^{(1)}.
\end{cases}
\] (52)
Proof. By virtue of
\[
\frac{\xi_n}{\gamma_n} = \frac{(a^2 + n^2 \pi^2)^2}{a^2} \geq \frac{(a^2 + \pi^2)^2}{a^2},
\]
(52)_1 immediately follows. In view of
\[
R_C^{(2)} - R_C^{(1)} = \frac{1}{\epsilon} \left[(1 - \epsilon L \epsilon)C + \frac{R_B}{L \epsilon} \right].
\]
(53)
(52)_2 becomes obvious. Passing to (52)_3, from \(C > C^* \), it turns out that
\[
R_C^{(2)} - R_C^{(1)} < \frac{1}{\epsilon} \left(-\frac{R_B}{L \epsilon} + \frac{R_B}{L \epsilon} \right) = 0.
\]
(54)

Lemma 4. Let
\[
R < R_C.
\]
(55)
Then \(\forall n \in \mathbb{N}^+ \), \(\forall a > 0 \),
\[
\begin{align*}
A_n &\geq \frac{\pi^4}{L \epsilon} (1 - \eta_1) > 0, \\
I_n &\leq -\pi^2 \left(1 + \frac{1}{L \epsilon} \right) (1 - \eta_2) < 0, \quad A_n I_n \leq -\delta
\end{align*}
\]
with
\[
\begin{align*}
\eta_1 &= \frac{1}{R_B} (R - L \epsilon C), \\
\eta_2 &= \frac{R - C/\epsilon}{R_B (1 + 1/(\epsilon L \epsilon))}, \\
\delta &= \frac{\pi^6}{L \epsilon} \left(1 + \frac{1}{L \epsilon} \right) (1 - \eta_1)(1 - \eta_2).
\end{align*}
\]
(56)
(57)
Proof. (55) implies \(0 < \eta_i < 1 \) (\(i = 1, 2 \)). Further, by virtue of (51)–(54), it turns out that
\[
\begin{align*}
A_n &= \frac{\xi_n \gamma_n}{L \epsilon} \left(\frac{\xi_n}{\gamma_n} + L \epsilon C - R \right) > \frac{\xi_n^2}{L \epsilon} \left(1 - \eta_1 \frac{R_B}{\xi_n/\gamma_n} \right) \\
&\geq \frac{(a^2 + n^2 \pi^2)^2}{L \epsilon} (1 - \eta_1) > \frac{\pi^4}{L \epsilon} (1 - \eta_1), \\
-I_n &= \gamma_n \left[\left(1 + \frac{1}{L \epsilon} \right) \frac{\xi_n}{\gamma_n} + \frac{C}{\epsilon} - R \right] > \gamma_n \left(1 + \frac{1}{L \epsilon} \right) \frac{\xi_n}{\gamma_n} \left(1 - \eta_2 \frac{R_B}{\xi_n/\gamma_n} \right) \\
&= \left(1 + \frac{1}{L \epsilon} \right) \xi_n \left(1 - \eta_2 \frac{R_B}{\xi_n/\gamma_n} \right) > \left(1 + \frac{1}{L \epsilon} \right) \pi^2 (1 - \eta_2). \quad \square
\end{align*}
\]
(58)

Lemma 5. Let (55) hold. Setting
\[
\begin{align*}
B_n &= 2 \max(b_{1n}^2, b_{2n}^2, b_{3n}^2 + b_{4n}^2), \\
\frac{d}{2} &= \frac{2 \pi^2 (1 + \mu \epsilon L \epsilon)}{(1 + \mu \epsilon L \epsilon)(1 - \eta_2)}, \\
\mu &= \frac{2}{R_B^2} (1 - \eta_1) \max \left\{ 2 \epsilon L \epsilon (R^2 + R_B^2), \frac{(L \epsilon C + R_B)^2}{\epsilon L \epsilon}, \frac{R^2}{\epsilon L \epsilon}, \epsilon L^3 C^2 \right\}
\end{align*}
\]
(59)
it turns out that $(\forall n \in N^+, \forall a > 0)$
\[
\begin{aligned}
&\begin{cases}
B_n \\ A_n
\end{cases} \leq \mu, \\
&d_n = \frac{2 |I_n| A_n}{A_n + B_n} \geq d.
\end{aligned}
\tag{60}
\]

Proof. In view of
\[
\begin{aligned}
A_n > \gamma_n^2 \frac{e L e}{\gamma_n^2} (1 - \eta_1), \\
&b_{1n}^2 A_n = \frac{\gamma_n^2 (R - \xi_n/\gamma_n)^2}{A_n} \leq \frac{2 \gamma_n^2 \left(\xi_n/\gamma_n\right)^2 (1 + \frac{R^2}{\xi_n^2/\gamma_n^2})}{A_n} \leq \frac{2 e L e \left(R^2 + R_B^2\right)}{(1 - \eta_1)R_B^2}, \\
&b_{2n}^2 A_n \leq \frac{\gamma_n^2 e L e^2 C^2 e L e}{\gamma_n^2 \left(\xi_n/\gamma_n\right)^2 (1 - \eta_1)} \leq \frac{\epsilon L e^3 C^2}{(1 - \eta_1)R_B^2}, \\
&b_{3n}^2 A_n \leq \frac{\gamma_n^2 e L e R^2}{\epsilon L e^2 \gamma_n^2 \left(\xi_n/\gamma_n\right)^2 (1 - \eta_1)} \leq \frac{R^2}{\epsilon L e R_B^2 (1 - \eta_1)}, \\
&b_{4n}^2 A_n \leq \frac{1}{\epsilon L e A_n} \leq \frac{1}{\epsilon L e^2 A_n} \left(\frac{C}{\xi_n/\gamma_n} + \frac{1}{L e}\right)^2 \leq \frac{1}{\epsilon L e^2 \xi_n^2 / \gamma_n^2} \leq \frac{\epsilon L e R_B^2 (1 - \eta_1)}{\xi_n^2 / \gamma_n^2}.
\end{aligned}
\tag{61}
\]

(60)\textsubscript{2} easily follows. On the other hand, by virtue of
\[
d_n = \frac{2 |I_n|}{1 + B_n/A_n} \geq \frac{2 |I_n|}{1 + \mu}, \tag{62}
\]
(60)\textsubscript{3} is implied by (56)\textsubscript{2}. \hfill \Box

Lemma 6. Let $A_n > 0$. Then V_n is positive definite and it turns out that $(\forall n \in N^+)$
\[
E_n < \frac{V_n}{A_n} < (1 + \mu)E_n.
\tag{63}
\]

Proof. From Lemma 5, (63) immediately follows. \hfill \Box

Theorem 4. Let either
\[
\begin{aligned}
&\epsilon L e \leq 1, \\
&R < R_B + L e C
\end{aligned}
\tag{64}
\]
or
\[
\begin{aligned}
&\epsilon L e \geq 1, \quad C \geq C^*, \\
&R < \frac{C}{\epsilon} + \left(1 + \frac{1}{\epsilon L e}\right)R_B
\end{aligned}
\tag{65}
\]
hold. Then the nonlinear global asymptotic exponential L^2-stability of (6), with respect to the perturbations $\{S_m^{(\theta)}, S_m^{(F)}, U_m\}, \forall m \in \mathbb{N}^+$, is guaranteed.
Proof. (64)–(65) imply (55). Then, by virtue of (40) and Lemmas 4–6 it turns out that
\[
\frac{dV_n}{dt} = -2 |I_n| A_n E_n \leq -\frac{2 |I_n| A_{n}}{A_n + B_n} V_n \leq -d V_n, \tag{66}
\]
i.e.
\[
V_n(t) \leq V_n(0) e^{-dt} \quad \forall t \geq 0, \; \forall n \leq m, \tag{67}
\]
and, in view of (63), one obtains
\[
E_n(t) \leq (1 + \mu) E_n(0) e^{-dt}. \tag{68}
\]
Setting
\[
V_m^* = \sum_{1}^{m} V_n, \quad E_m = \sum_{1}^{m} E_n \tag{69}
\]
(66)–(67) imply
\[
\begin{cases}
V_m^* \leq V_m^*(0) e^{-dt}, \\
E_m \leq (1 + \mu) E_m(0) e^{-dt}. \tag{70}
\end{cases}
\]

Theorem 5. Let either (64) or (65) hold. Then (6) is nonlinearly globally exponentially L^2-stable with respect to any perturbation $\{\theta, \Gamma, u\}$ according to
\[
\begin{cases}
E(t) \leq (1 + \mu) E(0) e^{-dt}, \\
V \leq V(0) e^{-dt} \tag{71}
\end{cases}
\]
with
\[
E = E_\infty = \sum_{1}^{\infty} E_n, \quad V = V_\infty^* = \sum_{1}^{\infty} V_n. \tag{72}
\]

Proof. In view of (70), letting $m \to \infty$, (71) immediately follow. \hfill \Box

5. Instability

Theorem 6. Suppose there exists an $\bar{a}^2 \in \mathbb{R}^+$ such that
\[
I_1(\bar{a}^2) > 0 \tag{73}
\]
or
\[
A_1(\bar{a}^2) \leq 0. \tag{74}
\]
Then (6) is L^2-unstable.

Proof. In the case (73) with $A_1 > 0, \forall a^2 \in \mathbb{R}^+$, in view of (72) and (63), it turns out that
\[
E \geq E_1 \geq \frac{V_1}{(1 + \mu) A_1} \tag{75}
\]
with
\[
\frac{dV_1}{dt} = 2 I_1 A_1 E_1 \geq \frac{2 I_1}{1 + \mu} V_1, \tag{76}
\]
i.e.
\[V_1 \geq V_1(0) \exp \left(\frac{2I_1}{1 + \mu} t \right). \]
(77)

In the case (74), in view of \(\{b_{31} > 0, \forall a^2\} \), we introduce the functional
\[W = \frac{1}{2}(\|X\|^2 + \|Y\|^2) \]
(78)
with
\[
\begin{cases}
X = (b_1 - \lambda_1)\Gamma^* - b_3\theta^*, \\
Y = (b_1 - \lambda_2)\Gamma^* - b_3\theta^*, \\
\lambda_1 + \lambda_2 = [I_1]_{a=\bar{a}}, \quad \lambda_1\lambda_2 = [A_1]_{a=\bar{a}}, \\
b_1 = [b_{11}]_{a=\bar{a}}, \quad b_3 = [b_{31}]_{a=\bar{a}}, \quad \theta^* = [\theta_1]_{a=\bar{a}}, \quad \Gamma^* = [\Gamma_1]_{a=\bar{a}}.
\end{cases}
\]
(79)

By straightforward calculations (cf. Appendix A.2), it follows that
\[
\begin{cases}
\theta^* = \frac{1}{b_3(\lambda_2 - \lambda_1)}[(b_1 - \lambda_2)X - (b_1 - \lambda_1)Y], \\
\Gamma^* = \frac{1}{\lambda_2 - \lambda_1}(X - Y)
\end{cases}
\]
(80)
and, in view of (41)—for \(n = 1 \) and \(a = \bar{a} \)—we obtain
\[
\begin{cases}
\frac{\partial X}{\partial t} = \lambda_1 X + F, \\
\frac{\partial Y}{\partial t} = \lambda_2 Y + G
\end{cases}
\]
(81)
with
\[
\begin{cases}
F = b_3 \bar{U}_m \cdot \nabla \theta^* - \frac{1}{\varepsilon}(b_1 - \lambda_1)\bar{U}_m \cdot \nabla \Gamma^*, \\
G = b_3 \bar{U}_m \cdot \nabla \theta^* - \frac{1}{\varepsilon}(b_1 - \lambda_2)\bar{U}_m \cdot \nabla \Gamma^*, \\
\bar{U}_m = [U_m]_{a=\bar{a}}.
\end{cases}
\]
(82)
By virtue of (74), the eigenvalues \(\lambda_i \) are real, nonnegative numbers, hence (81) implies
\[\frac{dW}{dt} = \lambda_1 \|X\|^2 + \langle X, F \rangle + \lambda_2 \|Y\|^2 + \langle Y, G \rangle. \]
(83)

On the other hand \(\forall a^2 \), (28) implies
\[\langle X, F \rangle = \langle Y, G \rangle = 0, \]
(84)
hence the instability follows from
\[\frac{dW}{dt} > 0, \quad (W(0), t) \in \mathbb{R}^+ \times \mathbb{R}^+. \]
(85)
Theorem 7. Let
\[\epsilon Le > 1, \quad R > R_C. \] (86)
Then (6) is nonlinearly \(L^2 \)-unstable.

Proof. In view of (52), it follows that
\[\epsilon Le > 1 \implies R_C = R_C^{(2)} = \frac{C}{\epsilon} + \left(1 + \frac{1}{\epsilon Le} \right) R_B \]
and hence (86) implies
\[R = \frac{C}{\epsilon} + \left(1 + \frac{1}{\epsilon Le} \right) (R_B + k), \] (87)
k being a positive constant. If
\[R_C^{(2)} < R < R_C^{(1)} \] (88)
then (87) implies
\[\begin{aligned}
I_1(a^2) &= \gamma_1 \left[R - \frac{C}{\epsilon} - \frac{\xi_1}{\gamma_1} \left(1 + \frac{1}{\epsilon Le} \right) \right] = \gamma_1 \left(1 + \frac{1}{\epsilon Le} \right) \left(R_B + k - \frac{\xi_1}{\gamma_1} \right), \\
A_1(a^2) &= \frac{\xi_1 \gamma_1}{\epsilon Le} \left(\frac{\xi_1}{\gamma_1} + LeC - R_C^{(1)} \right) = \frac{\xi_1 \gamma_1}{\epsilon Le} \left(\frac{\xi_1}{\gamma_1} - R_B \right).
\end{aligned} \] (89)
Let \(0 < \epsilon_1 < 1 \) and consider the equation
\[\frac{\xi_1(a^2)}{\gamma_1(a^2)} = R_B + \epsilon_1 k \] (90)
having the positive roots
\[\tilde{a}^2 = \frac{4\pi^2 + \epsilon_1 k \pm \sqrt{(4\pi^2 + \epsilon_1 k)^2 - 4\pi^4}}{2}. \] (91)
It turns out that \(\{ I_1(\tilde{a}) > 0, \ A_1(\tilde{a}) > 0 \} \) and the instability comes from Theorem 6. In the case
\[R > R_C^{(1)} > R_C^{(2)} \] (92)
there exist two positive constants \(k, k_1 \) such that (87) and
\[R = R_C^{(1)} + k_1 \] (93)
hold. It follows that
\[\begin{aligned}
I_1 &= \gamma_1 \left(1 + \frac{1}{\epsilon Le} \right) \left(R_B + k - \frac{\xi_1}{\gamma_1} \right), \\
A_1 &= \frac{\xi_1 \gamma_1}{\epsilon Le} \left(\frac{\xi_1}{\gamma_1} - R_B - k_1 \right).
\end{aligned} \] (94)
If \(k > k_1 \), then for any \(\tilde{a} \) such that
\[R_B + k_1 < \frac{\xi_1(\tilde{a})}{\gamma_1(\tilde{a})} < R_B + k \] (95)
one obtains \(\{ I_1(\bar{a}) > 0, \ A_1(\bar{a}) > 0 \} \) and instability follows. If \(k \leq k_1 \), then for any \(\bar{a} \) such that

\[
\frac{\xi_1(\bar{a})}{\gamma_1(\bar{a})} < R_B + k
\]

it follows that (74) is established. \(\square \)

Theorem 8. Let

\[
\begin{align*}
\varepsilon Le & \leq 1, \quad C \leq C^*, \\
R & > R_C.
\end{align*}
\]

Then (6) is \(L^2 \)-unstable.

Proof. In view of (52), it follows that

\[
\{ \varepsilon Le \leq 1, \quad C \leq C^* \} \implies R_C = R_C^{(1)} = R_B + LeC,
\]

and hence (97) implies (93)–(94) and (74) for any \(\bar{a} \) such that

\[
R_B < \frac{\xi_1(\bar{a})}{\gamma_1(\bar{a})} < R_B + k_1. \quad \square
\]

Remark 3. In the case \(\{ I_1 = 0, \ A_1 > 0 \} \) it follows that \(\{ I_n < 0, \ A_n > 0 \}, \forall n > 1 \). By virtue of (66), it turns out that

(i) (6) is (simply) a \(L^2 \)-stable center;

(ii) all the harmonics tend to zero, except the principal one \((n = 1) \).

6. **Proof of the main theorem**

Collecting the \(L^2 \)-stability (instability) results obtained, we have to show that they can be encapsulated in Theorem 1. By virtue of

\[
\begin{align*}
I_n & = \gamma_n \left[R - \frac{C}{\varepsilon} - \left(1 + \frac{1}{\varepsilon Le} \right) \frac{\xi_n}{\gamma_n} \right], \\
A_n & = \frac{\xi_n \gamma_n}{\varepsilon Le} \left(\frac{\xi_n}{\gamma_n} + LeC - R \right), \\
\gamma_n & > 0, \quad \xi_n > 0, \quad \frac{\partial}{\partial n} \left(\frac{\xi_n}{\gamma_n} \right) > 0, \quad \forall a^2,
\end{align*}
\]

it follows that \(\forall (n^2, a^2) \in \mathbb{N}^+ \times \mathbb{R}^+ \)

\[
\begin{align*}
I_1 < 0 & \quad \Rightarrow \quad I_n < 0; \quad A_1 > 0 & \quad \Rightarrow \quad A_n > 0
\end{align*}
\]

and that \(A_{\tilde{n}}(\bar{a}^2) \leq 0 \) only if \(A_1(\bar{a}^2) \leq 0 \). Taking into account (56)\(_3\), Theorems 2–8 and

\[
\begin{align*}
\begin{cases}
I_1 < 0, \\
A_1 > 0
\end{cases}
\quad \forall a^2 \quad \Rightarrow \quad R < R_C,
\end{align*}
\]

the proof of Theorem 1, by virtue of \((a_1 = b_{11}, \ a_2 = b_{21}, \ a_3 = b_{31}, \ a_4 = b_{41})\), immediately follows.
7. Rotating layer

When the layer rotates with constant angular velocity \(\omega_* = \omega_* k \) about the vertical \(z \) axis, (1) becomes

\[
\begin{align*}
\nabla p &= - \frac{\mu}{k} v + \rho g - \frac{\rho_0}{\varepsilon} \omega_* \times v, \\
\nabla \cdot v &= 0, \\
\dot{T} + v \cdot \nabla T &= k_T \Delta T, \\
\varepsilon C + v \cdot \nabla C &= k_C \Delta C
\end{align*}
\]

with

\[
p = p_1 - \frac{1}{2} \rho_0 [\omega_* \times k]^2
\]

under the boundary conditions (3). By using the same scalings as in Section 1, the dimensionless version of Eqs. (100) is

\[
\begin{align*}
\nabla p &= - v + (RT - CC)k + T \mathbf{k} \times k, \\
\nabla \cdot v &= 0, \\
T + v \cdot \nabla T &= \Delta T, \\
\varepsilon Le C + v \cdot \nabla C &= \Delta C,
\end{align*}
\]

where \(T = \frac{2k_\omega}{\varepsilon \nu} \) is the Taylor–Darcy number. Under the boundary data (5), (6) continues to be the only equilibrium state admissible. The equations governing the perturbations \([u = (u, v, w), \theta, \Gamma]\) are easily found to be

\[
\begin{align*}
\nabla \tilde{\pi} &= -u + (R \theta - C \Gamma)k + T \mathbf{u} \times k, \\
\nabla \cdot u &= 0, \\
\theta + w + \Delta T - u \cdot \nabla \theta, \\
\varepsilon Le C + u \cdot \nabla C &= \Delta C
\end{align*}
\]

under the boundary data (11). Following the procedure of Section 2, it turns out that

\[
\begin{align*}
\Delta w + T^2 w_{zz} &= \Delta_1 (R \theta - Le \Gamma), \\
\nabla \cdot u &= 0, \\
\frac{\partial \theta}{\partial t} &= \Delta \theta + w - u \cdot \nabla \theta, \\
\frac{\partial \Gamma}{\partial t} &= \frac{1}{\varepsilon Le} (\Delta \Gamma + w) - \frac{1}{\varepsilon} u \cdot \nabla \Gamma
\end{align*}
\]

under the boundary data (11). It easily follows that the general solution of (104) \(_1\)–(104) \(_2\) is given by

\[
w = \sum_{1}^{\infty} w_n, \quad u = \sum_{1}^{\infty} u_n
\]
with
\[
\begin{align*}
 w_n &= \gamma_n^*(R\theta_n - C\Gamma_n), \\
 \gamma_n^* &= \frac{a^2}{\xi_n + T^2n^2\pi^2}, \quad \xi_n = a^2 + n^2\pi^2, \\
 \xi_n &= \frac{1}{a^2} \frac{\partial^2 w_n}{\partial x \partial z} - \frac{1}{a^2} \frac{\partial^2 w_n}{\partial y \partial z}, w_n,
\end{align*}
\]
(106)

Then—following step by step—the procedures of Sections 3–6, and setting
\[
R_B^* = \pi^2(1 + \sqrt{1 + T^2})^2 = \inf \frac{\xi_n}{\gamma_n^*},
\]
(107)
oncease
one finds that, on replacing R_B by R_B^*, each result of Sections 4–6 continues to hold. In particular, the main Theorem 1 continues to hold with $a^2 + (1 + T)\pi^2$ in place of $a^2 + \pi^2$.

Acknowledgments

This work has been performed under the auspices of the G.N.F.M. of I.N.D.A.M. and M.I.U.R. (P.R.I.N. 2005): “Nonlinear Propagation and Stability in Thermodynamical Processes of Continuous Media.” The author thanks the comments and the accuracy of the anonymous reviewer.

Appendix A.1. Uniqueness theorem

Let $(u, \theta, \Gamma, \tilde{\pi})$, $(u^*, \theta^*, \Gamma^*, \tilde{\pi}^*)$ be two perturbations to the rest state (6) having the same initial data. Then—by virtue of the uniqueness theorem for (1)—it turns out that
\[
\begin{align*}
 u &= u^*, \\
 \theta &= \theta^*, \quad \forall t \geq 0, \\
 \Gamma &= \Gamma^*,
\end{align*}
\]
(108)

Therefore, in view of
\[
\theta = \sum_{n=1}^{m} \tilde{\theta}_n \sin(n\pi z),
\]
(109)
\[
\theta^* = \sum_{n=1}^{m} \tilde{\theta}^*_n \sin(n\pi z)
\]
(110)
it turns out that
\[
\sum_{n=1}^{m} (\tilde{\theta}_n - \tilde{\theta}^*_n) \sin(n\pi z) = 0 \quad \forall t \geq 0,
\]
(111)
and hence
\[
\| \tilde{\theta}_n - \tilde{\theta}^*_n \| = 0 \quad \forall n \leq m \in \mathbb{N}^+, \ t \in \mathbb{R}^+.
\]
(112)
Analogously
\[
\begin{aligned}
\Gamma &= \sum_{1}^{m} \hat{\Gamma}_n \sin(n\pi z), \\
\Gamma^* &= \sum_{1}^{m} \hat{\Gamma}_n^* \sin(n\pi z) \\
\end{aligned}
\]
\[\Rightarrow \| \hat{\Gamma}_n - \hat{\Gamma}_n^* \| = 0 \quad \forall n \leq m \in \mathbb{N}^+, \ t \in \mathbb{R}^+, \quad (113)
\]
and hence
\[
\begin{aligned}
\mathbf{u} &= \sum_{1}^{m} \hat{\mathbf{u}}_n \sin(n\pi z), \\
\mathbf{u}^* &= \sum_{1}^{m} \hat{\mathbf{u}}_n^* \sin(n\pi z) \\
\end{aligned}
\]
\[\Rightarrow \| \hat{\mathbf{u}}_n - \hat{\mathbf{u}}_n^* \| = 0 \quad \forall n \leq m \in \mathbb{N}^+, \ t \in \mathbb{R}^+. \quad (114)
\]
In conclusion, one obtains that each harmonic \((\mathbf{u}_n, \theta_n, \Gamma_n)\) of the perturbation field \((\mathbf{u} = \sum_{1}^{m} \mathbf{u}_n, \theta = \sum_{1}^{m} \theta_m, \Gamma = \sum_{1}^{m} \Gamma_m)\) is uniquely determined by its initial value.

Appendix A.2. Time derivative of \(W\) along (41)

For the sake of generality we consider
\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \alpha^*, \\
\frac{\partial v}{\partial t} &= \beta^* \\
\end{aligned}
\]
with
\[
\begin{aligned}
\alpha^* &= a_{11}u + a_{12}v + \psi, \\
\beta^* &= a_{21}u + a_{22}v + \psi^*, \\
\end{aligned}
\]
a\textsubscript{ij} \((i, j = 1, 2)\) being constants such that \(a_{11}a_{22} - a_{12}a_{21} < 0\) and \(\psi = \psi(u, v), \psi^* = \psi^*(u, v)\).

By virtue of
\[
\begin{aligned}
\mathbf{u} &= \frac{1}{a_{21}(\lambda_2 - \lambda_1)} \left[(a_{11} - \lambda_2)X - (a_{11} - \lambda_1)Y\right], \\
v &= \frac{1}{\lambda_2 - \lambda_1} (X - Y) \\
\end{aligned}
\]
\[\text{it turns out that (117)}
\]
\[
\begin{aligned}
\frac{\partial X}{\partial t} - \frac{\partial Y}{\partial t} &= (\lambda_2 - \lambda_1)\beta^*, \\
\frac{\partial X}{\partial t} - \frac{\partial Y}{\partial t} &= (\lambda_2 - \lambda_1)\beta^* \\
\end{aligned}
\]
\[\text{and hence (118)}
\]
\[
\begin{aligned}
\frac{\partial X}{\partial t} &= -a_{21}\alpha^* + (a_{11} - \lambda_1)\beta^*, \\
\frac{\partial Y}{\partial t} &= -a_{21}\alpha^* + (a_{11} - \lambda_2)\beta^* \\
\end{aligned}
\]
\[\text{(119)}
\]
Taking into account that

\[
\begin{align*}
 a_{11} - \lambda_2 &= \lambda_1 - a_{22}, & a_{11} - \lambda_1 &= \lambda_2 - a_{22}, \\
 a_{11}(a_{11} - \lambda_2) + a_{12}a_{21} &= \lambda_1(a_{11} - \lambda_2), \\
 a_{11}(a_{11} - \lambda_1) + a_{12}a_{21} &= \lambda_2(a_{11} - \lambda_1)
\end{align*}
\]

one obtains

\[
\begin{align*}
 \alpha^* &= \frac{1}{a_{21}(\lambda_2 - \lambda_1)} \left[\lambda_1(a_{11} - \lambda_2)X - \lambda_2(a_{11} - \lambda_1)Y \right] + \psi, \\
 \beta^* &= \frac{1}{\lambda_2 - \lambda_1}(\lambda_1 X - \lambda_2 Y) + \psi^*, \\
 a_{21}\alpha^* &= \frac{1}{\lambda_2 - \lambda_1} \left[\left[a_{11}(a_{11} - \lambda_2) + a_{21}a_{12} \right] X \\
 &\quad - \left[a_{11}(a_{11} - \lambda_1) + a_{12}a_{21} \right] Y \right] + a_{21}\psi \\
 &= \frac{1}{\lambda_2 - \lambda_1} \left[\lambda_1(a_{11} - \lambda_2)X - \lambda_2(a_{11} - \lambda_1)Y \right] + a_{21}\psi, \\
 (a_{11} - \lambda_1)\beta^* &= \frac{a_{11} - \lambda_1}{\lambda_2 - \lambda_1} \left[\lambda_1 X - \lambda_2 Y \right] + (a_{11} - \lambda_1)\psi^*, \\
 (a_{11} - \lambda_2)\beta^* &= \frac{a_{11} - \lambda_2}{\lambda_2 - \lambda_1} \left[\lambda_1 X - \lambda_2 Y \right] + (a_{11} - \lambda_2)\psi^*,
\end{align*}
\]

and hence by virtue of

\[
\begin{align*}
 \left[(a_{11} - \lambda_1)\lambda_1 - \lambda_1(a_{11} - \lambda_2) \right] X + \left[(a_{11} - \lambda_1)\lambda_2 - \lambda_2(a_{11} - \lambda_1) \right] Y \\
 &= \lambda_1(\lambda_2 - \lambda_1) X, \\
 \left[(a_{11} - \lambda_2)\lambda_1 - \lambda_1(a_{11} - \lambda_2) \right] X + \left[(a_{11} - \lambda_1)\lambda_2 - \lambda_2(a_{11} - \lambda_2) \right] Y \\
 &= \lambda_2(\lambda_2 - \lambda_1) Y
\end{align*}
\]

it turns out that

\[
\begin{align*}
 -a_{21}\alpha^* + (a_{11} - \lambda_1)\beta^* &= \lambda_1 X + F^*, \\
 -a_{21}\alpha + (a_{11} - \lambda_2)\beta &= \lambda_2 + G^*, \\
 F^* &= -a_{21}\psi + (a_{11} - \lambda_1)\psi^*, \\
 G^* &= -a_{21}\psi + (a_{11} - \lambda_2)\psi^*.
\end{align*}
\]

Therefore in view of (119) and (123) one obtains

\[
\begin{align*}
 \frac{\partial X}{\partial t} &= \lambda_1 X + F^*, \\
 \frac{\partial Y}{\partial t} &= \lambda_2 Y + G^*
\end{align*}
\]

and hence

\[
W = \frac{1}{2} \left[\|X\|^2 + \|Y\|^2 \right]
\]

implies

\[
\frac{dW}{dt} = \lambda_1\|X\|^2 + \langle X, F^* \rangle + \lambda_2\|Y\|^2 + \langle Y, G^* \rangle.
\]
Appendix A.3. Time derivative of V_n along (41)

For the sake of generality we consider (115)–(116). Setting

$$A = a_{11}a_{22} - a_{12}a_{21}, \quad I = a_{11} + a_{22}$$

and introducing the functional

$$V = \frac{1}{2} \left[A(\|u\|^2 + \|v\|^2) + \|a_{11}v - a_{12}u\|^2 + \|a_{12}v - a_{22}u\|^2 \right]$$

it follows that

$$\frac{dV}{dt} = (A + a_{21}^2 + a_{22}^2) \langle u, u_t \rangle + (A + a_{11}^2 + a_{12}^2) \langle v, v_t \rangle$$

$$- (a_{11}a_{21} + a_{12}a_{22}) \langle v, u_t \rangle - (a_{11}a_{31} + a_{12}a_{22}) \langle u, v_t \rangle.$$ \hspace{1cm} (128)

Since, along (115)–(116), it turns out that

$$\begin{align*}
 \langle u, u_t \rangle &= a_{11}\|u\|^2 + a_{12}\langle u, v \rangle + \langle u, \psi \rangle, \\
 \langle v, v_t \rangle &= a_{21}\langle u, v \rangle + a_{22}\|v\|^2 + \langle v, \psi^* \rangle, \\
 \langle v, u_t \rangle &= a_{11}\langle u, v \rangle + a_{12}\|v\|^2 + \langle v, \psi \rangle, \\
 \langle u, v_t \rangle &= a_{21}\|u\|^2 + a_{22}\langle u, v \rangle + \langle u, \psi^* \rangle.
\end{align*}$$ \hspace{1cm} (129)

by straightforward calculations it follows that

$$\frac{dV}{dt} = AI(\|u\|^2 + \|v\|^2) + \Psi^*$$ \hspace{1cm} (130)

with

$$\begin{align*}
 \Psi^* &= \langle \alpha_1 u - \alpha_3 v, \psi \rangle + \langle \alpha_2 v - \alpha_3 u, \psi^* \rangle, \\
 \alpha_1 &= A + a_{21}^2 + a_{22}^2, \quad \alpha_2 = A + a_{11}^2 + a_{12}^2, \quad \alpha_3 = a_{11}a_{21} + a_{12}a_{22}.
\end{align*}$$ \hspace{1cm} (131)

References

