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We consider the following Euler equations:

5
a—‘t‘+(u-V)u= Vp+f  xeQ, >0,

divu=0, xel,, t>0, (1.1)
u-v=0, xeo,, t>0,
u(x, 0) =uy(x), X€Q,.

Here u=u(x,t)=(u,,u,) and p= p(x,t) denote the unknown velocity
vector field and the pressure of the ideal fluid at point (x, 1) eQ, x {t},
respectively, while u(x) is a given initial velocity vector field, and
f=f(x, 1) is the external force vector field. v is the unit outward normal
vector of 0Q,. Let 2, denote the region filled a fluid at =0, while 2,
represents the region where the fluid is located at time > 0. Let Q,(>0)
be a given bounded, simply connected domain in R? with smooth boundary.

From a physical point of view, a real fluid is evolutional, so the region
filled with a moving fluid usually move along the trajectories of the incom-
pressible fluid motion. Thus, the space-time domain is not a cylindrical one
as often treated. So we treat with the case of a noncylindrical space-time

! Supported by Foundation of Morningside Center of Mathematics, Academia Sinica,
China.
2 Supported partially by the National Natural Science Foundation of China.

265

0022-0396/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82327344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

266 HE AND HSIAO

domains in this paper. In fact, we are interested in the following questions
on the Euler Egs. (1.1):

(I) Under what conditions on €,, does there exists a weak solution
to (1.1) for the given initial data (u,, f)?

(2) How about the uniqueness and regularity of the weak solution,
if it exists?

(3) If the movement of Q, is periodic and f is periodic, then does
there exist a periodic solution to (1.1)?

(4) If the domain £, move along the trajectories of the fluid motion,
how about the questions (1)—(3) above?

In this paper we study above questions and give an affirmative but
partial answer to questions (1)—(4). Similar questions were studied for
incompressible Navier—Stokes equations in [1, 8, 13].

Firstly, we study the existence, periodicity, uniqueness and regularity of
weak solutions to the Euler equations in a time dependent domain, which
is diffeomorphic to a cylindrical one. It should be noticed that (1.1) is not
a free boundary problem in this case. In a analogous time dependent
domain, a weak solution of Navier-Stokes equations was constructed in
[1,8,13], and in [10], the existence and uniqueness of a global classical
solution have been obtained for two-dimensional Euler equations by
Schauder fixed point theorem. While in a cylindrical space-time one, the
existence, uniqueness and regularity of weak solutions to the Euler equa-
tions have already been studied, and these problems are much better
understood, see Kato (1967), Marchioro and Pulvirenti (1994) and Lions
(1996). We first establish the existence of a weak solution of the Euler
equations in a noncylindrical space-time domain which can be reduced to
a cylindrical space-time one by a diffeomorphism, with the initial data such
that the initial velocity uye L?(2) and the initial vorticity w,e L"(Q) for
l<r<o. For this purpose, we combine the method discussing the
Navier—Stokes equations in a time dependent domain with the technique
treating the Euler equations in a cylindrical space-time domain, and
construct the approximate solutions by making use of Navier—Stokes equa-
tions in the same time dependent domain with modified Dirichlet boundary
conditions. Moreover, if the movement of @, and the diffefomorphism are
periodic with period 7> 0, then the weak solution is also periodic with
some initial velocity wuo(x)=u(x, T) in H’(curl, Qy)={v|ve L¥(Q,),
curlve L'(Q,)} for 1 <r<oo. Further, we obtain the existence of a weak
solution of the Euler equations in Q,= ¥,(Q,), in which ¥,(x) denotes
the path line starting from x e £,, that is, the solution of the ordinary
differential equation
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a LX) = (1.2)
y(x) = x

for any xeQ,. Applying DiPerna-Lions theory for ordinary differential
equations in [ 5], the generalized flow can be defined for weak solutions of
the Euler equations, as made in Desjardins [3,4]. In fact, our analysis
show that, if wu,el*(Q,), wy=curlugel®®(Q,) and feL'0, w;
W' *(R?)), then there exists a unique domain Q, such that each Q, is
diffeomorphic to Q, for all #>0. Next we discuss the uniqueness of weak
solutions of the Euler equations. The first result was established by
Yudovitch [ 16] when the initial vorticity is bounded. And same results are
obtained for Euler equations in two-dimensional bounded domain and
whole space, see Lions (1996) and its literature. In a analogous time
dependent domain, Kozono (1985) discussed the uniqueness of a global
classical solution. In this paper, motivated by the approach used in [12]
to discuss the uniqueness of weak solutions, we establish the local
dependence on initial data provided [lwg— |, o(1<r<2) small,
w'e L®(Q,) and f"=0. This implies the uniqueness of weak solutions in
this case. Furthermore we study the regularity when u,e W*"(Q,) and
feL'(0,00; WET(R?) with k=1 or uyeC*%Q,) and feL'0, ©;
BC**R?)) with k>1 and ae (0, 1). For the case of bounded domain and
whole space R? the corresponding results have been established and are
summed up in Lions (1996).

2. TRANSFORMATION OF THE EQUATIONS

In order to show the existence and periodicity of weak solutions, we
need to reduce the Egs. (1.1) to the one in a cylindrical space-time domain,
as made by Inoue and Wakimoto (1977), Miyakawa and Teramoto (1982).
Hence we assume that there exists a diffeomorphism which reduce the
given time dependent domain to a cylindrical one. Let O, = ,cz 2, x {1}
be a noncylindrical space-time domain. Then we make the following
assumptions on the domain £,.

Assumption 1. There exist a cylindrical domain 0, =QxR and a
level-preserving C* diffeomorphism @ : (y, s) = D(x, 1) = (P (x, 1), P*(x, 1), 1)
from O, — Q.,, which satisfies

det <6<15 (x, )
ox

J

>EJ—1(z)>o (2.1)

for all (x,1)e 0.
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Assumption 2. The derivatives 0®/0x; and 0®'/0t(1 <i, j<2) are
bounded functions on Q. J(¢) is bounded in R*.

According to the discussion in Section 4 in Miyakawa and Teramoto
(1982), the assumption (2.1) for Jacobian is of no restriction. Meanwhile,
it is worth to point out, for classical solution, that J(¢) =1 for the case that
Q,=Y,(9Q,), which will be discussed in Section 5.

Let

oy,
0x,

e
#(y.5) =2 ul( @y, ) +
1

(DY, 5)),

a0y, ,

o, :
ol LU0 (1, 0),
2

ﬁ(‘,(y)=ax1 ug(@~'(y,0))+

0y; 0y;
AP s + 2 AR (),
X, 0x,

Fi(r,s)=
Py, s)=p(@ Y(y,5))

for i=1, 2. Then problem (1.1) can be reduced to the following problem in
a cylindrical domain for i = (', #*) and p:

on ~ ~
a—”+Ma+Na=—Vgﬁ+f, veld, s>0,

S

divi=0, yed, >0, (2.2)
i-7=0, yedR, s>0,

ii(y, 0) =iy y), yeQ.

Where f=(f", f2) and iiy= (@i}, #i2). 7 denotes the unit exterior normal
along 0Q. And (Mii) = (dy;/0t) Vi’ + (8y,/0x,)(0%x, /0s0y,) &/, (Nii)'=
W Vi, (Vyp) = g"0p/dy;, Vi =0i'/dy;+ a0y ,/0x,)(0%x,/0y;0y,), &=
(0;/0x;)(0y;/0x), gy5=(0x;/0y;)(0x;/0y;). For more details, see Inoue
and Wakimoto (1977). From now on, we use the summation convention,
i.e. take sum over repeated indices. Moreover, we let ¥ denote the vector
field on O obtained by transformation #/( y, s) = 0y;/0x; - v™(@~'(y, s)) for
each vector field v on Q.. Conversely, v is the vector field obtained by
inverse transformation for #. As pointed out in Inoue and Wakimoto
(1977), the divergence operator is left invariant under the coordinate trans-
formation. By the assumption 1, it is not difficult to see that (g%)~! = (g;)
and det(gij)sz(t). Also it is worth to note that 0i/0s + Mia and Nii
correspond respectively to du/0t and (u-V) u under the transformation @.
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LEMMA 1. (1) The matrixes (g;) and (g7) are positive definite and
bounded.

(2) The derivatives 0x,/0y;(1 <i, j<2) are bounded functions on 0..

Proof. Due to the assumption 1 and 2, (1) is obvious. By the fact
(0x;/0yy) - (Oy/0x;) = 0; and the assumption 2, (2) follows. ||

Before giving the definition of weak solutions, we first introduce some
notations. Let L?(Q,), 1 <p < + oo, represent the usual Lesbegue space of
scalar functions as well as that of vector functions, with norm |-, o . Let
C3,(£2,) denote the set of all C* real vector functions ¢ =(¢;, ¢,) with
compact support in 2,, such that div ¢ =0. W*?(Q,) is the usual Sobolev
space of order (k, p). W& ?(Q,) = completion of CF(R,) in W*7(Q,), while
W—kP(Q,) is the dual space of W&2(Q,)(1/p+1/p'=1). C*%Q,), k>1
and «e (0, 1), is the usual Holder continuous functions space. BC**(Q,)
denote the space of functions whose derivatives up to k are continuous and
bounded in 2,. We may analogously define the function spaces of functions
defined on Q. Let H, is the closure of Cq ,(2,) with respect to ||| o
Finally, given a Banach space X with norm |.|y, we denote by
L?(0, T; X), 1 <p< + o0, the set of functions f{(¢) defined on (0, T') with
values in X such that j"O [ f()I% dt < + oo for 1 <p < oo; suppo, 1 I1/()] x
< oo for p = 0. In general, ge L?(0, T; L'(Q2,)) means s llg( )Hf’gt dt < o0,
and we may define the corresponding space if L'(Q,) is replaced by
Sobolev spaces or others. In the end, by symbol C, we represent a generic
constant.

Now we may define a weak solution to the Euler Egs. (1.1).

DEFINITION. A velocity field ue L*(0, T; L*(,)) for any T> 0 is called
a weak solution of the Euler equations with initial data uy(x) and external
force field f(x, t) provided that
(i) for all test function ¢ e C(‘fa(f) x [0, o0))
oo y o o~
[ ] (o) (# (0 ) 2o+ aMF—Nit - (7. 5)
0 Q A

+ 1y, 5) ¢, S)> J(s) dy ds

= | &0 () F(5.0) 0 .
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(ii) the velocity # is incompressible in the weak sense, ie. for all
scalar function ¢ CP(Qx RY)

L+ fﬁva.adydpo,

(iii) @-7=0 on 0Q x (0, c0).

3. EXISTENCE OF WEAK SOLUTIONS

In this section, we obtain the first result on the existence of weak
solutions to (1.1).

THEOREM 1. Let uy,eH,, wy=curlu,el’(Q,) and feL0, co;
Wln(Q,)) for 1 <r< oo, then there exists a weak solution ue L*(0, co;
L*(Q,)), which satisfies that

Vu, we L*(0, +o0; L'(Q2,)) (3.1)
if 1 <r<oo; and

Vue L*(0, co; LP(L2,)), we L0, co; L*(Q,)) (3.2)

for any 1 <p < oo, if r=o00. Moreover,

L=(0, 003 L24=7(Q,)) if 43<r<2,
du_|L7(0.00:LX(Q,) for pe[l.2).  if r=2 (33)
2= ) L0, 003 L'(2,)) i r>2

L#(0, 003 L7(RQ,)) for pe[l, ),  if r=c.

Remark 1. 1. For the case that Q. is a cylindrical space-time
domain, analogous results have already been obtained. cf. Kato (1967),
Lions (1996).

2. In aanalogous time dependent domain, Kozono (1985) constructed
a global classical solution.

3. When r=2, the conditions of u,eH, and w,ecL*Q,) are
equivalent to u, € WH%(Q,), (see Theorem 6.1, Chap. 7, Duvaut and Lions
(1972)).

4. Tt is easy to see, from the procedure of proof given later, that the
deducement of estimates (3.10) and (3.13) is independent of assumption 2.
In order to obtain the strong convergence, we take transformation
@~ (y,s), and need the estimates (3.17) and (3.18), for which we have to
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use the assumption 2. So the assumption about 0®'/0x;, 0®’/0t can be
weakened to that 0®'/0x;, 0®'/ore L=(0, T; L*(£2,)) for 1<i, j<2 and
p>max{l,r2(r—1)},if 1 <r<oo; some p>1if r=oo. In fact, instead of
(3.16), we deduce that |@,|, < C(|lwll, QO+§8° [eurl f(7)],, o, dr for
1/r'=1/r+1/2p and 1 <r' <r. Through a similar procedure, we can show
the strong convergence of u, in L%0, T:; L*R,)) for any T> 0.

Proof of Theorem 1. We first construct the approximate solutions of
Egs. (1.1), utilizing the solutions to the Navier—Stokes equations in a corre-
sponding time dependent domain with the modified boundary conditions,
as made in Lions(1996). Namely, we introduce the equations

0

;6—8Au8+(ue~V)u8=—Vp8+f; xeQ,, >0,

div u, =0, xeQ, >0, (34)
u,-v=0, w,=curlu,=0, xeoR, t>0,

uy(x, 0) =uy(x), X€Q,.

Equations (3.4) can be solved exactly as the usual Navier—Stokes equations

with the usual Dirichlet boundary conditions in a time dependent domain,

through reducing to the problem in a corresponding cylindrical domain. cf.

[1, 8, 13]. Thus we obtain a unique weak solution u, € L*(0, T5 L*(L2,)) N

L*0, T; Wt%(Q,)) for all T>0 and all £¢>0. Here we only give the

modified energy inequality which implies the existence of a weak solution.
We multiply both sides of (3.4) by u, and integrate over Q,, to get

ou,

"oy

ou,
J s,ugdx-l—aHVugHiQt:gJ u,
e 2@,

- ds+j

Q

u, -fdx. (3.5)

Take the transformation @ ~!(y,s). The first term at the right hand of
(3.5) is

~i

Ju, i, i\
Ll o e dx:L; gi(1,5) < 2 +(Mu)g> ulJ(s) dy

t

= — B L~
zdS JQ‘ gy(y’ S) ueus(ya S) J(S) dy

Here we have used the Lemma 2.7 in [ 13]. Returning to £2,, we obtain that

1d

Ou
S 3 g+ 1V, 13 g =2 [ w5
00,

"oy

o ds + Lz, u,-fdx.  (3.6)
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Since u, -v=0 on 0€,, it is easy to deduce that
u, -Viu,-v)=0 on 09,, t>0.
By the fact that w,=0 on 0Q,, we may deduce that

ou,
u. -

£ =—x|u,|*> ondQ,, t>0
v

where x is the curvatures of 0€2,. By using the above fact and Cauchy
inequality, the right hand side of (3.6) can be estimated as

& LQ, u, -a;f dS+Lz, u, -fdx

<Ce| fu,PdS+ lullo g I/ 2,
a0,
< Ce lug |5, Q, Vi, |2, e, T H%Hz,g, £, Q,

1 :
Nk IVus |13, 0, + llugll2, 0, [ Ce llu, 2, 0,4 1 f12,0,]-

Here we have used the classical trace inequality and the Young inequality.
Thus

d
— 13,0, + & [V 13, o, < Il 12,0, [ Ce 15,0, 4 1 f12,0,]

dt

which implies that

t
4,112, @, <€ llug 12, 0, + fo e (D), o, de (3.7)

for all 1>=0.
In the following, we consider the vorticity equation of u,

0
;Ols—sAw8+(u£~V)ws=cur1f, xeQ,, >0,

3.8
w,=0, xeoR,, t>0, (38)

w(x,t=0)=wy(x) X€Q,.
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Let 1 <r<oo. Set Tg(w,)=max(min(w,, R), —R) for any R>0. We
multiply both sides of (3.8) by |Tr(w,)|” ™2 Tr(w,) and integrate over Q, to

get that

[ 22 T Telw) dr+(r—1)e [ 1 Ta(@,) V(@) dv
Q

, ot Q,

= [ curl £ To(@,) 2 Talo,) dx.

t

But

[ 02 T w02 Tataw,)di
o, 0

oy, 0
i [ 2 T s s dy
r y

—— [ T (@7 (y, )" I(5) dy.
rJe

By the fact (cf. Miyakawa and Teramoto (1982))

o W\ 0 [0y;
J(t)=—J(1)V; <é§l> =—J(1) 3, < Py >,

the third term at the right hand side of the last equality is

1 B . d [0y,
L oo o s 5 (50

i

1 dy, 0
=~ |, Gray ITR@L T I s d

(3.9)
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Using the Green formula, it follows

4 1d
L?, g;g |Tr(w,)]""? Trlw,) dx=;$ L? | T (w0, (D Yy, )" J(s) dy

1d
= TR}, o,-

Therefore, by Holder inequality and the last equality, we deduce from (3.9)
that

I TR(@)(O)], 0, < I T(@,)(0)],, 0, + jo leurl f(2)], o, dt
for any 7> 0. Let R — oo, we obtain that
t
loo( )], 0, < 01, 0, + jo leurl f(2)], g, dt (3.10)

for t>0 and 1 <r< oo. It is obvious that (3.10) is valid for r = co.
Since div u, =0, there exists a stream function , such that

,(x) = V4 (x) = <5¢s %)

ax,”  ox,
and s, satisfies that

{—A(//sza)s in Q,
Y,=0 on 02,

Let Gg, be the Green function with homogeneous boundary condition.
Then

Vix) =] Go,(x. ) y)dy

and

U= | VG, (x, y) o (y) dy. (3.11)

2
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For Green function G and its derivatives, the following estimates hold

|Gg,(x, y)| < C(In |x = y[+1),
V4G, (x, »)I < Clx—y| 7,

:

; (3.12)
o ViGg (x, y)|<Clx—y| 72

1

By the Calderon—Zygmund theorem on singular integral (cf. Stein
(1970)), we deduce, from (3.10), (3.11), and (3.12), that

Vit 0, < C 0, 0,
t
<C<|w0|,,go+j0 leurl £(0)] o dz>, (3.13)

for 1 <r<oo and t>0. Moreover, if r>1,

(3.14)

where C, is a constant independent of r. This fact follows from the constant
which is calculated carefully in Marcinkiewicz interpolation inequality

(cf. [7]).
In two-dimensional case, we have
Au, =V divu,+ V* curl u,.
This, combined to the fact that divu, =0, implies
Au,-v=(v-V*)curlu, on o, t>0.
Since vector V+ is along the tangent vector direction, we know

Au, -v=0 on 0Q2,, t>0.

Let P denote the orthogonal projection from L% Q,) to H,. Applying the
projection operator P to both sides of (3.4), we get formally

0
(;‘S-i-P(u'S V) u,—¢ Au, = Pf.
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Applying the estimate (3.13), it is easy to deduce that

0
3 <C (3.15)
at W—l,q(gt)
for 0 <t < T and some ge(1,2).
Since
R . 0x; 0y, Ou’ Ox; 0y, Oul
a,=curl i, =——— il B8 i
0y, axj ox; x=d-1(y,5) 0y, 8xj ox; =1y, 5)

we deduce, with the help of the assumption 2, Lemma 1 and estimate
(3.13), that

t
[0 1,5< C IVt 0,< c<|w0 Ir.0,+ [, leurl (), dr>. (3.16)

Due to the fact that div#, =0, it can be seen that there exists a stream
function , such that

- oy, o
) =0 = (3 -2

and V, satisfies

Similarly,

7,=| VGalx, ») d.(y) dy,
Q

where Gg is the Green function with homogeneous boundary condition.
The estimates similar to (3.12) are valid for Gg. Hence

IV, |, 5<C 1,1, 5
S
<C<|wo Iroay | lleurl /(o)1 g, dr>, (3.17)

for ] <r< oo and s> 0. In view of the fact

oal 0Oy, ou

9y, 0y; Ou
ds Oy, ot 0xy

- )
yedn Xk O 0Vi|y_ax )
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we deduce, with the help of the assumption 2 and estimates (3.15) and
(3.17), that

for 0 <s< S and some ge(1,2).

By the Kondrakov compact imbedding theorem, W'"(Q) can be com-
pactly imbedded into L4(Q) for 1 <q<2r/(2—r) if r<2; into LY(3) for
1 <g< oo if r=2. By using the compactness theorem (cf. Temam (1977)
p.- 271), together with the estimates (3.7), (3.10), (3.13), (3.17), and (3.18),
we deduce that there exists a subsequence of {u,} or {i,} (still denote by
itself) and we L0, oo; L3(RQ,)) or iie L=(0, oo; L*(Q)) such that

o,
os

<C (3.18)

w-143)

Vii, converges to Vii in L*(0, co; L"(£2)) weak-star,
ii, converges to @i in L*(0, S; L*(Q)) strongly,

w, converges to w in L*(0, oo; L"(Q,)) weak-star,
Vu, converges to Vu in L*=(0, co; L'(£2,)) weak-star.

(3.19)

This shows, by a routine argument, that i is the weak solution of (1.2),
which is the limit equations of the corresponding one reduced from
Navier-Stokes Egs. (3.4) by diffefomorphism @ ~!. Thus u is a weak solu-
tion of (1.1). Since norm is weak lower-continuous, (3.7) (3.10), and (3.13)
give us the estimates

t
1) 0,% Vit I, || 1A
t
V00,5 € (1a 10, + [ eurd (611, )

t
leo(?)]5, 0, < Hwol\r,gﬁfo leurl f(2)ll,, o, de

for >0 and 1 <r < oo. Using these estimates and

%: —P(u-V)u+Pf, (3.20)

we obtain the estimates about du/0t which yield (3.3) for 1 <r < co. Thus
we complete the proof of Theorem 1 when 1 <r < co.
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Let r = o0, then wy € LY(Q,) for 1 <g < co. From (3.10), it is known that
w, € LYQ,). Similar to the case of 1 <r< oo, we obtain a weak solution
ue L*(0, oo; L*(R,)) of (1.1), such that (3.2) hold. Moreover,

t
V()4 0, < C<|woq,go+ J, Verl 7)1, dr>. (3:21)

Utilizing estimates (3.21) and (3.20), it is easy to deduce the estimate about
Ou/0t which implies (3.3) for r=c0. |

4. EXISTENCE OF PERIODIC WEAK SOLUTIONS

For simplicity, we discuss the case f =0 in this section. Let
H'(curl, Q,)={ve L*(Q,), curlve L"(Q,)}
with norm

0]l frcun, Q)= [oll, o, [curl ]|, Q,

for 1 <r<oo.

THEOREM 2. Assume the movement of Q, and the diffeomorphism ®@(x, t)
are periodic with period T>0. Then there exists a weak solution u of (1.1)
in L0, oo; WY"(Q,)) satisfying the definition of weak solution with some
up(x)=u(x, T) in H'(curl, Q) for 1 <r<oo; in L*(0, co; Wh49(Q,)) with
some uy(x)=u(x, T) in H*(curl, Q) for 1 <g< o0.

Proof. We adopt the method discussing the periodic weak solution of
Navier-Stokes equations in Miyakawa and Teramoto (1982). Let
{w;(x,1)} 2, be the basis of C5,(2,) and {w,(x,#)}2, be a Schmidt
orthogonalization with respect to the L?inner product. For each m>1,
we arbitrarily take a function wuj from the subspace spanned by
{w;(x,0)} 1< ;<m Then we define the approximate solutions of (3.4)

m _
u, =

hlm(t) Wi(xa t)a

1

I3

i

where £,,,(t) is defined by

a m
< g; , wj> +e(Vull', Vw)) + ((u} - V) ul', w;) =0, I1<j<m. (4.1)
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Where (,) denote the L%inner product. Taking the transformation
x=® !(y,s)in (4.1), we can determine ™ with initial data u}' because of
the estimate

H“;n(t)uz,glgecet H“B" Hz Q,

which is obtained through the deducement similar to (3.7).
Let P, be the projection from C§,(2,) to span{w (X, t), .., w,(x, )},
then

ou”
ot

—edu? + P, (u? -V)ul'=—P, Vp.

Thus 7" = curl u? satisfies

0w’
ot

—edw™+ P, (u™ - V) 0™ =0. (42)

&

Similar to (3.10), we deduce that
o7 (D), o <lof g, 1<r<co.

By the same procedure as before, we obtain a weak solution u™(¢) in
L*(0, co; Wh(Q,)) which satisfies

a m
M P (W V) u"=—P, Vp,
ot
and
[u™(2)]2, @, < |ug 12, (4.3)
lo™(O) 1, o, < g |11, 0, (4.4)

And it is obvious that u™(7) € span{w,(x, ), .., w,,(x, 1)}. Hence (4.3) and
(4.4) show that [[u™(T)| grcurt, @,y < M i [[uG || rrcurt, o) < M. On the other
hand, it is easy to show that the map: ug — u™(7T) is continuous. By the
assumption of periodicity, #™(T') and ug are in the finite dimensional linear
span{w;(x, 0), ..., w,(x, 0)} =span{w,(x, T), .., w,(x, T)}. Thus, by the
Brouwer fixed point theorem, there exists a ug' such that ug'=u"(T) and
66 | zrr(curt, 2p) = 14" (T) | frrcurt, @) < M. Since M is independent of m, we
may fix M, and take m — oo. Through the same argument as before, we
may show that there exists a weak solution u# of (1.1) in L*(0, co;
whr(Q,)) with some wuy(x)=u(x, T) in H'(curl, Q,) for 1<r<oo; in
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L*(0, co; Wh4(Q,)) with some uy(x)=u(x, T) in H>®(curl, Q,) for
arbitrary 1 <g<oo. |

5. FURTHER RESULT ON THE EXISTENCE OF
WEAK SOLUTIONS

In this section we show the existence of weak solution of the Euler equa-
tions in Q,=¥,(Q,) with ¥, defined by (1.2). First we make a few remarks
related to the integral curves of the velocity field, i.e., the trajectories of the
incompressible fluid motion, in the sense of DiPerna-Lions theory for
ordinary differential equations. In order to solve ordinary differential
Egs. (1.2), we use the notion of renormalized solutions introduced by
DiPerna and Lions for equations related to incompressible fluid and for
parabolic equation, see Lions (1996) and its literature. We refer to [3, 4]
for other same settlement.

PROPOSITION.  Assume the conditions of Theorem 1 satisfied. Then the
pathline ¥,: [0, c0) x Q,— Q, defined almost everywhere such that

(1) ¥, is the unique renormalized solution of the following linear
transport equation

0
Elﬁ(wt)+u'vﬂ(wt)zoa

Bl i=o=P(x)

in the sense of distribution for Be CT(R?). And B(¥,) e C([0, +o0);
LP(Q,)) for any 1 <p < o0.

(i1) For almost every x e,

Y(x)e ([0, +0))

Y. (x)=x+ jt u(s, Yx)) ds.

0

The Proposition can be proved similar to that in [3,4] and the
Appendix E in Lions (1996).
In the following, we will show that

THEOREM 3. Let upeH, and wy=-curluy,eL®(Q,), feL0, co;
W °(R?)), then there exists a weak solution ue L*(0, co; L*(Q,)) with
Q,=Y,(Q,), which satisfies the definition of weak solution and
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w=curlue L*(0, co; L*(R2,)),

Vue L*(0, co; LYR,)),

ou
ot

for any 1 <q < oo. Moreover.

—e L™(0, oo; LYRQ,))

t
H“(I)Hz,sz < ”uouz,g + |-Qo|1/2 Hf(T)Hoo,RZ dr,
t 0
0

281

(5.1)

t
IVu(?)],, o, < C<|wo|r,go+ Q0] fo leur] f()] o, r2 df>, l<r<ono,

t
(1) .0, < 0ol .3, + 12l | lurl £(2).. e .

1<r<oo.

(5.2)

Remark 2. Our analysis show that if (u,, f) satisfies the conditions in
Theorem 3, then there exists a domain €, such that each Q, is
diffeomorphic to Q, for all > 0. Furthermore, by the result of Theorem 5,

the domain €, is unique for each > 0.

Proof. We first define the sequences {u*}, ., of approximate solutions

as follows:

and

X €Q,,

X € Q,,
x €08Q,,
X€Q,.

X€EQ,,

xe,,
X €0Q,,
X€eQ,.

t>0,

t>0,
t>0,

t>0,

t>0,
t>0,

(5.3)
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for k> 1. Here Q, = Y*~1(Q,_,) for k> 1, in which ¥*~! is the path lines
from x € ,, i.e. the solution of ordinary differential equation

d

S0 = (P ), ), 54
PE-l(x)=x

for any x e Q,. Note the facts that Jacobian of ¥* is one and |Q,| = |Q,]
if divu*=0 and u* e C'(J,cr+ Qi x{t}), cf. [2]. Without loss of
generality, we assume u,€Cg,(2,) and feL'(0, +00; CF(R?)).
Otherwise, we may use vectors in Cg’ (2,) or L'(0, +00; CF(R?)) to
approximate u, and f. When k =0, it can be shown, by the classical exist-
ence result in a bounded domain (cf. [ 11]), that there exists a solution u° e
C([0, +00; C™(R4)) N L™(0, co; W9Q,)) for any m>1 and 1 <g< 0.
Moreover, similar to the deducement of (3.10), (3.13), and (3.14), w

obtain

(1600020, < it + || 175,

t
(D)) o, @y < Honoo,go+J0 [eurl f(7)] o, &2 dr,
(5.5)

IV4(0)g.2,% C{ 1000, + 1201 [ eurl (511, o i

t
| < C{|wo|w,go+Jo leurl £()]] ., &2 dr}

for 0 <t< oo and 1 < ¢ < co. Furthermore if ¢ > 1, C can be estimated as

2
c<c2< 4 > (5.6)
qg—1

where C, is independent of q.
Taking k=1 in (5.4), we deduce that ¥? e C([0, + o0; C™(L,)) and

|[V¥O(x)| ds.

()

t
V) <1+ [Val
0

By Gronwall inequality,

t
V90()] <exp {jo 1Vl

ds} .
()
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Let 4 <p < o0, we deduce, by estimates (5.5) and (5.6), that

t
exp f |Vu| ds
0 #(x)

o] 1 t
<I935 | Ivulds
m=1 °

V¥, 0, <

P> 2

m

mp, £,

© 1
oy m!

<4 Comp (Joul ., + [ leut A0 e, )

Set T=1/(2C,pe( ol oo, 2, + L‘,’O [curl f(7)ll ., z2 d7)), we deduce, since
m™ =m! exp{Cm}, that

IV, 0,<C (5.7)

for 0<¢t<T and p >4.
Continuing the procedure above, we can show

© 1

V9?0, < 1200+ 3 o0
| Comp (1T o, [ eusd (01 )

<|.Q|+O§: i

SR oy m!

< Comp (1o, ewrl f0)] e i )

So (5.7) is valid for T<t<2T. Therefore, estimate (5.7) is valid for any
T> 0. By remark (4) of Theorem 1, we have obtained a weak solution u'
which satisfies (5.5) and (5.6). Employing the regularity result (see
Theorem 8 in Section 7), we have u'e C([0, +oco0; C™(2,)) n L*(0, + o0;
W' 49(Q,)) for any m>1 and 1 <g< + co. Continuing this procedure, we
can define u* for all k>1, such that u*e C([0, +0); C™Q,))N
L*(0, +o0; Wh9Q,)) for any m>1 and 1 < g < co. Meanwhile, we have
the estimates
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t
(14400 2., < L., 1212 [ 11
t>0,
P va (*
140l ol [lewt s,

t>0, l<g<oo,

V0.0, < C (10l 0, [ eurl F0) e )

\ t>0, l<g<w

holding uniformly for k > 0.
Let p >4. Similar to the deducement of (5.7), we have

IVP¥), 0 <Cp.T), 0<i<T (5.9)

uniformly for k> 1.
Let 1/r=1/(2p) + 1/q and p > 4. Instead of (3.16), we have

1641, 0, < 19X, V1], g, V6]

<C<|wo|w,go+f0 ICurlfloo;R2> (5.10)

for 0<t<T. Here x=%*_(y) and y=%¥*"Y(x) for yeQ, and xeQ,.
Thus, through a analogous procedure as before, we deduce

t
IV, o, < C <|wo leo, QO+JO lcurl f(f)lao,m). (5.11)

Since p(=4) and ¢ in (5.8) and (5.9) are arbitrary, so r(>1) in (5.11) is
arbitrary. By the estimate (3.3), it follows similarly

for t>0 and r > 1. Similar to (3.18), we deduce that

uniformly for k>0 and 1/ =1/(2p)+ 1/r, p=4.

ou*

= <C
ot

r,

i

L o< oss<s (5.12)
os

r, 2,
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Employing (5.11) and (5.12), we deduce that there exists a u in
L*(0, oco; WH"(Q,)) such that

{ukéu in L*(0, oo; Wh"(Q,) weak-star (5.13)

#*—a  in L0, S; L*(Q,)) strongly for any S>0. '

Now it is routine to show that # satisfies the definition of weak solution
with Q, instead of Q. Thus u is the weak solution in L*(0, co; W 9(Q,))
which satisfies (5.1) and (5.2). ||

6. UNIQUENESS OF WEAK SOLUTION

In this section, we discuss the uniqueness of weak solutions to the Euler
equations in a time dependent domain. The first result was established by
Yudovitch with bounded initial vorticity. Later on, this result was extended
to bounded domain in R? and whole space R? See Lions (1996) and its
literature. In a time dependent domain, the uniqueness of the classical solu-
tion was obtained by Kozono (1985). Here we extend the result of
Yudovitch to the case of a time dependent domains. For simplicity, we only
consider the case f =0 in this section.

THEOREM 4. Let ul € Hy and wj e L*(Q,) for i=1,2. Let u' be the
weak solutions to (1.1) corresponding to the initial data (ul, ®}). If
A=|w)—w] I, o, <1 for some re(l,2), then

(1) —P(1) 1, 0, < C(A+ A"~ In A~ (6.1)
Sor any t, 0 <t <min{1, 1/(C3B)}. Especially, if A<e "0 <a<2/3), then
lu (1) = (1) |1, o, < CA> = (62)

Sor any t, 0<t<T=min{l1, 1/(3C,B)}. Here B= HwéHw,QO.

Proof. Let ¥,(x) denote the path lines starting from x € Q defined by
(1.2). Let u’(i=1,2) be the weak solutions corresponding to the initial
vorticity w{. The corresponding path line is represented by ¥ (i=1, 2).
Thus

[ 3(x) = P2x)| <

t

[ @) (9 2x))) ds

0

[ (w2 — 2w 2(0))) ds .
0
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Let o’ =curl «’, then o’ satisfies that

awi(x, H+u-V)w' =0,

which implies that
@'(x, 1) = (P (x)). (6.3)

For the weak solution to (1.1), we may deduce the same expression as
(3.11), i.e

u(x, )= | VGg (x, y)-0ly) dy. (6:4)

2,

By the estimate
L} IVH(Gg,(x, ) = G (x', ) dy < C(1 +1RQ,]) D(|Ix =x'])  (6.5)
where (cf. [12] p. 67)

¢(r):{;i(l—lnr) if r<l,

if r=1,
we have
(9 ) — (P 2(0))]
<[ IVHGa (i), y) = Ga(P3x). y)] o' (7)] dy
< CB(1+120]) (1P 1(x) — P2(x)])

and

j [u'(x, s) —u?(x, s)| dx
Q

<ng
<[, I,
+f

s

dx

Lz VG (x, y)(@o( VL () — f(P2 (1)) dy

VJ_G!) (x, ) @o(PL () —wy( P2 (»)) dy| dx

dx

j V4G (3, (@2 (1) — 032 (1)) dy

s
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<)
QS

+C Q|1 =M

[ V4G L) = Gl w2 o) dy | d

2

1
| oy - () dy
o, lx—yl

1 1
Ix—¥ I Ix=¥)

r, Q

dx dy + CA

<CB L}O Lls

< cgj O(|¥(y)— P2y)|) dy + C4,

2

here we have used estimates (5.1), (6.3) and (6.5), the Hardy—Littlewood—
Sobolev inequality (cf. Stein (1970)). Let

1
o0 =1 I, 17100 = ¥ildx

Hence
1 t
o(1) <—— CBJ j ®(| ¥ (x) — P2(x)|) dx ds+ CA
1€ 0 g,
for 0 <r <1, where we have used the fact that

[, W20~ de= | ()~ 5)) dy.

Q

since x € Q, < P2(x) e Q,. By Jensen inequality, it holds

1
|QO| Q

1
O(f) dx <D <|~Qo| jgo £(x) dx>
for any convex function @. Hence
5(1)< CB jo B(5(s)) ds + CAL.
Since @(r) < —(In¢) r+ ¢ for arbitrary 0 <e <1, it follows
5(1) < CB(—In ¢) fot S(s) ds + C(A +¢B),

for 0 <7< 1. Applying the Gronwall inequality, we obtain

3(1) < C(A +¢eB) e~ ne) B
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for 0 <r<1. Let e=4 <1, we deduce that
6(1) < CA—GE, (6.6)

Moreover, from the procedure of deducement above, we get that
| s =, ) dx < CB [ @(1®}(y) = WHp)) dy+CA
2, 2
< CB{e+d(lne ")} +CA
< CB(e—(Ing) A~ 458 + CA.

Let ¢é=A, we obtain (6.1). Noticing the inequality 6*Ind~'<1 if
0<d<e " and taking T=min{1, 1/(3C;B)}, we have estimate (6.2). |

If w'=0w? then u'=u? for xeQ,, 0<t< T, from Theorem 4. Since T
only depends on [|wg | ., , and |, ], we deduce the following theorem, by
iterating the procedure of deducement of (6.1) and using the fact that
o ()l o0, @ < g | o, @, for any >0.

THEOREM 5. If wy € L™°(L,), then the solution to (1.1) is unique.

7. REGULARITY OF WEAK SOLUTIONS

THEOREM 6. If uy,ec W? ’(Qo) and f e LY0, oo; W2'(R?)), then for every
T>0, ue L*(0, T; WZ’ ), if ¥>2; if additionally wq,e L™(Q,), then
ue L0, T, W>"(Q forre (1,r), if 1<r<2.

Proof. Employing equality (6.3), we deduce that
t
Voo, 1)] < [Vare| [VE_,(x)] +j0 V|- IV, _,]| ds. (7.1)

In order to obtain the estimate about |Vw|, we need the estimate on
HV‘P il for any large r. Let r>2, then Vu,eL™(Q,) and Vfe
LY0, oo; L (R?)). Hence, through the same procedure as the deducement

loc

of (5.7), we have

V¥, eL*(0, T; LY (Q)), Vp=4. (7.2)
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From (7.1),
t
HVwMaQ<HVwNngHVT_ARQ+LJKWIﬂTNnmHVTPAMQ/B
for 1/r=1/r+1/p, 2<r' <r.

Similarly, there is a stream function y corresponding to the solution of
Euler equations which satisfies

— My =w,
{wug=a (=
and
u=vV=y. (74)

By the elliptic estimate, we may deduce that

2

2

i, j=1

0%u

0x; 0x;

<C,  Yo<t<T

,
r,Q,

By Sobolev imbedding theorem, this shows that |Vu|, o <C for any
0<t<T. From (12), it is easy to deduce that [[V¥,||, o <e!"“I=a" for
any 0 <7< T. This, combined with (7.1), yields that |Vo|, o < C. Utilizing
this estimate, (7.3) and (7.4), we deduce that ue L*(0, T; W>"(R,)) for
arbitrary T>0. This and (3.20) imply that du/dte L=(0, T; Wh"(RQ,)).
When 1 <r<2, the proof is similar. ||

If we continue the above procedure, we can show ue L*(0, T; W*"(Q))
when u, € W5"(Q) and fe LY(0, co; W*"(R?)) for k> 3.

THEOREM 7. Let 024 € C**1, uge W5"(Q,) and f e L'(0, co; W5 "(R?))
for k=3, then
Ou

ue L*(0, T; Wr"(Q,)), 5 EL70. T wk=t1(Q,)

for any T>0.

THEOREM 8. Let 0Q,e C** If uy e C**%(Q,) and f € L'(0, co; BC**(R?))
for k=1 and 0 <a <1, then

u

ueLOO(O, Ta Ck)a(‘Qt)); at

eL>(0, T; C*~1%Q,))

for any T>0.



290 HE AND HSIAO

Remark 3. 1. For the case of a bounded domain or whole space,
analogous results as in Theorem 5-8 had been established, see Lions (1996)
and its literature.

2. Kozono showed that (u, p)e CY(0, T; CY(R,))x C(0, T; C(RQ,))
for any 7> 0 as long as u, € C%(Q,) for 0< 0 < 1.

Proof. Here we only give the proof for the case of k=1, since the
procedure can be iterated as long as possible, up to the maximum order of
derivatives of the initial data u,.

Let uy e C*%Q,), then wy=curl uy, e C**(2,), thus w, € L*(2,). By
(7.2), V¥, e L*(0, T; L?(Q,)) for arbitrary p>4. By Sobolev imbedding
theorem, ¥e L*(0, T; C*#(Q,)) with f=1—2/p. Since

|lo(x, 1) =y, O] _ [0 ¥_(x)) = o ¥_(»)) <|‘1’z(x)— ‘I’t(y)|>°°
|x — »|¥ L AFEY S A1k |x — y|*/
+ft |curl (¥, _(x)) —curl f(¥,_(»))|
0 |5Us—t(x)_ Ws_t(yﬂ“

X<I‘1”s_t(><)—5”s_t(y)|>“ds (7.5)

|x — |7

for 0 <o’ <a, it follows
weL®(0,T; C**(R2,), Va'e(0,a).

By the standard Schauder theory on the elliptic equation, we deduce,
from (7.3), that yeL*(0,T; C*>*(2,)). Hence, u=V*+yeL>0,T;
C¥¥(Q,)). From (1.2), it is not difficult to deduce that V¥, e
L*(0, T; L*(£,)), thus, e C**(,). Similarly, we deduce that

ue L*(0, T; C-*(2,)).

By (3.20),

0
S EeL7(0.T: C*%@)). |
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