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Abstract

Following our recent letter [1], we study in detail an entry-wise diffusion of non-hermitian complex ma-
trices. We obtain an exact partial differential equation (valid for any matrix size N and arbitrary initial 
conditions) for evolution of the averaged extended characteristic polynomial. The logarithm of this poly-
nomial has an interpretation of a potential which generates a Burgers dynamics in quaternionic space. The 
dynamics of the ensemble in the large N limit is completely determined by the coevolution of the spectral 
density and a certain eigenvector correlation function. This coevolution is best visible in an electrostatic 
potential of a quaternionic argument built of two complex variables, the first of which governs standard 
spectral properties while the second unravels the hidden dynamics of eigenvector correlation function. We 
obtain general formulas for the spectral density and the eigenvector correlation function for large N and for 
any initial conditions. We exemplify our studies by solving three examples, and we verify the analytic form 
of our solutions with numerical simulations.
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1. Introduction

The concept of matrices filled with entries subject to the diffusion process was first introduced 
by Dyson [2] and applied in the context of both Gaussian Unitary Ensemble (GUE) and Circular 
Unitary Ensemble (CUE). The arising Coulomb gas analogy had a major impact on understand-
ing of random matrices [3]. Today the marriage of stochastic processes and random matrices 
brings new insights. Examples include the study of determinantal processes [4–6], Loewner dif-
fusion [7] or the fluctuations of non-intersecting interfaces in thermal equilibrium [8].

Recently, several authors [9,10] have approached the diffusion in the GUE from a new per-
spective. They found a viscid complex Burgers equation for the logarithmic derivative of the 
averaged characteristic polynomial fN(z, τ) ≡ 1

N
∂z lnUN(z, τ) (associated with a Hermitian ma-

trix filled with entries performing Brownian motion in the complex space):

∂τ fN(z, τ ) + fN(z, τ )∂zfN(z, τ ) = − 1

2N
∂2
z fN(z, τ ), (1)

where τ is the diffusion time and z is a complex variable. The role of viscosity is played by 
the inverse size of the matrix N . In the N → ∞ limit, fN(z, τ) becomes the Green’s function 
G(z, τ) and the partial differential equation becomes inviscid:

∂τG(z, τ ) + G(z, τ)∂zG(z, τ ) = 0. (2)

A solution of the latter equation (by the method of characteristics) requires an introduction of 
shocks, which turn out to coincide with the edges of the spectra. This phenomenon leads to a 
novel interpretation of known matrix results, since microscopic universal behavior of the spec-
tra emerges as an expansion around the shock wave of the viscous equation. Nontrivial initial 
conditions give rise to shock collisions which are equivalent to the merging of the spectrum 
boundaries. In this way, not only Airy but also the Pearcey functions are captured in the same 
formalism. A similar Burgers equation was also obtained for the Wishart ensemble and chiral 
GUE yielding a universal scaling associated with the Bessoid function [11]. The equivalent phe-
nomenon appears also at the level of CUE diffusion, providing new insight for order–disorder 
transition of Wilson loops in Yang–Mills theory [12].

Recently, this program got extended to the realm of matrices with complex eigenvalues [1]. 
The success of such an extension is a priori surprising, since hermitian and non-hermitian ma-
trix models seem to be hardly comparable. In the former, the hermiticity condition confines the 
eigenvalues to the real axis. In the latter, there are no constraints, and the eigenvalues spread 
over the whole complex plane. Furthermore, non-hermitian models develop discontinuities at the 
spectral density boundaries, a feature observed even for the well-known Ginibre Ensemble [13], 
for which the spectral density is given by:

ρ(z, z̄) = 1

π
θ(1 − |z|), (3)

whereas e.g. in the GUE case, the Wigner semicircle is continuous across the spectral edge, and 
only the derivatives are discontinuous. Other differences arise when one considers the evolu-
tion of the diffusing matrices. In the hermitian case, the evolution is determined by the initial 
eigenvalues only, whereas in the non-hermitian models, the information on initial eigenvectors 
additionally affects the shape of the spectral density.

This paper is a continuation and an extension of the ideas of non-hermitian diffusion an-
nounced briefly in [1].
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Our approach is rooted in the standard electrostatic analogy, but requires a novel setting (we 
call it the quaternionic method), which can be viewed as an extension of the standard Dysonian 
strategy applied originally to the hermitian (or unitary) matrix diffusion case. The main objects of 
our interest are the spectral density (obtained from the resolvent) and a certain one-point eigen-
vector correlation function. We stress that the aforementioned eigenvector correlator is crucial 
for understanding the diffusion process of non-hermitian matrices. We also point out, why the 
importance of this correlator was disregarded in majority of the studies of non-hermitian random 
matrix models.

The basic object of our studies is an averaged “extended” characteristic polynomial (AECP). 
An extension follows from an introduction of two pairs of complex variables (compared to one 
complex variable in standard treatments). Surprisingly, AECP obeys a certain partial differential 
equation akin to the diffusion equation, for arbitrary size of the matrix and for arbitrary initial 
conditions, and is exactly integrable. The diffusion takes place in the auxiliary plane “perpen-
dicular” to the complex plane where the eigenvalues reside. In the large matrix size limit, the 
logarithm of the AECP can be viewed as an electrostatic potential and its derivatives with respect 
to the two complex variables yield a pair of coupled Burgers-like equations for the non-hermitian 
Green’s function and eigenvector correlation function. We would like to mention, that in the stan-
dard electrostatic analogy [14–16] the “second variable” is treated as an infinitesimal regulator 
only. This is the reason why the dynamics, as a function of this variable, remained hidden, and 
the complementary information on the eigenvector correlator co-evolving with the spectra was 
absent.

To illustrate our findings, we consider a couple of examples of initial conditions. In most 
of them we demonstrate the explicit solutions of Burgers equations, obtaining formulas for the 
spectral density, eigenvector correlators and the electrostatic potential. We note that an inspec-
tion of the Burgers-like equation identifies the shock line with the non-holomorphic sector of the 
spectral density. Moreover, we show the insensitivity of the shock formation to the initial condi-
tion chosen. This hints to a lack of truly new universality classes in this type of models, which is 
corroborated by direct studies of the universal behavior in the vicinity of the spectral collision in 
one of the examples.

The paper is organized as follows. In Section 2 we define Dysonian non-hermitian diffusion. 
In Section 3 we briefly review the electrostatic analogy and the quaternionic method. We proceed 
in Section 4 by deriving the partial differential equation for the AECP and presenting its integral 
representation. In Section 5 we derive a pair of coupled Burgers equations for the diagonal and 
off-diagonal parts of the quaternionic Green’s function (in the large N limit) thus making a link 
to the quaternionic method. Subsequently we solve them with the method of complex charac-
teristics. Finally, we obtain an implicit solution to the equation for the potential in terms of the 
Hopf–Lax formula and derive large N formulas for the spectral density, the eigenvector correla-
tion functions and the boundary of the spectrum valid for an arbitrary initial matrix. Section 6 is 
devoted to the examples of a) Ginibre, b) spiric and c) 1-band non-normality matrices. We ap-
ply previously described methods to these cases, depict the characteristics picture and obtain the 
large N limit spectral density and eigenvector correlators. We also comment on critical behavior 
of the AECP. Section 7 is devoted to a curious observation by Osada [17], which actually has 
triggered our interest in the diffusion of the Ginibre ensemble. We provide also an explanation of 
the Osada observation. Section 8 summarizes the paper and outlines some possibilities of further 
investigations of the observed patterns.

Three appendices hide technicalities: Appendix A demonstrates the derivation of the key dif-
fusion equation for an AECP, Appendix B clarifies the link between Ginibre and Wishart/chiral 
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ensembles, and Appendix C determines weights and normalizations needed for establishing the 
universal scaling at the shock.

2. Dysonian non-hermitian diffusion

Consider a non-hermitian N × N matrix X = (Xij )i=1,...,N j=1,...,N whose elements Xij =
xij + iyij undergo 2N2-dimensional Brownian motion

dxij (τ ) = 1√
2N

dBx
ij (τ ), dyij (τ ) = 1√

2N
dB

y
ij (τ ), (4)

where Bx
ij and By

kl are independent Wiener processes. We restrict ourselves to deterministic initial 
conditions, that is we assume that each element of the matrix has a given initial value xij =
(x0)ij and yij = (y0)ij for τ = 0. This condition can be concisely written as X = X0, for τ = 0. 
Clearly, this model is a straightforward extension of the Dyson random walk [2] to the realm of 
non-hermitian random matrices.

The joint probability density for matrix elements evolves according to the 2N2-dimensional 
diffusion equation

∂τP (X, τ) = 1

4N

∑
ij

(∂2
xij

+ ∂2
yij

)P (X, τ), (5)

with the initial condition P(X, 0) = δ(X − X0). The probability measure for random matrices 
at time τ is defined by dμτ (X) = D[X]P(X, τ) where D[X] =∏ij dxij dyij , and the statistical 
averages by

〈F(X)〉τ =
∫

D[X]P(X, τ)F (X). (6)

The hermitian version of the model, discussed by Dyson, reduces to a model of evolution of 
eigenvalues. In that case eigenvectors can be integrated out. What makes the non-hermitian ex-
tension interesting is that in addition to eigenvalues one has to control also the evolution of 
eigenvectors. We present a systematic method to do so.

3. Electrostatic analogy and quaternions

In this section we briefly recall the method to calculate eigenvalue distribution of random 
matrices in the limit N → ∞. The method is based on “electrostatic” analogy [14–16]. One 
defines a quantity

�(z,w, τ) = 1

N

〈
Tr log

(
(z − X)(z̄ − X†) + |w|2

)〉
τ
, (7)

which can be interpreted in the limit w → 0 as an electrostatic potential of a cloud of N electric 
charges interacting on the z-complex plane. The corresponding electric field is

G(z,w, τ) = ∂z�(z,w, τ) = 1

N

〈
Tr

z̄ − X†

(z − X)(z̄ − X†) + |w|2
〉
τ

. (8)

Identifying the real and imaginary part of as vector components G = (Ex − iEy)/2 one can 
rewrite the last equation in the vector notation as 	E = (Ex, Ey) = 	∇z�. The minus sign in front 
of Ey and the scale factor 1/2 in the relation of G to electric field 	E is a matter of convention.
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We are interested in the eigenvalue distribution

ρ(z, τ ) ≡ 1

N

〈∑
i

δ(2) (z − zi)

〉
τ

, (9)

where zi ’s are the eigenvalues of X. The limiting eigenvalue density can be calculated from the 
Gauss law

ρ(z, τ ) = 1

π
∂z̄G(z,w, τ) , w → 0. (10)

This relation follows from a standard representation of the complex Dirac delta function 

πδ(2) (z − zi) = lim|w|→0

|w|2(|w|2+|z−zi |2
)2 . The expression in the brackets on the r.h.s. of (8) can be 

cast into the standard form of resolvent (z − X)−1 at the price of introducing 2N × 2N matrices

Q =
(

z −w̄

w z̄

)
, X =

(
X 0

0 X†

)
, (11)

in place of the original N × N ones. The resolvent is a 2 × 2 matrix

G(z,w, τ) ≡
(G11 G11̄

G1̄1 G1̄1̄

)
= 1

N

〈
bTr

1

Q −X

〉
τ

, (12)

where the block-trace is defined as

bTr

(
A B

C D

)
=
(

TrA TrB

TrC TrD

)
.

We refer to G(z, w, τ) (12) as to generalized Green’s function or quaternionic resolvent [18,
19]. Note, that we use the representation of the quaternion in terms of Pauli matrices, i.e. 
Q = q012 + i

∑3
j=1 σjqj , so z = q0 + iq1 and −w̄ = q2 + iq3. The diagonal element of the 

quaternionic resolvent G11 is equal to G(z, w, τ) (8). The extended Green’s function G(z, w) is 
an advantageous object since one can apply geometric series expansion to (Q −X )−1 which has 
a diagrammatic interpretation. This leads to a closed set of Dyson–Schwinger equations enumer-
ating underlying planar Feynman diagrams. From these equations one can derive an exact form 
of the Green’s function in the limit N → ∞, as well as matrix-valued addition and multiplication 
laws [20]. We mention that the quaternionic extension is equivalent to another approach known 
under the name of hermitization method [21–23], in which the diagonal and off-diagonal blocks 
of matrices Q and X are flipped before the block-trace operation.

Having determined the quaternionic resolvent G(z, w, τ) one can determine the potential 
�(z, w, τ) or vice versa, since the two objects are related by a simple relation:

G =
(

∂z� ∂w�

−∂w̄� ∂z̄�

)
. (13)

As follows from (10), the eigenvalue density can be derived from the potential �(z, w, τ) using 
the Poisson equation

ρ(z, τ ) = 1
∂z̄z�(z,0, τ ) . (14)
π
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It turns out that the potential �(z, w, τ) encodes also information about the correlations of eigen-
vectors [24], being the special case of the Bell–Steinberger matrix [25–27]. One defines the 
correlation function as1

O(z, τ) ≡ 1

N2

〈∑
α

Oααδ2(z − zα)

〉
τ

, (15)

with Oαβ = 〈Lα|Lβ〉 〈Rα|Rβ〉 where |Lα〉 (|Rα〉) are the left (right) eigenvectors of matrix X. 
It can be shown [28] that, in the N → ∞ limit, this correlation function is related to the off-
diagonal elements of the resolvent as O(z, τ) = − 1

π
G11̄(z, 0, τ)G1̄1(z, 0, τ). Applying (13) we 

have

O(z, τ) = 1

π
∂w�(z,w, τ)∂w̄�(z,w, τ)|w=0 = 1

π
|V (z,0, τ )|2, (16)

where V (z, w, τ) = ∂w�(z, w, τ) is the velocity field, which plays the same role in the 
w-complex plane as the electric field G(z, w, τ) = ∂z�(z, w, τ) in the z-complex plane. It 
is a vector field. If we parametrize positions on the w-complex plane as w = a + ib and 
V = (Va − iVb)/2, then 	V = 	∇w�. The term “velocity” is related to the underlying Burgers 
dynamics to be discussed later. To summarize, the limiting eigenvalue density and the eigenvec-
tor correlation function can be calculated from the electrostatic potential using eqs. (14) and (16), 
respectively, and taking the limit w → 0 which project quaternions to the z-plane.

It remains to show how to calculate the electrostatic potential �(z, w, τ) (7). The standard 
method is based on enumeration of planar diagrams as mentioned above. The main object in this 
method is the Green’s function G.

Here we propose an alternative approach which is based on the diffusion equation in the 
quaternionic (2 + 2)-dimensional space in the direction perpendicular to the z-complex plane. 
The primary object in this calculation is an extended characteristic polynomial defined in the 
next section.

4. Averaged extended characteristic polynomial

In order to calculate the potential (7) in the limit N → ∞ we rewrite it as

�(z,w, τ) = 1

N

〈
log det

(
(z − X)(z̄ − X†) + |w|2

)〉
τ
, (17)

and define an associated object – an effective potential

φ(z,w, τ) = 1

N
log
〈
det
(
(z − X)(z̄ − X†) + |w|2

)〉
τ

≡ 1

N
logD(z,w, τ), (18)

where

D(z,w, τ) =
〈
det
(
(z − X)(z̄ − X†) + |w|2

)〉
τ

=
〈
det

(
z − X −w̄

w z̄ − X†

)〉
τ

. (19)

We refer to D(z, w, τ) as to averaged extended characteristic polynomial (AECP). For the Gaus-
sian process (4) the determinant D(z, w, τ) self-averages for N → ∞ and � can be replaced by 

1 Note that we introduced an additional 1/N factor as compared to the definition given in [24] to obtain a limiting 
density.
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φ in this limit. The advantage of using the latter is that the averaged extended characteristic poly-
nomial D(z, w, τ) (19), which appears in the definition of φ = 1

N
logD obeys a simple diffusion 

equation with respect to the variable w

∂τD(z,w, τ) = 1

N
∂ww̄D(z,w, τ), (20)

as shown in Appendix A. Note that, from the point of view of this equation, z is a dummy 
parameter. The z-dependence appears only in the initial condition

D(z,w,0) = D0(z,w) = det
(
(z − X0)(z̄ − X

†
0) + |w|2

)
, (21)

which is completely determined by the initial matrix X0. In other words, for each z we have an 
independent diffusion in the perpendicular w-complex plane. The problem is therefore exactly 
integrable, and the solution of the diffusion equation (20) reads

D(z,w, τ) = N

πτ

∫
C

exp

(
−N

|w − w′|2
τ

)
D0(z,w

′)d2w′, (22)

where D0(z, w′) = D(z, w′, 0). The solution can be equivalently written as

φ(z,w, τ) = 1

N
log

N

πτ

∫
C

expN

(
φ0(z,w

′) − |w − w′|2
τ

)
d2w′, (23)

where φ0(z, w′) = 1
N

logD0(z, w′). In the limit N → ∞ the last equation assumes the form of 
the Hopf–Lax formula [29]

φ(z,w, τ) = max
w′

(
φ0(z,w

′) − |w − w′|2
τ

)
. (24)

This equation describes the evolution of the electrostatic potential in the limit N → ∞ for the 
given initial configuration φ0(z, w), so this equation solves our original problem.

A few remarks are in order. The characteristic polynomial D(z, w, τ) and the potential 
φ(z, w, τ) (18) depend on w only through the norm |w|2. The diffusion preserves the spheri-
cal symmetry of these quantities in the w-complex plane, so it is convenient to rewrite these 
equations in the radial part r of w = reiα skipping the dependence on the phase α. In particular 
(22) takes the form

D(z, r, τ ) = 2N

τ

∞∫
0

r ′ exp

(
−N

r2 + r ′ 2

τ

)
I0

(
2Nrr′

τ

)
D0(z, r

′)dr ′, (25)

and (24) simplifies to

φ(z, r, τ ) = max
r ′

(
φ0(z, r

′) − (r − r ′)2

τ

)
. (26)

The second remark is on the role of the parameter w. Originally it was introduced as a regulator 
to the expression for the potential (7) and eventually sent to zero. Here we promote w to a 
full complex variable and analyse the dynamics of the model on the entire w-complex plane. 
This approach allows one to trace not only eigenvalues but also eigenvectors of the random 
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matrix X and to break the symmetry between matrices having identical eigenvalues but different 
eigenvectors.

A complex valued matrix can be Schur decomposed X = U(
 + T )U† where U is a uni-
tary matrix, 
 is a diagonal matrix containing the complex eigenvalues, and T is a strictly 
upper-triangular matrix encoding information about eigenvectors. Two different matrices X1, X2
having the same eigenvalues 
 but different eigenvectors have different T1 and T2. The averaged 
extended characteristic polynomial (19) for these matrices differs D1(z, w) �= D2(z, w) when 
|w| �= 0. From this difference one can read off information about eigenvectors.

Moreover, the dynamics of the model in the quaternionic space has a beautiful physical inter-
pretation in terms of the Burgers dynamics. The behavior of the model on the z-complex plane 
is a shadow of this dynamics. In particular, the support of the eigenvalue density ρ(z, τ) coin-
cides with the location of shocks of the quaternionic Burgers dynamics in the full quaternionic 
(z, w)-space.

5. Burgers dynamics

In the previous section we have found a solution to the diffusion equation (20). Here for 
completeness we relate the diffusion equation to Burgers dynamics. Using the definition (18) it is 
easy to see that the effective potential φ = φ(z, w, τ) and its gradient v(z, w, τ) = ∂wφ(z, w, τ)

fulfill the following differential equations

∂τφ = 1

N
∂ww̄φ + ∂wφ∂w̄φ, (27)

and

∂τ v = 1

N
∂ww̄v + ∂w|v|2, (28)

respectively. These equations describe Burgers dynamics on the w-complex plane for a two di-
mensional velocity field v = (Va − iVb)/2 derived from the potential φ: 	V = 	∇wφ = (∂aφ, ∂bφ)

where w = a + ib. The coefficients of the Laplacian term can be identified as a hydrodynamic 
viscosity parameter ν = 1

N
. Equation (28) follows from (20) by an inverse Cole–Hopf transfor-

mation [30]. One can also write an equation for the z-gradient, g(z, w, τ) = ∂zφ(z, w, τ):

∂τ g = 1

N
∂ww̄g + ∂z|v|2. (29)

The two gradients are related to each other as ∂wg = ∂zv. The effective potential φ and the 
gradients reproduce the electrostatic potential and the quaternionic Green’s function in the limit 
N → ∞

φ −→ �,

(
g v

−v̄ ḡ

)
−→ G. (30)

Let us now discuss the inviscid limit N → ∞. The effective potential (27) obeys the equation

∂τφ = ∂wφ∂w̄φ, (31)

which after applying rotational symmetry (in the variable w) simplifies to an equation

∂τφ = 1
(∂rφ)2, (32)
4
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for the radial variable r = |w|. The solution is given by the Hopf–Lax formula (26) which in our 
case is equivalent to

φ(z, r, τ ) = φ0(z, r∗) − (r − r∗)2

τ
, (33)

with r∗ being the location r∗ = r ′ of the maximum (26) given by the usual extremum condition

∂rφ0(z, r∗) = 2(r∗ − r)

τ
. (34)

To complete the scheme, the maximizing parameter r∗ has to be calculated from (34) and the 
result r∗ = r∗(z, r, τ) has to be inserted to (33).

We solve this equation for φ0(z, r) = 1
N

Tr logM(z, r) where M(z, r) = (z − X0)(z̄ − X
†
0) +

r2 with an initial matrix X0

φ(z, r, τ ) = 1

N
Tr logM(z, r∗) − (r − r∗)2

τ
,

r∗
N

TrM(z, r∗)−1 = r∗ − r

τ
. (35)

Eliminating r∗ from this set of equation we obtain the effective potential φ(z, r, τ) for an arbi-
trary initial matrix X0. From it we derive the limiting density ρ(z, τ) (14) and the eigenvector 
correlations O(z, τ) (16)

ρ(z, τ ) = 1

π
∂zz̄φ(z,0, τ ), (36)

O(z, τ) = 1

4π
lim
r→0

(∂rφ(z, r, τ ))2 . (37)

For the initial condition of the form φ0(z, r) = 1
N

Tr logM(z, r) we arrive, after differentiation 
and some algebraic manipulations, at

ρ(z, τ ) = 1

Nπ

1

TrM−2
det

(
Tr(z̄ − X

†
0)M−2 TrM−2r∗

−TrM−2r∗ Tr(z − X0)M−2

)

+ 1

Nπ
Tr
(
M−1[M−1; z − X0](z̄ − X

†
0)
)

, (38)

O(z, τ) = 1

πτ 2
r2∗ , (39)

where M = M(z, r∗). In the final formulas we set r = 0 to project the results to the z-complex 
plane. The equation for r∗ (35) simplifies for r = 0 to

1

N
TrM(z, r∗)−1 = 1

τ
. (40)

Equations (38), (39) are valid inside the boundary given by

1

N
TrM(z,0)−1 = 1

τ
, (41)

which corresponds to r∗ = 0. Outside this boundary O(z, τ) = 0 and ρ(z, τ) = 0. For a normal 
initial matrix X0, the second term in the spectral density (38) drops out since [M−1, z−X0] = 0.

By inspecting the boundary equation (41) one finds a surprising connection to the so-called 
pseudospectrum [31], a mathematical concept generalizing the notion of the eigenvalue spec-
trum. Pseudospectrum of a matrix A is defined as a subset σA of the complex plane z such that
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||(z − A)−1|| > 1

ε
, (42)

where the symbol || · || is some arbitrary matrix norm and ε is the parameter of the pseu-
dospectrum. In the ε → 0 limit, one recovers the standard eigenvalues as poles of the resolvent 
(z − A)−1.

For the initial matrix A = X0, the boundary of the pseudospectrum subset σX0 is exactly 
the eigenvalue boundary (41) with ε2 = τ

N
and a Frobenius norm ||X||F = √

TrX†X. From 
this simple identification we conclude that a diffusion model with an initial matrix X0 is also a 
probabilistic realization of the pseudospectrum for the same matrix.

We finish this section by discussing an equation for the gradient v = ∂wφ in the inviscid limit. 
The equation is equivalent to the one for the potential φ that we discussed above but in some 
situations the equation for the gradient is more handy to use. The inviscid version of (28) reads

∂τ v = ∂w|v|2. (43)

It is an inviscid Burgers equation in 2 + 1 dimensions. A general solution to this equation for 
smooth (differentiable) initial conditions can be deduced from the Hopf–Lax formula (24) for 
the effective potential φ for N → ∞. The maximum in (24) is achieved for w′ = w∗ fulfilling 
the standard extremum condition

0 = v̄0(z,w∗) − w∗ − w

τ
, (44)

which is equivalent to

w = w∗ − τ v̄0(z,w∗), (45)

for which v(z, w, τ) = v0(z, w∗). Inserting w∗ (45) to this equation we get a solution to (43)

v = v0(z,w + τ v̄), (46)

which is given by an implicit equation for v = v(z, w, τ) depending only on the initial condition 
v0(z, w). The parameter w∗ can be viewed as a labeling parameter for the family of the charac-
teristic lines. These lines start to cross when the labeling fails to be bijective i.e. dw

dw∗ = 0. This 
singularity condition defines a caustic surface – a boundary across which an ambiguity of the 
solutions arises. The development of multivalued solutions is an unwanted feature of the invis-
cid Burgers equation and is circumvented by constructing shock lines along which one cuts the 
characteristics rendering the solution unique.

The two-dimensional Burger evolution (43) can be simplified in our case due to the rotational 
symmetry. We are interested only in the solutions which depend on the modulus r = |w|. In this 
case the vector velocity field is a central field v = w̄

r
ν, with ν = |v|, and the vector equation (43)

reduces to a scalar equation for the modulus of the velocity field

∂τ ν = ν∂rν, (47)

with a solution given by

ν = ν0(z, r + τν). (48)

From this solution we can reconstruct the full 2d-solution: v(z, w, τ) = w̄ ν(z, r, τ) with r = |w|.

r
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Fig. 1. A numerical simulation of the spectral density with an initial matrix X0 = 0 at time slices τ = 0.1, τ = 0.2 and 
τ = 0.5 respectively, an ensemble of 6 matrices of size N = 1500. Black curves are the large N spectral boundaries and 
the dot indicates an arbitrary spectator position z where the evolution is probed.

6. Examples

In this section we discuss three examples: (1) the canonical Ginibre evolution for which the 
initial matrix is X0 = 0, (2) the spiric evolution for which X0 = diag(−a, −a . . . , a, a . . .) with an 
equal number of ±a and (3) an evolution initiated from a non-normal matrix: (X0)ij = αδi,j−1. 
This matrix has eigenvalues equal zero as the initial matrix in the first example but it is not a 
normal matrix.

The first example serves as a proof-of-concept. We solve the Burgers equations by the method 
of characteristics to obtain the spectral density, the eigenvector correlator and the potential func-
tion in the large N limit. The discussion is accompanied by Appendices B, C where we consider 
finite w results and a relation of the averaged extended characteristic polynomial to the two-point 
kernel of the underlying determinantal process.

The second example illustrates an evolution of the eigenvalue density initiated from two dis-
connected eigenvalue “islands” which grow in the course of time to collide at some critical time. 
We discuss a novel universality arising in the vicinity of the collision.

The third example demonstrates the dependence of the evolution of the eigenvalue distribution 
on the initial information which goes beyond the eigenvalues themselves.

6.1. Ginibre evolution

The evolution is initiated from the matrix X0 = 0. The evolution of the eigenvalue den-
sity is shown in Fig. 1. The spectral density forms a circular eigenvalue “island” expanding 
in time. For each time τ the ensemble of matrices in this evolution is equivalent to a Gini-
bre Ensemble with a time-rescaled dispersion. The initial condition for the determinant (21) is 
D0(z, w) = (|z|2 + |w|2)N , for the effective potential (18) φ0(z, w) = log(|z|2 + |w|2), for the 
velocity v0(z, w) = w̄/(|z|2 +|w|2), and for its modulus ν0(z, r) = r/(|z|2 + r2), where r = |w|, 
respectively. We solve the inviscid 2 + 1 Burgers equation (43) using the method of character-
istics. Characteristics (45) for this equation are shown in Fig. 2. In the left panel we show a 
plot in 2 + 1 dimensions and in the right one its 1 + 1 dimensional section. The evolution takes 
place in the w complex plane however the position on z-plane defines the initial condition. The 
z-variable acts as a spectator on the eigenvalue plane “observing” the evolution in the perpen-
dicular w-direction. We identify the cone-like caustic surface (left plot) whose apex is located at 
r = 0 and at critical time τc = |z|2. This surface is the boundary along which the characteristics 
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Fig. 2. The characteristic lines at z = 1 for the vector 2 + 1 Burgers equation (left) and a 1 + 1 section (right). The caustic 
cone-like surface on the left plot is denoted by dashed line on the right one. The shock is located on the cones’ axis, it 
starts from its apex. It is shown a double line on the vertical axis in the right chart. The vertical line corresponds to r = 0, 
that is to the place where the quaternionic pair (z, w) reduces to (z, 0) that lies on the z-complex plane.

Fig. 3. The solution |vτ | for fixed z0 = 1 and three different times τ = 0.5, τ = 1 and τ = 1.5 respectively. It shows the 
development of nonzero solution for τ > τc and the emergence of an additional unphysical solution depicted by dashed 
lines.

start to cross, making the Burgers solution multi-valued. This ambiguity develops for τ > τc as 
the expanding eigenvalue boundary “swallows” the spectator at z0. We find the position of the 
shock line as a locus distanced equally from the caustic surface at each given time (the Rankine–
Hugoniot condition). Since our problem is radially symmetric, the shock is positioned exactly 
at r = 0 and starts from the critical time τc. Therefore although the dynamics takes place in the 
whole r space, the shock is always confined to the “physical” r = 0 region. Moreover if we con-
fine it to r = 0, the spectator at z stays on the shock line at every time τ > τc . We conclude that 
inside the bulk of the spectrum (i.e. the non-holomorphic sector), the observer is constantly on 
the shock line.

Having identified the positions of the shock we can write down a solution of (48) for the 
reduced 1 + 1 Burgers equation for our initial conditions ν0(z, r) = r/(|z|2 + r2). It reads

ν = r + τν

(r + τν)2 + |z|2 . (49)

It is an implicit algebraic equation for ν = ν(z, r, τ). It can be rewritten as a cubic equation. 
Solutions for different τ are plotted in Fig. 3. Rather than showing the solution for the modulus 
ν we show a cross section of the vector field which has two symmetric branches ±ν. The right 
plot shows the solution inside the caustic surface with an unphysical branch depicted as dashed 
lines. For r = 0, that is on the z-plane, we have
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ν(z, τ ) =
{

0 for τ < |z|2
1
τ

√
τ − |z|2 for τ > |z|2 . (50)

The boundary |z|2 = τ is found by the sewing condition of zero and non-zero solutions. From ν
we readily obtain the eigenvector correlation function (15) in the large N limit

O(z, τ) = 1

π
ν2 =

{
0 for τ < |z|2

1
τ 2π

(τ − |z|2) for τ > |z|2 . (51)

We can also find the second gradient g = ∂zφ of the effective potential. To this end we can use 
equation (29) which in the limit N → ∞ simplifies to ∂τ g = ∂w|v|2. For our initial condition 
g0(z, r) = z̄/(|z|2 + r2) it gives

g(z, τ ) =
{

1/z for τ < |z|2
z̄/τ for τ > |z|2 . (52)

Now we can use the Gauss law (10) to obtain the limiting eigenvalue density

ρ(z, τ ) = 1

πτ
θ(

√
τ − |z|). (53)

It is given by a uniform distribution on a disc of radius 
√

τ . For τ = 1, results (51), (53) repro-
duce results of [13,24], respectively. We could alternatively find the same formulas by directly 
applying (38) and (39). The maximizer r∗ can be found by solving the constraint (40):

r∗ =
{

0 for τ < |z|2√
τ − |z|2 for τ > |z|2 . (54)

We find

φ(z, τ ) =
{

ln |z|2 for τ < |z|2
ln τ + |z|2

τ
− 1 for τ > |z|2 . (55)

The last formula was obtained for τ = 1 in [32].
So far we have discussed the limit N → ∞, in which as the effective potential φ and its 

gradients are equal to the electrostatic potential and the quaternionic Green’s function (30). What 
about finite N? For finite N the order of calculating the average and the logarithm in (17) and 
(18) matters, so φ is at best only an approximation of � for large but finite N . So clearly our 
method is not able to get insight into the finite N corrections. Surprisingly as we show below, 
the behavior of the diffusion kernel D(z, w, τ) on the z complex plane, that is for w = 0 reveals 
the same type of finite size effects as known from exact calculations of the eigenvalue density for 
Ginibre ensemble [24]. For our initial conditions the diffusion kernel (25) is

D(z, r, τ ) = 2N

τ

∞∫
0

r ′ exp

(
−N

r2 + r ′ 2

τ

)
I0

(
2Nrr′

τ

)
(|z|2 + r ′ 2)N dr ′ (56)

On the z-complex plane that is for r = 0 this integral significantly simplifies and it can be for 
large N calculated using the saddle point method. There are three saddle points

r ′ = 0, r ′ = ±
√

τ − |z|2. (57)
0 ±
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Fig. 4. The spectral density dynamics for an initial matrix X0 = diag(1, . . . , 1, −1, . . . , −1) before, at and after the 
critical time τc = 1, the ensemble consisted of 6 matrices of size N = 1500. The cross, square and triangle denote three 
observers useful in the analysis of the evolution.

When τ approaches |z|2 from above, the two points r ′± approach each other along the real axis 
to coalesce for τ = |z|2 at r ′ = 0. When τ becomes smaller than |z|2 the two points move on the 
imaginary axis. Near the critical value τ = |z|2 it is convenient to introduce rescaled parameters

r ′ = θN−1/4, |z| = √
τ + ηN−1/2 (58)

and use them in the calculations. One finds that for large N the diffusion kernel behaves as

D(z = √
τ + ηN−1/2, r = 0, τ ) ∼ 1

2πτ
erfc

(√
2

τ
η

)
, (59)

where erfc is the complementary error function. This result holds not only on the z-complex 
plane but also sufficiently close to the z-complex plane that is for r approaching zero as N−3/4

or faster: r = O(N−3/4). Indeed in this case the argument of the function I0 is a finite number and 
this function behaves as a constant for large N . The error function behavior has the same form 
as the finite size expression for the eigenvalue density function. This indicates that there may be 
some deeper relation between the diffusion kernel (averaged extended characteristic polynomial) 
and the two-point kernel known from the considerations of the underlying determinantal process 
for Ginibre matrices. We work out this analogy on a heuristic level in Appendices B, C.

6.2. Spiric case

We now consider diffusion initiated from a diagonal matrix X0 = diag(a, . . . , a, −a, . . . , −a)

with the same number of a and −a eigenvalues. In the course of time two initial eigenvalue 
“islands”, initially concentrated around ±a, expand to collide at some critical time τc as shown 
in Fig. 4. The initial condition corresponds to

D0(z, r) = (r2 + |z − a|2)N
2 (r2 + |z + a|2)N

2 ,

or if we write it for the modulus of the velocity field (47)

ν0(z, r) = 1

2

r

r2 + |z − a|2 + 1

2

r

r2 + |z + a|2 . (60)

In Fig. 5 we show characteristics for three different values of the observer position z, including 
z = 0 where the collision takes place. As we can see the dynamics in the r plane behaves quali-
tatively in the same way as for the Ginibre case. In particular, characteristics form the same type 
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Fig. 5. Characteristic lines in the spiric case for fixed observers z0 = −0.5 (a cross on Fig. 4), z0 = 0 (a square on Fig. 4) 
and z0 = 1 + i (a triangle on Fig. 4) with a = 1. From left to right, the shock formation occurs later in time which 
corresponds to meetings between observers z0 and the expanding spectral boundary.

of caustic surfaces with a shock line present after some critical time τc = |a2−z2|2
|a|2+|z|2 . This critical 

time can be found by sewing the solutions ν or by finding the position of the caustic surface apex 
as a function of z and τ . In Fig. 6 we show a comparison of the caustic surfaces for Ginibre and 
spiric evolution for τ = 0.5. For this initial condition the solution (48) of the inviscid Burgers 
equation takes the form

2ν = r + τν

|z + a|2 + (r + τν)2
+ r + τν

|z − a|2 + (r + τν)2
. (61)

For r = 0 the solution can be written explicitly

ν(z, r = 0;a) =
⎧⎨
⎩

0 for z /∈ S
1
τ

√
τ
2 − |a|2 − |z|2 + 1

2Sa for z ∈ S
, (62)

where Sa =√τ 2 + 4Z2
a , Za = z̄a + zā. The symbol S stands for the interior of the spiric section 

defined by the contour

τ(|a|2 + |z|2) = |a2 − z2|2. (63)

Generally spiric section is a curve obtained by intersection of a torus and a plane parallel to 
its rotational symmetry axis. We plotted spiric curves as contours around the scatter plots for 
eigenvalue densities in Fig. 4. The eigenvector correlation function inside the spiric section S is

O(z, τ) = ν2

π
= N

τ 2π

(
τ

2
− |a|2 − |z|2 + 1

2
Sa

)
. (64)

We can also calculate the diagonal element of the Green’s function using equation (29) that in the 

limit N → ∞ simplifies to ∂τ g = ∂zν
2. For the initial condition as g0 = 1

2

(
z̄+ā

r2+|z+a|2 + z̄−ā

r2+|z−a|2
)

the solution reads

g(z, r = 0, τ ) =
{

z

z2−a2 for z /∈ S
z̄
τ

− āSa

2τZa
+ c(z, a) for z ∈ S

, (65)

with a constant c(z, a) = ā
2Za

obtained by the sewing condition along the spiric section S . We 
use the Gauss law to obtain the spectral density as

ρ(z, τ ) = Sa(2 − τ |a|2) + τ 2|a|2
2

. (66)

2πτZaSa
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Fig. 6. Caustic surface in the variables (r, z) for Ginibre case (left plot) and spiric case (right plot) with time fixed at 
τ0 = 0.5.

Fig. 7. Numerical results in the spiric case for a = 1 and critical time τ = 1 for eigenvector correlator (right plot) and 
spectral density (left plot) averaged over the imaginary axis, the ensemble consisted of 6 ·103 matrices of size N = 1000.

The same results can be obtained from the calculations of the effective potential φ using equa-
tions (38), (39) and (40) for r∗:

r∗ =
⎧⎨
⎩

0 for z /∈ S√
τ
2 − |a|2 − |z|2 + 1

2Sa for z ∈ S
. (67)

Outside S we get

φout(z, τ ) = 1

2
ln |z − a|2 + 1

2
ln |z + a|2, (68)

and inside S

φin(z, τ ) = 1

2
ln

(
τ 2

2
+ τ

2
Sa

)
+ 1

τ

(
|a|2 + |z|2 − τ

2
− 1

2
Sa

)
. (69)

We recall that Sa =√τ 2 + 4Z2
a , Za = z̄a + zā, as defined after (62). In Fig. 7 we show a com-

parison of theoretical predictions for the limiting eigenvalue density (66) and the eigenvector 
correlation function (64) with Monte-Carlo simulations. The agreement is very good.

We complete the discussion of the spiric case by deriving a finite N formula for the diffusion 
kernel D(z, r, τ)
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Fig. 8. Evolution of the characteristic polynomial in the vicinity of the collision for rescaled times t = −1, t = 0, t = 1. 
Black contour on top is the large N boundary of non-zero spectral density obtained from (63).

D(z, r, τ ) =
∞∫

0

r ′ exp

(
−N

r2 + r ′ 2

τ

)
I0

(
2Nrr′

τ

)
(r ′ 2 + |z − a|2)N

2 (r ′ 2 + |z + a|2)N
2 dr ′.

(70)

We are interested in the behavior close to the origin z = 0, r = 0 for τ close to the collision time. 
Without loss of generality we perform calculations for a = 1. In this case the collision time is 
τ = 1. We set r = 0 and zoom into the vicinity of the critical region

r ′ = θN−1/4, z = ηN−1/4, τ = 1 + tN−1/2 (71)

where the saddle points merge. After expanding the solution (70) we obtain an asymptotic for-
mula

D(z = ηN−1/4, r = 0, τ = 1 + tN−1/2)

∼
√

π

128N
e−

√
N
2 ((η+η̄)2−2|η|2)(η + η̄)4erfc

[
1√
2

(
|η|2 − (η + η̄)2 − t

)]
, (72)

which is plotted in Fig. 8. Again, the result holds not only for r = 0 but more generally for 
r = O(N−3/4).

6.3. Non-normal Ginibre case

We consider now diffusion initiated from a matrix (X0)ij = αδi,j−1. The matrix X0 has all 
eigenvalues equal to 0. The initial eigenvalue distribution coincides with the one for the Ginibre 
case but afterwards the eigenvalue density obeys completely different evolution. Three snapshots 
of this evolution are shown in Fig. 9. The initial distribution concentrated initially at zero in-
stantaneously expands to a circle of radius |α|, which corresponds to the pseudospectrum of the 
matrix. In the course of evolution the support of the density takes the form of the growing annu-
lus. After a finite time τ = |α|2 the inner radius of the annulus shrinks to zero and eigenvalues 
fill up a full disk.

Let us show this by direct calculations. The matrix M = (z − X0)(z − X0)
† + r2 (35) has for 

our choice of X0 a tridiagonal form
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Fig. 9. Evolution of the spectral density for non-normal initial condition (X0)ij = δi,j−1, with time snapshots at τ = 0.2, 
τ = 0.5 and τ = 1, the ensemble consisted of 6 matrices of size N = 1500.

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

a b 0 . . . 0

b̄ a b 0
... b̄

. . . b
...

0 b̄ a b

0 . . . 0 b̄ d

⎞
⎟⎟⎟⎟⎟⎟⎠

(73)

with a = |z|2 + r2 + |α|2, b = −z̄α and d = |z|2 + r2. The determinant of this matrix can be 
calculated explicitly: detM = 1

�

(
d(aN+ − aN− ) − |b|2(aN−1+ − aN−1−

)
, where � =√a2 − 4|b|2

and a± = 1
2 (a ± �). The initial effective potential for large N is

φ0(z, r) = 1

N
Tr logM ≈ lna+ = ln

1

2

(
a +

√
a2 − 4|z|2|α|2

)
(74)

where a = |z|2 + r2 + |α|2. We have neglected 1/N terms which disappear in the limit N → ∞. 
The value r∗ which maximizes the expression in the Hopf–Lax formula (26) can be calculated 
from equation (34). For r = 0 we get

r∗ =
{

0 for z /∈A√
Tα − |z|2 − |α|2 for z ∈A

, (75)

where we used the notation Tα =√τ 2 + 4|α|2|z|2. The boundary of the annulus A is given by 
the radii

|z|± =
√

|α|2 ± τ . (76)

We see that at the beginning of the evolution, τ ≈ 0, the annulus is infinitely narrow forming a 
one-dimensional circular pseudospectrum. On the other hand for τ → |α|2 the inner radius tends 
to zero and the annulus becomes a disk. Inserting r∗ to (26) we obtain the potential

φ(z, r = 0, τ ) =

⎧⎪⎪⎨
⎪⎪⎩

ln |α|2 for |z| ∈ (0; |z|−)

ln
(

τ
2 + 1

2Tα

)
+ |z|2+|α|2

τ
− Tα

τ
for |z| ∈ (|z|−; |z|+)

ln |z|2 for |z| ∈ (|z|+;∞)

, (77)

for the three regions of the annulus. The spectral density is obtained from the Poisson equa-
tion (36) by differentiation the effective potential twice
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Fig. 10. Numerical analysis of the eigenvector correlator (right plot) and the spectral density (left plot) for the non-normal 
initial condition, the ensemble consisted of 3 · 103 matrices of size N = 1000 with parameters α = 1 and time τ = 0.8.

ρ(z, τ ) = 1

πτ

(
1 − |α|2

Tα

)
(78)

on the support of the annulus and zero otherwise. Using (39) we obtain the eigenvector correla-
tion function to the support of the annulus

O(z, τ) = 1

πτ 2

(
Tα − |z|2 − |α|2

)
. (79)

In Fig. 10 we compared the prediction of the two formulas given above with numerical simu-
lations. The agreement is good. Deviations are observed only close to the boundaries and can 
be attributed to finite-size effects. It is easy to check that all the expressions transform to the 
corresponding expressions for the Ginibre evolution when α → 0.

Let us shortly discuss finite N effects for the averaged extended characteristic polynomial. We 
are looking for an universal behavior near the origin for τ → 0. Around this space–time point 
an instantaneous transition from N eigenvalues positioned at the origin to the ring of radius |α|
happens. In our example the characteristic polynomial is given explicitly as

D(z, r, τ ) = 2N

τ

∞∫
0

r ′ exp

(
−N

r2 + r ′ 2

τ

)
I0

(
2Nrr′

τ

)
detM(z, r ′)dr ′ (80)

We consider the following scaling around the origin

r ′ = θN−7/6, |z| = xN−1/6, (81)

|α| = xN−1/6, τ = tN−4/3. (82)

Inserting these formulas to the equation above we find an asymptotic function for large N and 
for |α| = xN−1/6:

D(z = xN−1/6, r = 0, τ = tN−4/3) ∼ t

2
+ t

√
πt

4x
exp

(
t

4x2

)
erfc

(
−

√
t

2x

)
. (83)

We see that it reveals a non-perturbative divergent character near x = 0. For the normal Ginibre 
case we do not find the second term and therefore we identify it as a consequence of the non-
normal initial condition. Concluding this section, we note that formula (78) was obtained in [22]
for an initial matrix
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XC
0 = |α|diag(1, e2πi/N , e4πi/N . . . e2πi(N−1)/N ), (84)

with N initial equidistant eigenvalues lying on a circle of radius |α|. This result is not surprising 
since the matrix XC

0 is unitarily equivalent to a circulant matrix

(XC
0 )ij ∼ (X0)ij + αδi,Nδj,1, (85)

which in turn differs from the non-normal initial matrix considered in this paper by just one 
element whose effect can be neglected in the large N limit. We also mention that finite N spectral 
densities and large deviations have been recently studied in [33].

7. Spectral stochastic equations

An interesting issue arises, if the stochastic dynamics of the elements of non-hermitian ran-
dom matrices corresponds to some stochastic equation for the spectra of the underlying matrix. 
Such a phenomenon holds in the case of Gaussian Unitary Ensembles (GUE), as well as in the 
case of Circular Unitary Ensembles (CUE), as shown in the seminal paper by Dyson [2]. In the 
simpler case of GUE, the corresponding Langevin equation for real eigenvalues reads

dλi = dBi +
∑
i �=j

dt

λi − λj

, (86)

where dBi reflects the Brownian dynamics and the second, “drift” term comes from the Van der 
Monde determinant. We neglect the optional Ornstein–Uhlenbeck term −λi dt on the r.h.s. of 
(86) since it only contributes to freezing the diffusing end-points of the spectra in the station-
ary limit. The corresponding Smoluchowski–Fokker–Planck equation written for the resolvent 
G(z, τ) of the spectral density ρ(λ, t), takes (after rescaling the time τ = Nt and in the large N
limit) the form of complex, inviscid Burgers equation, i.e. eq. (2) [9,34].

Equations for non-hermitian Gaussian ensemble obtained in this work exhibit structural sim-
ilarity to the hermitian “Burgulence”, hence a question arises, if some stochastic dynamics for 
complex eigenvalues does exist as well. Recently, Osada [17] had examined a stochastic two-
dimensional Coulomb system defined as

dλi = dB
(2)
i +

∑
i �=j

dt

λ̄i − λ̄j

= dB
(2)
i +

∑
i �=j

λi − λj

|λi − λj |2 dt, (87)

where dB
(2)
i is a two-dimensional (complex) Brownian walk. In particular, he has shown that 

such interacting Brownian motion equipped with trivial initial condition (all λi put to zero at 
t = 0) leads to limiting distribution of λi representing a uniform disk, therefore resembling the 
Ginibre Ensemble spectrum.

From the point of view of our analysis this result is curious, since we have proven that the 
dynamics of eigenvalues is intimately connected to the dynamics of eigenvectors, which seem to 
decouple completely from “hypothetical” eigenvalues of Ginibre ensemble in (87). We suggest 
the resolution of this puzzle.

It is well known, that in so-called Normal Random Matrix model [35] with axially symmetric 
potentials all correlation functions can be expressed in terms of holomorphic functions of a single 
variable. Moreover, the exact integrability of such models can be linked to (2 + 1)-dimensional 
Burgers equations. Quite remarkably, in the case of the potential V (z, ̄z) = |z|2, the correlations 
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of the Normal Random Matrix model are identical to the correlations of the Ginibre Ensem-
ble [36]. We therefore conjecture, that the stochastic equation (87) corresponds rather to a 
Gaussian Normal Random Matrix model than to the Ginibre Ensemble.

Because normal matrices are diagonalizable by a single unitary transformation, alike the her-
mitian matrices, the eigenvectors decouple from the eigenvalues which explains the lack of these 
degrees of freedom in (87) and its formal similarity to hermitian stochastic equation (86). Based 
on this and the significance of eigenvectors presented in this paper we find it highly probable 
that the Ginibre-like dynamics of (87) is accidental and proper stochastic equation governing the 
dynamics of non-hermitian random matrices is not known.

The speculative links between our approach for generic complex matrices and non-Gaussian 
Normal Random Matrix models represent a challenge, which we plan to address in the forthcom-
ing publications.

8. Conclusions

We have shown that a consistent description of non-hermitian Gaussian ensemble requires 
the knowledge of the detailed dynamics of co-evolving eigenvalues and eigenvectors. Moreover, 
the dynamics of eigenvectors seems to play a superior role (at least in the N → ∞ limit) and 
leads directly to the inference of the spectral properties. This is a dramatically different scenario 
as compared to the standard random matrix models, where the statistical properties of eigen-
values are of primary importance, and the properties of eigenvectors are basically trivial due 
to the their decoupling from the spectra. We have considered examples of Ginibre, spiric sec-
tion and non-normal Ginibre where the formulas for spectral density, the 1-point eigenvector 
correlation function, electrostatic potential and universal functions were obtained and positively 
crosschecked with numerical simulations. By studying the dynamics of characteristics we antic-
ipated the novel universality obtained for the spiric case as an error function type. We obtained 
compact formulas for both spectral density and eigenvector correlator for which the latter un-
raveled a promising determinantal structure. The diffusion equation, as an equation exact for 
finite N , was used mainly to obtain the universal behavior.

We conjecture that the hidden dynamics of eigenvectors discovered in this work and described 
for the Gausssian non-hermitian ensemble, is a general feature of all non-hermitian random ma-
trix models, and has to appear systematically in 1/N expansion.

Our formalism could be exploited to expand the area of application of non-Hermitian random 
matrix ensembles within problems of growth, charged droplets in quantum Hall effect and gauge 
theory/geometry relations in string theory beyond the subclass of complex matrices represented 
by normal matrices.

One of the challenges is an explanation, why, despite being so different, the Smoluchowski–
Fokker–Planck equations for hermitian and non-hermitian random matrix models exhibit struc-
tural similarity to simple models of turbulence, where so-called Burgers equation plays the vital 
role, establishing the flow of the spectral density of eigenvalues in the case of the hermitian or 
unitary ensembles and the flow of certain eigenvector correlator in the case of non-hermitian 
ensembles.

We believe that our findings will contribute to understanding of several puzzles of non-
hermitian dynamics, as for instance extreme sensitivity of spectra of non-hermitian systems 
to perturbations [24,27]. We also hope that the quaternion extension used in our paper may 
help to understand better the mathematical subtleties of the measure of non-hermitian opera-
tors [37].
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Appendix A. Derivation of the diffusion equation (20)

In this appendix we demonstrate that the averaged extended characteristic polynomial (19)
obeys the diffusion equation (20). The determinant in (19) can be expressed using Grassmann 
variables as

D(z,w, τ) =
∫

D[X]D[η, ξ ]P(X, τ) expTG(X, z,w;η, ξ), (A.1)

with the object TG given by

TG(X, z,w;η, ξ) =
∑
i,j

(−xij (η̄iηj + ξ̄j ξi) − iyij

(
η̄iηj − ξ̄j ξi

))

+
∑

i

(
zη̄iηi + z̄ξ̄iξi + wξ̄iηi − w̄η̄iξi

)
, (A.2)

where η, η̄, ξ and ξ̄ are Grassmann variables and Xij = xij + iyij . With the help of heat equa-
tion (5) for the joint probability density function P(X, τ) we obtain

∂τD(z,w, τ) =
∫

D[X,η, ξ ] (∂τP ) expTG

= 1

4N

∫
D[X,η, ξ ]

⎛
⎝∑

i,j

(
∂2
xij

+ ∂2
yij

)
P

⎞
⎠ expTG

= 1

4N

∫
D[X,η, ξ ]P

⎛
⎝∑

i,j

(
∂2
xij

+ ∂2
yij

)
expTG

⎞
⎠

= 1

N

∫
D[X,η, ξ ]P

∑
ij

η̄iηj ξ̄j ξi expTG, (A.3)

where we integrated by parts twice and we used

∂2
xij

expTG = (η̄iηj + ξ̄j ξi)(η̄iηj + ξ̄j ξi) expTG = 2η̄iηj ξ̄j ξi expTG, (A.4)

∂2
yij

expTG = (η̄iηj + ξ̄j ξi)(η̄iηj + ξ̄j ξi) expTG = 2η̄iηj ξ̄j ξi expTG. (A.5)

On the other hand we have

∂ww̄ expTG =
∑

η̄iηj ξ̄j ξi expTG, (A.6)

i,j
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Fig. 11. The large N spectral density ρ (left plot) and eigenvector correlator O (right plot) for r = 0.05 (solid line) and 
r = 0 (dashed line).

from which it follows that

1

N
∂ww̄D(z,w, τ) = 1

N

∫
D[X,η, ξ ]P

∑
ij

η̄iηj ξ̄j ξi expTG. (A.7)

We see that the expressions on the right hand side of (A.3) and (A.7) are identical and thus we 
have 1

N
∂ww̄D(z, w, τ) = ∂τD(z, w, τ) (20). As a side remark we note that this calculation can 

be almost verbatim repeated for the averaged extended “inverse” characteristic polynomial

F(z,w, τ) =
〈

det

(
z − X −w̄

w z̄ − X†

)−1
〉

τ

, (A.8)

which obeys the diffusion equation in the opposite time direction τ → −τ

−∂τF = 1

N
∂ww̄F. (A.9)

Appendix B. The r �= 0 regime as a Wishart/chiral deformation

The majority of results discussed in this paper are confined to the “physical” region where 
r → 0. One can however keep the parameter r nonzero. In the Coulomb gas interpretation, this 
deformation introduces a complex nonlinear interaction between the eigenvalues of unknown 
interpretation.

We consider the Ginibre case. The expression in the Hopf–Lax equation (26)

φ(z, r, τ ) = max
r ′

(
ln(|z|2 + r ′ 2) − (r ′ − r)2

τ

)
, (B.1)

is maximized by r∗ obeying a cubic equation

(r∗ − r)(r2∗ + |z|2) = r∗τ . (B.2)

The corresponding spectral density ρ(z, r, τ) and the eigenvector gradient ν(z, r, τ) are shown 
in Fig. 11. There are no critical points for r �= 0 and instead we see a smooth crossover be-
tween two phases. This is in accordance with the fact that the shock is present only on the r = 0
plane. Consider the formula for the averaged extended characteristic polynomial for the Ginibre 
evolution
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D(z, r, τ ) = 2N

τ

∞∫
0

r ′ exp

(
−N

r2 + r ′ 2

τ

)
I0

(
2Nrr′

τ

)(
|z|2 + r ′ 2

)N

dr ′. (B.3)

Applying the Newton binomial formula to 
(|z|2 + r ′ 2

)N
a using the following integral represen-

tation of Laguerre polynomials

∞∫
0

dqq2k+1e− N
τ

q2
I0

(
2Nrq

τ

)
= τ

2N

( τ

N

)k

k!Lk

(
−N

τ
r2
)

e
N
τ

r2
, (B.4)

we get

D(z, r, τ ) = e− N
τ

r2
N !
( τ

N

)N
N∑

k=0

1

k!LN−k

(
−Nr2

τ

)(
N |z|2

τ

)k

. (B.5)

It is not surprising that Laguerre polynomials show up in this context since the Ginibre ensemble 
is closely related to the Wishart/chiral ensemble where they naturally occur. In fact by recalling 
the definition (19)

D(z, r, τ ) =
〈
r2 + (z − X)(z̄ − X†)

〉
τ

(B.6)

we see that for z → 0 the object within the brackets is a Wishart matrix and

D(z = 0, r, τ ) = e− N
τ

r2
N !
( τ

N

)N

LN

(
−N

τ
r2
)

. (B.7)

For r → 0 we have D(z = 0, r = 0, τ) = N ! ( τ
N

)N .

Appendix C. The kernel structure

We argue that in the case of Ginibre matrices, the characteristic polynomial D in the r → 0
limit has essentially the same information as the microscopic kernel of the underlying deter-
minantal process. This stems from the observation made in [39] where the n-point correlation 
function of a Ginibre matrix model is related to a random matrix QCD partition function with n
quarks with appropriately decreased matrix size:

det(KN(zi, zj ))i,j=1...n = c(z1, . . . , zn)

〈
n∏

i=1

det(zi − X)det(z̄i − X†)

〉
XN−n

, (C.1)

where det(KN(zi, zj ))i,j=1...n = 〈∏n
i=1 Trδ2(zi − X)

〉
XN

is the correlation function averaged 
over N dimensional matrix and c denotes a known z dependent proportionality factor.

We study closer the n = 1 case because for this parameter the prefactor c is the weight function 
w(z) and the averaged determinants are exactly the characteristic polynomial D in the r → 0
limit. Therefore, in this particular case, we obtain an on-diagonal kernel formula

KN(z, z) = CNw(z)D(N−1)(z, r = 0, τ ), (C.2)

with some numerical constant CN . The off-diagonal kernel is not so easily obtainable by the 
above formula however we make an educated guess based on the symmetry of arguments and the 
result of Akemann and Vernizzi [38]. We write the full kernel as
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KN(z, v) = CN

√
w(z)

√
w(v)D(N−1)([z, v], r = 0, τ ), (C.3)

where the two-argument characteristic polynomial D was created by substituting |z|2 → zv̄:

D(N−1)([z, v], r, τ ) = 2N

τ

∞∫
0

q exp

(
−N

q2 + r2

τ

)
I0

(
2Nqr

τ

)
(q2 + zv̄)N−1dq, (C.4)

which for r = 0 it is readily solved as

D(N−1)([z, v], r = 0, τ ) =
( τ

N

)N−1
�(N)

N−1∑
k=0

(
Nzv̄

τ

)k 1

k! . (C.5)

To complete the argument demonstrating that the full information resides in the characteristic 
polynomial D we will find an a priori unknown weight function w(z) present in formula (C.3)
from the D alone. This is done by using decomposition in the biorthogonal basis

D(N−1) =
N−1∑
k,l=0

cklXk(z)Ȳl(v), (C.6)

where Xi, Yi are biorthogonal polynomials with respect to an unknown measure W∫
d2zW(z)Xi(z)Ȳj (z) = gij . (C.7)

The bi-orthogonality matrix gij is the inverse of the matrix built of expansion coefficients cij . 
We proceed by finding a basis Xi, Yj in which ckl are diagonal. Then we infer the formula for W
by considering its moments (C.7). We start with a formula (C.5) which is already in a diagonal 
form with

Xk(z) = zk, Yk(v) = vk, ckk = N !
k!
( τ

N

)N−1−k

. (C.8)

The moments are therefore given by∫
d2z W(z)|z|2k = k!

N !
(

N

τ

)N−1−k

. (C.9)

By assuming the radial symmetry and setting |z|2 = p we obtain

∞∫
0

dpW(
√

p )pk = (N/τ)N

πN !
k!

(N/τ)k+1
, (C.10)

from which the characteristic function is given by

MW(t) =
∞∫

0

dpW(
√

p)eitp = (N/τ)N−1

πN !
(

1 − itτ

N

)−1

. (C.11)

It is exactly the characteristic function of an exponential distribution λe−λx with λ = N/τ

W(
√

p) = (N/τ)N
e− N

τ
p. (C.12)
πN !
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This procedure gives the unknown weight w(z) = e−N/τ |z|2 along with the normalization coeffi-

cient CN = 1
πN !

(
N
τ

)N
W(|z|2) = CNw(z). (C.13)

The kernel is therefore equal to

KN(z, v) = 1

τπ
exp

(
− N

2τ
(|z|2 + |v|2)

)N−1∑
k=0

(
Nzv̄

τ

)k 1

k! . (C.14)
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